
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 5, No. 2-4, pp. 456-468

Commun. Comput. Phys.
February 2009

A Discontinuous Galerkin Extension of the

Vertex-Centered Edge-Based Finite Volume Method

Martin Berggren1, Sven-Erik Ekström2,∗ and Jan Nordström2

1 Department of Computing Science, Umeå University, SE-901 87 Umeå Sweden.
2 Division of Scientific Computing, Department of Information Technology, Uppsala
University, Box 337, SE-751 05 Uppsala, Sweden.

Received 1 October 2007; Accepted (in revised version) 15 February 2008

Available online 1 August 2008

Abstract. The finite volume (FV) method is the dominating discretization technique
for computational fluid dynamics (CFD), particularly in the case of compressible flu-
ids. The discontinuous Galerkin (DG) method has emerged as a promising high-
accuracy alternative. The standard DG method reduces to a cell-centered FV method at
lowest order. However, many of today’s CFD codes use a vertex-centered FV method
in which the data structures are edge based. We develop a new DG method that re-
duces to the vertex-centered FV method at lowest order, and examine here the new
scheme for scalar hyperbolic problems. Numerically, the method shows optimal-order
accuracy for a smooth linear problem. By applying a basic hp-adaption strategy, the
method successfully handles shocks. We also discuss how to extend the FV edge-based
data structure to support the new scheme. In this way, it will in principle be possible to
extend an existing code employing the vertex-centered and edge-based FV discretiza-
tion to encompass higher accuracy through the new DG method.

AMS subject classifications: 65N22, 65N30 , 65N50

Key words: Discontinuous Galerkin methods, finite volume methods, dual mesh, vertex-centered,
edge-based, CFD.

1 Introduction

The finite volume (FV) method is currently the most widely used approach to discretize
the equations of aerodynamics. The method balances exactly—with respect to the cho-
sen numerical flux—the discrete values of mass, momentum, and energy between each
control volume. The type of control volumes together with the choice of numerical flux

∗Corresponding author. Email addresses: martin.berggren@cs.umu.se (M. Berggren), sven-erik.ekstrom@
it.uu.se (S.-E. Ekström), jan.nordstrom@it.uu.se (J. Nordström)

http://www.global-sci.com/ 456 c©2009 Global-Science Press



M. Berggren et al. / Commun. Comput. Phys., 5 (2009), pp. 456-468 457

determines which particular flavor of the FV method that is employed. Unstructured
meshes are supported naturally by these methods, which allows for the treatment of
flows around geometrically complex bodies.

The accuracy of FV methods is typically limited to first or second order. Efforts to
increase the accuracy of the basic method include the so-called high-resolution schemes
(MUSCL, ENO, WENO), which attain better flux approximations through extrapolation
from directions where the solution is smooth. These schemes modestly increase the mem-
ory requirements, but the computational complexity grows with the order, since the im-
proved accuracy relies on enlarging the width of the computational stencil. The regu-
larity requirements on the mesh are thus likely to be high in order to obtain improved
results.

A different approach to increase the accuracy is the discontinuous Galerkin (DG)
method. It is a finite element method that does not explicitly enforce continuity be-
tween the elements as in a classic finite element method, but instead imposes a coupling
between the solution at different elements with the use of numerical fluxes, as in the
FV method. The DG method reduces to a FV method at lowest order, and can thus be
viewed as a generalization of the FV method to higher orders. The increased order is
not the result of an extrapolation procedure, as in the high-resolution schemes, but stems
from a local approximation of the differential operator. The computational stencil of DG
methods thus remains local regardless of order, and the quality of approximation can be
expected not to depend as much on the mesh regularity as for the high-resolution FV
schemes. On the other hand, the computational complexity and memory requirements
increase sharply with order for the DG methods. Nevertheless, since a coarser mesh can
be used, a higher-order DG method requires considerably less degrees of freedom to at-
tain a solution with a given error bound, compared with a FV method.

