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Abstract
It is well known that the discretization of fractional diffusion equations with
fractional derivatives 𝛼 ∈ (1, 2), using the so-called weighted and shifted Grün-
wald formula, leads to linear systems whose coefficient matrices show a
Toeplitz-like structure. More precisely, in the case of variable coefficients, the
related matrix sequences belong to the so-called generalized locally Toeplitz
class. Conversely, when the given FDE has constant coefficients, using a suitable
discretization, we encounter a Toeplitz structure associated to a nonnegative
function 𝛼 , called the spectral symbol, having a unique zero at zero of real
positive order between one and two. For the fast solution of such systems by
preconditioned Krylov methods, several preconditioning techniques have been
proposed in both the one- and two-dimensional cases. In this article we pro-
pose a new preconditioner denoted by 𝛼

which belongs to the 𝜏-algebra and
it is based on the spectral symbol 𝛼 . Comparing with some of the previously
proposed preconditioners, we show that although the low band structure pre-
serving preconditioners are more effective in the one-dimensional case, the
new preconditioner performs better in the more challenging multi-dimensional
setting.
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fractional differential equations, fractional order zero, GMRES, multi-level Toeplitz matrix, sine
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1 INTRODUCTION

Fractional calculus may be considered both an old and modern topic. Old, since it dates back to the letter from L’Hôpital
to Leibniz in 1695, and a novel one, since it has been object of specialized conferences and treatises, for the last 40 years. In
recent years considerable interest in fractional calculus has been stimulated by the applications that this calculus finds in
numerical analysis and modeling. As an example, fractional diffusion equations (FDEs) are used to model anomalous dif-
fusion or dispersion, where a particle plume spreads at a rate inconsistent with the classical Brownian motion model (e.g.,
see Reference 1 and the references therein). Such phenomena are ubiquitous in both natural and social sciences. In fact,
many complex dynamical systems often contain anomalous diffusion. Fractional kinetic equations are usually an effec-
tive method for describing these complex systems, including diffusion type, diffusive convection type and Fokker–Planck
type FDEs.2 Since analytical solutions are rarely available, these kinds of equations are of numerical interest. When the
order of fractional derivatives is 𝛼 = 1, we have the standard diffusion process. With 0 < 𝛼 < 1, we describe a sub-diffusion
process or dispersive, slow diffusion process with the anomalous diffusion index, while with 𝛼 > 1, an ultra-diffusion
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process or increased, fast diffusion process. In Reference 3 it has been proved the strict relationship between the order
of the fractional derivative and the order of the zero of the associated symbol of the coefficient matrix of the related sys-
tem. In addition, it is well known (e.g., see References 4,5), that if the generating function f ≥ 0 of a Toeplitz matrix of
size n has a unique zero of order 𝛼 ∈ (0, 1) and it is bounded, then Tn(f ) has a condition number growing exactly as n𝛼 .
Hence, the standard Conjugate Gradient method requires only O(n𝛼∕2) iterations for the solution of a related linear sys-
tems up to the required accuracy (for a total of O(n𝛼∕2 log(n)) arithmetic operations. When 𝜔f has all the range in the
right complex plane for some 𝜔 complex of modulus one, the generating function f is called weakly sectorial.6,7 Then if f
is weakly sectorial, essentially bounded and f has a unique zero of order 𝛼 ∈ (0, 1), then again Tn(f ) has a condition num-
ber growing exactly as n𝛼 . Hence, a good GMRES with (possibly) any standard circulant preconditioning is essentially
satisfactory (e.g., see References 8-10). Thus, the case where the order of fractional derivative 𝛼 belongs to the interval
(1, 2) is, computationally, more challenging. Moreover, in this article we are focus on the numerical solution of particular
time-dependent space-fractional diffusion equation on rectangular domains in one and two dimensions using finite dif-
ferences techniques. For numerical techniques concerning domains of general geometry or numerical schemes different
from finite differences and multigrid techniques, the interested reader is referred, for example, to Reference 11-13, and
the references therein.