There has been a strong development of the original DG method (Reed & Hill [24])
since the early nineties; Cockburn et al. [9] review the state of the art at the turn of the
century. Hesthaven and Warburton give a thorough introduction to DG methods in their
recent book [19]. Currently there is a coordinated effort in Europe, in which we par-
ticipate, through the EU research project ADIGMA [3], which involves the development
and assessment of different higher order methods such as DG and residual distribution
schemes [2, 10] for the next generation of CFD software aimed at the aeronautical indus-
try.

Since DG is a generalization of the FV method, it is tempting to extend existing FV
codes to encompass a DG method, in order to avoid a complete rewrite of large and
sophisticated software systems. A serious hurdle for such a strategy is that the standard
DG method is a higher-order version of the cell-centered FV method in which the control
volumes coincide with the mesh cells (Fig. 1a), whereas many of today’s codes are vertex-
centered where the control volumes are constructed from a dual mesh, consisting in two
dimensions of polygons surrounding each vertex in the original primal mesh (Fig. 1b).
Some examples of vertex-centered FV codes are DLR-Tau [25], Edge [12], Eugenie [15],
Fun3D [17], and Premo [26].



458 M. Berggren et al. / Commun. Comput. Phys., 5 (2009), pp. 456-468

Km

(a) Cell-centered.

Km

(b) Vertex-centered.

Figure 1: Control volume schemes for finite volume methods. The computational node (white circle) is either
associated with mesh cell center (a) or the mesh vertex (b). The solution value in the node is the average over
the control volume Km.

The vertex-centered approach has a number of particular features that may help to
explain its current popularity. Comparing a cell-centered and a vertex-centered scheme
on the same mesh, the latter has fewer degrees of freedom—about half the total memory
foot-print—and more fluxes per unknown, as mentioned by Blazek [6]. Abgrall [1] ar-
gues that reconstruction schemes are more easily formulated for vertex-centered control
volumes. Moreover, as opposed to cell-centered schemes, treatment of boundary con-
ditions are facilitated by the fact that control volume centers are located precisely on the
boundary. The main computational effort in a typical FV code concerns the residual com-
putations. A solver using the vertex-centered schemes may be implemented to support
what Haselbacher et al. [18] call grid transparency: the solver loops over all edges in the
mesh to assemble the residual, regardless of the space dimension or the choice of mesh
cell type (triangles, quadrilaterals, tetrahedrons, prisms, hexahedrons). Note, however,
that an analogous construction is also possible for cell-centered methods, by looping over
a list of cell surfaces. For a detailed discussion on cell-centered versus vertex-centered
FV methods, we refer to Blazek’s book [6] and the recent review by Morton & Sonar [23].
Also other schemes than FV use a vertex-centered control volume or loop over edges.
Some examples are residual distribution schemes [2, 10], edge-based finite elements [22],
and edge-based SUPG [8].

In the context of a linear first-order hyperbolic model problem, Berggren [5] intro-
duced a vertex-centered and edge-based DG method. Below, we further explore the
properties of this DG method for higher-order elements, and for a nonlinear problem
with a shock.

2 The discontinuous Galerkin method

The target application for the proposed scheme is aeronautical CFD, where computa-
tions of steady states are particularly prominent. Therefore we here consider the steady



M. Berggren et al. / Commun. Comput. Phys., 5 (2009), pp. 456-468 459

hyperbolic model problem

∇·F(u)+γu= f in Ω,

u= g on Γ−,
(2.1)

where u is the scalar unknown quantity, F is a flux function, γ≥ 0 is a constant, f is a
source term in the computational domain Ω⊂R

2, and g defines u on the inflow bound-
ary Γ−. We divide the domain, Ω, into a set of non-overlapping control volumes Km such
that Ω =

⋃M
m=1Km. The finite-dimensional space Vh of numerical solutions to Eq. (2.1)

comprises functions that are continuous on each Km but in general contain jump discon-
tinuities at the boundaries between control volumes. The restriction on each Km of func-
tions in Vh are polynomials for the standard DG method. Here we consider a different
choice of functions, as described in Section 3. Each vh∈Vh can be expanded as

vh(x)=
M

∑
m=1

Nm

∑
i=1

vm
i φm

i (x)=
Ndof

∑
i=1

viφi(x),

where Nm is the number of local degrees of freedom in control volume Km, {φm
i }

Nm

i=1 is
the set of basis functions associated with control volume Km, Ndof is the total number of
degrees of freedom, and φi are the basis functions globally numbered.

The DG method is obtained by multiplying Eq. (2.1) by a test function vh ∈Vh, inte-
grating over each control volume, integrating by parts, and introducing the numerical
flux F ∗ on the boundaries. This yields that uh∈Vh solves the variational problem

∫

∂Km

vLF
∗(uL,uR,n̂)ds−

∫

Km

∇vh ·F(uh)dV+γ
∫

Km

vhuhdV=
∫

Km

vh f dV, ∀vh∈Vh, ∀Km⊂Ω,

where subscripts L and R denote local (“left”) and remote (“right”) values on the bound-
ary ∂Km of control volume Km, and n̂ is the outward unit normal. The remote values are
either taken from the neighboring control volume’s boundary or, when ∂Km intersects
the domain boundary, from the supplied boundary condition data. Thus, the boundary
condition is imposed weakly through the numerical flux. In our implementation we use
the Roe numerical flux,

F ∗(uL,uR,n̂)=
1

2

(

n̂·F(uL)+n̂·F(uR)−
∣

∣n̂·F ′(ū)
∣

∣(uR−uL)
)

, (2.2)

where ū is the so called Roe average, a quantity that satisfies the mean-value property

n̂·F(uR)= n̂·F(uL)+n̂·F ′(ū)(uR−uL),

which makes the Roe flux a nonlinear generalization of upwinding.
The stability of the above scheme for linear advection problems relies on the upwind

flux, which generates a positive definite matrix representation of the operator, including
boundary conditions [5], [14, pp. 359-360].



460 M. Berggren et al. / Commun. Comput. Phys., 5 (2009), pp. 456-468

3 The vertex-centered macro element

The finite elements of the standard (cell-centered) DG method consist of polynomials
defined separately on each mesh cell, which means that the control volumes Km discussed
in Section 2 coincide with the mesh cells, typically triangles or quadrilaterals in two space
dimensions. In our method we use another choice of control volumes Km, defined on a
so-called dual mesh.

(a) Primal mesh. (b) Dual mesh.

(c) Triangulated dual mesh. (d) Macro elements.

Figure 2: Preprocessing stages for generating macro elements on the dual mesh. From the primal mesh (a) the
preprocessor constructs a dual mesh (b) that contains as many polygonal dual cells Km as the number of mesh
vertices in the primal mesh. We triangulate each dual cell (c) and define a macro element on each dual cell
(d), where the white circles are the computational nodes.

A preprocessor constructs the dual mesh and necessary data structures; Fig. 2 illus-
trates the procedure. From the primal mesh, Fig. 2a, the preprocessor constructs the dual
mesh shown in Fig. 2b. A dual mesh can be constructed in several ways, as discussed
by Barth [4]; here we choose just to connect the centroids of adjacent triangles to each
other with a new edge. Although Fig. 2 shows a uniform mesh, dual meshes can be con-
structed for any nondegenerate mesh. Next we triangulate the dual mesh, Fig. 2c, and
define our finite element on each dual cell as the macro element consisting of standard
triangular Lagrange elements of order p. That is, the functions are continuous on each
Km, and piecewise polynomials of degree p on each sub triangle of Km.

Note that we allow discontinuities in the solution between adjacent dual cells, but that
the solution within each dual cell is continuous. Thus, no flux evaluations are necessary
at the internal edges between the sub triangles in the dual cells. Indeed, any internal
flux contribution would vanish since the left and right states are identical due to the
continuity of the approximating functions across such edges. Note also that the element



M. Berggren et al. / Commun. Comput. Phys., 5 (2009), pp. 456-468 461

i1

i3 j3

ui
h u

j
h

i2 j2

j1

Ti Tj

∂Tij
n̂ij

j6

j5

j4

(a) An generic edge .

n̂ib n̂jb

i1 j1
∂Tib ∂Tjbui

h u
j
h

uBC

(b) A boundary edge.

Figure 3: Edge data structures with geometric data and spatial placement of the computational nodes. (a) The
triangles Ti and Tj share the boundary ∂Tij, and the outward unit normal ofTi on ∂Tij is n̂ij. Restrictions of the

function uh∈Vh onto Ti and Tj are denoted ui
h and u

j
h. (b) The boundary edge is the union of ∂Tib and ∂Tjb,

and the domain boundary outward unit normals are n̂ib and n̂jb. The domain boundary data, which is given by
the boundary condition, is denoted uBC.

type and order may be different on different dual cells.
Fig. 2d shows an example where all boundary macro elements and the leftmost of

the three inner macro elements are of constant type (p = 0), which corresponds to the
vertex-centered FV method, whereas the center and right interior macro elements are
linear (p=1) and quadratic (p=2), respectively. Note the multiple nodes, associated with
the possibility of jump discontinuities occurring at boundaries of the dual cells.

A common method to solve a problem such as the discrete version of Eq. (2.1) is to
march an unsteady version of the equation to steady state using an explicit Runge-Kutta
scheme. This strategy is often combined with convergence acceleration strategies such as
local time stepping and multigrid. The crucial step in such an algorithm is the compu-
tation of the residual, which is a vector of dimension equal to the number of degrees of
freedom for Vh. The ith component of the residual is

ri(uh)=
∫

∂Km

φiF
∗(uL,uR,n̂)ds−

∫

Km

∇φi ·F(uh)dV,

where Km is the macro element containing the support of φi. Here we assume γ =0 and
f =0 for simplicity.

Pointers to the degrees of freedom for Vh as well as geometric information are stored
in a list associated with the edges in the primal mesh. An additional list associated with
the domain boundary edges is also required to set boundary conditions.

For each edge in the primal mesh, we associate the two primal mesh vertices i and j
connected by the edge, and the normal vector nij (with

∣

∣nij

∣

∣ =
∣

∣∂Tij

∣

∣) to the intersection
of the boundaries of control volumes Ki and Kj. This information is all that is needed for
p = 0 (the finite volume case). For higher orders, we also associate two sub triangles, Ti

and Tj, of control volumes Ki and Kj, and a larger set of nodes indices (i1, i2,···; j1, j2,···)



462 M. Berggren et al. / Commun. Comput. Phys., 5 (2009), pp. 456-468

associated with the added degrees of freedom (Fig. 3a). Nodes i1 and j1 coincide with
primal mesh vertices i and j of the FV method.

To set boundary conditions, we utilize a list of boundary edges. For each such edge,
as illustrated in Fig. 3b, we associate boundary vertices i and j connected by the edge
and boundary normals nib and njb associated with the intersection of the boundaries of
control volumes Ki and Kj with the domain boundary. For higher orders, more nodes are
needed along the boundary. Additional information needs to be supplied for a curved
boundary, a case that is beyond the scope of the current discussion.

The pseudo-codes for a standard edge-based FV residual computation, and the new
extended edge-based DG version, are presented in Algorithms 3.1 and 3.2 respectively,
with common line numbering. The necessary computational quantities are defined in
Fig. 3, and in Algorithm 3.2 we use dof(D) = {k | D ⊂ supp(φk)} to denote the degrees
of freedom for a basis function with support in the region D. The residual contribution
functions are

CompFluxFV(∂T,uL,uR,n̂)=
∫

∂T
F ∗(uL,uR,n̂)ds,

CompFluxDG(∂T,uL,uR,n̂,v)=
∫

∂T
vF ∗(uL,uR,n̂)ds,

CompVolumeDG(T,u,v)=−
∫

T
∇v·F(u)dV.

As mentioned in the introduction, implementations of the residual calculation for
vertex-centered FV methods are typically edge-based, and we now shortly indicate how to
extend this approach to the current DG method.

The computation of the residual consists of three stages,

1. a loop over all edges in the mesh to compute residual contributions from the equa-
tion (lines 2-12),

2. a loop over all boundary edges to set boundary condition data (lines 13-19),

3. a loop over all boundary edges to compute residual contributions from the bound-
ary conditions (lines 20-28).

Again note that the DG method reduces to the FV method for constant ba-
sis functions, that is, Algorithm 3.2 is then equivalent to Algorithm 3.1 since
the DG flux integral computation CompFluxDG(∂T,uL,uR,n̂,1) is equal to its FV
counterpart CompFluxFV(∂T,uL,uR,n̂), and the DG volume integral computation
CompVolumeDG(T,u,1) is equal to zero. We use Gauss quadrature to evaluate all inte-
grals. The evaluation of the basis functions in the integration points is done once, in the
preprocessor, on a reference element. When coding the algorithm, several performance-
enhancing modifications can be done, for example at lines 5-6 of Algorithm 3.1. Since

CompFluxFV(∂Tij,u
i
h,u

j
h,n̂ij) is equal to −CompFluxFV(∂Tij,u

j
h,ui

h,−n̂ij), the numerical flux
only has to be computed once. At the corresponding lines of Algorithm 3.2, a similar
simplification can be done since the F ∗(uL,uR,n̂) part of the CompFluxDG integral has the
same property for all nodes of the two triangles at a given quadrature point. Another



M. Berggren et al. / Commun. Comput. Phys., 5 (2009), pp. 456-468 463

Algorithm 3.1: Edge-Based FV Residual.

1: r=0
2: for all edges e do
3: i, j,n̂ij,∂Tij←GetEdgeInfo(e)
4:

5: ri← ri+CompFluxFV(∂Tij,u
i
h,u

j
h,n̂ij)

6: rj← rj+CompFluxFV(∂Tij,u
j
h,ui

h,−n̂ij)
7:
8:

9:

10:
11:
12: end for
13: for all boundaries B do
14: for all boundary edges e∈B do
15: i, j,n̂ib,n̂jb,∂Tib,∂Tjb←GetEdgeInfo(e)

16: uBC←SetBCData(∂Tib,ui
h,n̂ib)

17: uBC←SetBCData(∂Tjb,u
j
h,n̂jb)

18: end for
19: end for
20: for all boundaries B do
21: for all boundary edges e∈B do
22: i, j,n̂ib,n̂jb,∂Tib,∂Tjb←GetEdgeInfo(e)
23:

24: ri← ri+CompFluxFV(∂Tib,ui
h,uBC,n̂ib)

25: rj← rj+CompFluxFV(∂Tjb,u
j
h,uBC,n̂jb)

26:
27: end for
28: end for

Algorithm 3.2: Edge-Based DG Residual.

1: r=0
2: for all edges e do
3: i, j,n̂ij,∂Tij,Ti,Tj←GetEdgeInfo(e)
4: for all m∈dof(Ti)∩dof(∂Tij) and

n∈dof(Tj)∩dof(∂Tij) do

5: rm← rm+CompFluxDG(∂Tij,u
i
h,u

j
h,n̂ij,φm)

6: rn← rn+CompFluxDG(∂Tij,u
j
h,ui

h,−n̂ij,φn)
7: end for
8: for all m∈dof(Ti) and n∈dof(Tj) do

9: rm← rm+CompVolumeDG(Ti,u
i
h,φm)

10: rn← rn+CompVolumeDG(Tj,u
j
h,φn)

11: end for
12: end for
13: for all boundaries B do
14: for all boundary edges e∈B do
15: i, j,n̂ib,n̂jb,∂Tib,∂Tjb←GetEdgeInfo(e)

16: uBC←SetBCData(∂Tib,ui
h,n̂ib)

17: uBC←SetBCData(∂Tjb,u
j
h,n̂jb)

18: end for
19: end for
20: for all boundaries B do
21: for all boundary edges e∈B do
22: i, j,n̂ib,n̂jb,∂Tib,∂Tjb←GetEdgeInfo(e)
23: for all m∈dof(∂Tib) and n∈dof(∂Tjb) do

24: rm← rm+CompFluxDG(∂Tib,ui
h,uBC,n̂ib,φm)

25: rn← rn+CompFluxDG(∂Tjb,u
j
h,uBC,n̂jb,φn)

26: end for
27: end for
28: end for

note is that some codes, for example Edge, loop over boundary nodes and not boundary
edges, but to keep a consistency with the interior treatment of edges, we choose to loop
over boundary edges.

4 Numerical results

We study a linear and a nonlinear model problem of the form (2.1). In both cases, the
exact solution is known explicitly. The linear model problem is used to numerically de-
termine the convergence rate and compare the number of degrees of freedom required
to reach a certain error level, for the different orders of approximation. To demonstrate
the method’s ability to handle shocks, we consider Burgers’ equation and apply a simple
hp-adaption strategy to handle the shock region.



464 M. Berggren et al. / Commun. Comput. Phys., 5 (2009), pp. 456-468

Table 1: The L2(Ω)-error, ‖u−uh‖L2(Ω), numerical order of convergence, s, and the number of degrees of

freedom Ndof, for the linear model problem, for each mesh in a sequence of six successively refined meshes,
using macro elements based on Lagrange triangles of different orders p.

constant, p=0 linear, p=1

hmax ‖u−uh‖L2(Ω) s Ndof ‖u−uh‖L2(Ω) s Ndof

h0 1.8558×10−1 − 185 3.5491×10−3 − 1249
2−1h0 1.1685×10−1 0.67 697 8.5294×10−4 2.06 4793
2−2h0 6.8506×10−2 0.77 2705 2.0608×10−4 2.05 18769
2−3h0 3.8030×10−2 0.85 10657 5.0122×10−5 2.04 74273
2−4h0 2.0356×10−2 0.90 42305 1.2322×10−5 2.02 295489
2−5h0 1.0660×10−2 0.93 168577 3.0512×10−6 2.01 1178753

quadratic, p=2 cubic, p=3

hmax ‖u−uh‖L2(Ω) s Ndof ‖u−uh‖L2(Ω) s Ndof

h0 2.9501×10−4 − 3337 5.8787×10−6 − 6449
2−1h0 4.3033×10−5 2.78 12905 3.3308×10−7 4.14 25033
2−2h0 5.8880×10−6 2.87 50737 1.9522×10−8 4.09 98609
2−3h0 7.7203×10−7 2.93 201185 1.1674×10−9 4.06 391393
2−4h0 1.0202×10−7 2.92 801217 7.0708×10−11 4.05 1559489
2−5h0 1.3564×10−8 2.91 3197825 4.3273×10−12 4.03 6225793

The linear model problem

The linear model problem of advection-reaction type is given by setting, in Eq. (2.1),

F(u)=βu, with β=
[

cos 2π
9 ,sin 2π

9

]T
, γ=1, and f =0. The boundary conditions are given

by

g(x,y)=







sin2πx, x∈ [0,1], y=0,

−exp
(

−γy
√

β2
f +1

)

sin2πβ f y, x=0, y∈ (0,1],

where β f =β1/β2. The expression above for x=0, y∈(0,1] is derived so that the solution
in (0,1)×(0,1) coincides with the one obtained by solving the same equation in the upper
half plane subject to the inflow boundary condition sin2πx on the x-axis. Note that the
Roe average ū in (2.2) does not have to be evaluated since F ′(ū)= β.

Table 1 presents the results of the convergence study. To solve the resulting linear
system, the sparse direct solver SuperLU [11] was used. The problem is solved on each
mesh of a sequence of six successively refined meshes, and for each implemented type of
macro element. The numerically observed convergence rate s in ‖u−uh‖L2(Ω)≤Chs is of

optimal order, that is, s= p+1. Fig. 4 depicts the L2(Ω)-error as a function of the number



M. Berggren et al. / Commun. Comput. Phys., 5 (2009), pp. 456-468 465

p=3
p=2
p=1
p=0

log10(Ndof)

lo
g

10
(‖

u
−

u
h
‖

L
2
(Ω

))

765432

0

-2

-4

-6

-8

-10

-12

Figure 4: The L2(Ω)-error, ‖u−uh‖L2(Ω), depending on the number of degrees of freedom, Ndof, for macro

elements based on Lagrange triangles of different orders p.

of degrees of freedom Ndof. The figure shows that an increase of the order of the method
substantially reduces the number of degrees of freedom needed to compute a solution
with a given error.

The nonlinear model problem

This model problem is chosen to assess the method’s performance for a nonlinear case
that develops a shock, and to demonstrate how hp-adaption can be utilized in the
method. We consider the classic inviscid Burgers’ equation in one dimension, in which
the time t is viewed as a second space variable y:

1

2
(u2)x+uy =0 in Ω.

Thus in Eq. (2.1), F(u)= 1
2

[

u2,2u
]T

,γ =0, and f =0. The boundary conditions are given
by

g(x,y)=



















1−2x, x∈ (0,2/3], y=0,

−1/3, x∈ (2/3,1), y=0,

1, x=0, y∈ (0,1],

−1/3, x=1, y∈ (0,1].

The Roe average ū in (2.2) is ū=(uL+uR)/2 and F ′(ū)= [ū,1]T.

Fig. 5 presents the different stages of the solution process, using hp-adaption. The nu-
merical solution using linear macro elements and the mesh of Fig. 5a is shown in Fig. 5b.
Artificial oscillations are clearly visible locally on the elements covering the shock. The



466 M. Berggren et al. / Commun. Comput. Phys., 5 (2009), pp. 456-468

x

y

0.0 0.5 1.0
0.0

0.5

1.0

(a) Initial dual mesh.

x
y

u

0.0

0.5

1.0 0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

1.5

(b) Solution on initial dual mesh.

x

y

0.0 0.5 1.0
0.0

0.5

1.0

(c) Dual mesh after two h-refinements.

x
y

u

0.0

0.5

1.0 0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

1.5

(d) Solution on dual mesh after two h-
refinements.

x

y

0.2 0.4 0.6 0.8
0.4

0.6

0.8

1.0

(e) Close-up of the shock. Edges
marked by the shock detector (black)
and exact shock location (gray line).

x
y

u

0.0

0.5

1.0 0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

1.5

(f) Solution on dual mesh after hp-
adaption.

Figure 5: Process of solving the nonlinear model problem with initially linear macro elements, using hp-adaption.



M. Berggren et al. / Commun. Comput. Phys., 5 (2009), pp. 456-468 467

shock detector by Krivodonova et al. [21] was then used to mark the elements in the vicin-
ity of the shock. The marked elements are then h-refined, by refining the corresponding
cells of the primal mesh, and then updating the dual mesh accordingly.

Next, a new solution is computed on the new mesh and the h-adaption is performed
once more, resulting in the mesh shown in Fig. 5c. The solution on this twice refined
mesh is shown in Fig. 5d. Fig. 5e shows a close-up of the shock region with the marked
edges that were found by the shock detector shown in black. The gray straight line marks
the exact location of the shock.

Finally, the orders of the macro elements marked in Fig. 5e are reduced to constants,
and the solver is iterated to steady state. This effectively removes the artificial oscilla-
tions, as illustrated by Fig. 5f. The presented shock handling, by hp-adaption, is easy to
implement and reduces the adverse effects of the reduced order on elements covering
the shock. As with other numerical methods, lowering the order in the vicinity of the
shocks, to avoid oscillations, provides a pollution effect in general (a rare exception is
found in [20]). Thus for the Euler equations, for instance, we cannot expect better than
first-order accuracy downstream of a shock, see [7, 13]. Alternative approaches for shock
capturing, such as the use of limiters or artificial viscosity, are out of the scope of this
article but will be studied in the future.

5 Conclusions

The new vertex-centered edge-based DG method shows great promise; besides sharing
the advantages of the standard DG, the method admits previously incompatible FV soft-
ware to be extended using higher-order DG. The numerical convergence rate is optimal
for the chosen smooth linear model problem. Artificial oscillations have been shown
to stay localized around discontinuities. Moreover, the oscillations can successfully be
treated by using a shock detector and hp-adaption.

Acknowledgments

The authors were supported in part by the ADIGMA project [3] and the Graduate School
in Mathematics and Computing, FMB [16].

References

[1] R. Abgrall. On essentially non-oscillatory schemes on unstructured meshes: analysis and
implementation. J. Comput. Phys., 114(1):45–58, 1994.

[2] R. Abgrall. Toward the ultimate conservative scheme: following the quest. J. Comput. Phys.,
167(2):277–315, 2001.

[3] ADIGMA. A European project on the development of adaptive higher order variational
methods for aerospace applications. http://www.dlr.de/.



468 M. Berggren et al. / Commun. Comput. Phys., 5 (2009), pp. 456-468

[4] T. J. Barth and D. C. Jespersen. The design and application of upwind schemes on unstruc-
tured meshes. In 27th Aerospace Sciences Meeting, AIAA 89-0366, Reno, Nevada, 1989.

[5] M. Berggren. A vertex-centered, dual discontinuous Galerkin method. J. Comput. Appl.
Math., 192(1):175–181, 2006.

[6] J. Blazek. Computational Fluid Dynamics. Elsevier, Amsterdam, second edition, 2005.
[7] J. Casper and M. H. Carpenter. Computational Considerations for the Simulation of Shock-

Induced Sound. SIAM J. Sci. Comput., 19(3):813–828, 1998.
[8] L. Catabriga and A. Coutinho. Implicit SUPG solution of Euler equations using edge-based

data structures. Comput. Meth. Appl. Mech. Eng., 191(32):3477–3490, 2002.
[9] B. Cockburn, G. Karniadakis, and C.-W. Shu, editors. Discontinuous Galerkin Methods: Theory,

Computation and Applications, volume 11 of Lect. Notes in Comput. Sc. and Eng., Berlin, 2000.
Springer.

[10] A. Csk, M. Ricchiuto, and H. Deconinck. A Conservative Formulation of the Multidimen-
sional Upwind Residual Distribution Schemes for General Nonlinear Conservation Laws. J.
Comput. Phys., 179(1):286–312, 2002.

[11] J. W. Demmel, J. R. Gilbert, and S. X. Xiaoye. SuperLU users’ guide. Technical Report LBNL-
44289, Ernest Orlando Lawrence Berkeley National Laboratory, 1999.

[12] P. Eliasson. EDGE, a Navier–Stokes solver, for unstructured grids. Technical Report FOI-R-
0298-SE, Swedish Defence Research Agency, 2001.

[13] B. Engquist and B. Sjgreen. The Convergence Rate of Finite Difference Schemes in the Pres-
ence of Shocks. SIAM J. Numer. Anal., 35(6):2464–2485, 1998.

[14] M. Feistauer, J. Felcman, and I. Straškraba. Mathematical and Computational Methods for Com-
pressible Flow. Oxford University Press, 2003.

[15] L. Fezoui and B. Stoufflet. A class of implicit upwind schemes for euler simulations with
unstructured meshes. J. Comput. Phys., 84(1):174–206, 1989.

[16] FMB. The Graduate School in Mathematics and Computing. http://www.math.uu.se/fmb/.
[17] Fun3D. Fully Unstructured Navier–Stokes. http://fun3d.larc.nasa.gov/.
[18] A. Haselbacher, J. J. McGuirk, and G. J. Page. Finite volume discretization aspects for viscous

flows on mixed unstructured grids. AIAA J., 37(2):177–184, 1999.
[19] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis

and Applications. Springer-Verlag New York Inc., 2007.
[20] G. Kreiss, G. Efraimsson, and J. Nordström. Elimination of First Order Errors in Shock

Calculations. SIAM J. Numer. Anal., 38:1986–1998, 2001.
[21] L. Krivodonova, J. Xin, J. F. Remacle, N. Chevaugeon, and J. E. Flaherty. Shock detection

and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl.
Numer. Math., 48:323–338, 2004.

[22] H. Luo, J. D. Baum, and R. Lhner. Edge-based finite element scheme for the Euler equations.
AIAA J., 32:1182–1190, June 1994.

[23] K. W. Morton and T. Sonar. Finite volume methods for hyperbolic conservation laws. Acta
Numer., 16:155–238, 2007.

[24] W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron transport equation.
Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, 1973.

[25] D. Schwamborn, T. Gerhold, and R. Heinrich. The DLR TAU-Code: Recent Applications in
Research and Industry. In P. Wesseling, E. O nate, and J. Périaux, editors, ECCOMAS CFD
2006, 2006.

[26] T. M. Smith, C. C. Ober, and A. A. Lorber. SIERRA/Premo–A New General Purpose Com-
pressible Flow Simulation Code. In AIAA 32nd Fluid Dynamics Conference, St. Louis, 2002.