Several definitions for the fractional derivative exist, and each of them approaches the definition of ordinary deriva-
tive in the integer order limit. In References 1,14 the authors proposed two unconditionally stable finite difference
schemes, of first and second order accuracy, based on the shifted Grünwald–Letnikov definition of fractional deriva-
tives. In Reference 15 it was shown that once one of these methods is chosen, the coefficient matrix of the generated
system can be seen as the sum of two structures, each of them expressed as a diagonal matrix multiplied by a Toeplitz
matrix. Since the efficient solution of such systems are of great interest many iterative solvers have been proposed. Rep-
resentative examples are the multigrid method (MGM) scheme proposed by Noutsos and Vassalos,16 the circulant-based
preconditioners for the Conjugate Gradient Normal Residual (CGNR) method,17,18 the splitting preconditioner,19 and
two structure-preserving preconditioners proposed in Reference 3. In the latter paper, the authors provide a detailed
analysis, showing that the sequence of coefficient matrices belongs to the generalized locally Toeplitz (GLT) class and
its spectral symbol, which describes the asymptotic singular and eigenvalue distribution, is explicitly derived. In Ref-
erence 20 the analysis is extended to the two-dimensional case and the authors compare the two-dimensional version
of the structure preserving preconditioner based on a decomposition of the Laplacian3 to a preconditioner based on an
algebraic MGM.

In this work, based on the theoretical results presented in Reference 21 and motivated by an interest to study the
effectiveness of suitable 𝜏 preconditioners for ill-conditioned symmetric Toeplitz systems, we propose a new precondi-
tioner for the solution of Toeplitz-like systems, stemming from the discretization of the considered FDEs. Specifically, in
Reference 21 the authors proved the essential spectral equivalence between the matrix sequences {Tn(f )}n and {𝜏n(f )}n,

where {Tn(f )}n is the sequence of symmetric positive definite (SPD) Toeplitz matrices generated by an even, non-negative
functions f with zeros of any positive order, that is,

[Tn(f )]kj = [Tn(f )]k−j =
1

2𝜋

𝜋

∫
−𝜋

f (x)e−i(k−j)x dx k, j = 1, 2, … ,n, i2 = −1,

and {𝜏n(f )}n is the sequence of a specific 𝜏 matrices, generated as

𝜏n(f ) = Sndiag(f (𝜽))Sn, 𝜽 = [𝜃1, 𝜃2, … , 𝜃n] , 𝜃j =
j𝜋

n + 1
= j𝜋h, j = 1, … ,n,

and

[Sn]i,j =
√

2
n + 1

sin
(

i𝜃j
)
, i, j = 1, … ,n. (1)

We recall here that Sn is symmetric and orthogonal and so it coincides with its inverse and that “essential spectral
equivalence” means that all the eigenvalues of {𝜏−1

n (f )Tn(f )}n belong to an interval [c,C] except possible m outliers, not
converging to zero as the matrix size tends to infinity. In the case of generating functions with the order of their zero lying
in the interval [0, 3] it is worth noticing that there are no outliers.
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According to the analysis given in the aforementioned works, the coefficient matrix of the corresponding linear system
depends on the diffusion coefficients of the FDE. In the simplest case where they are constant and equal, the related
matrix is a diagonal matrix multiplied by a real SPD Toeplitz matrix with its generating function 𝛼 being even, positive,
and real, having a zero at zero of real positive order between one and two, plus a positive diagonal with constant entries
that asymptotically tend to zero. Analysis shows that this matrix is present in the more general case where the diffusion
coefficients are not constant and not equal to each other. In this case, a diagonal times skew-symmetric real Toeplitz matrix
is then added to the coefficient matrix. Taking advantage of this fact, we propose the preconditioner 𝛼

= Dn𝜏n(𝛼),
where Dn is a suitable diagonal matrix defined in Section 3. We show that this preconditioner can effectively keep the real
part of the eigenvalues away from zero, while the sine transform keeps the cost per iteration (n log n), using a specific
real algorithm or using the fast Fourier transform (FFT). It turns out that this preconditioner is very efficient and performs
better, especially in multi-dimensional case, than the proposed preconditioners in References 3 and 20.

The article is organized as follows. In Sections 1.1–1.4, we present the one and two-dimensional FDE problems and
the respective discretizations. Then, in Section 2 we summarize the spectral analysis performed in References 3,20, which
turns out to be necessary for the definition of the new preconditioner. In Section 3, we also define the proposed precon-
ditioners for the one and two-dimensional cases. In Section 4, we report numerical experiments and results that confirm
the efficiency of the proposed preconditioner. Finally, in Section 5 we discuss the advantages and disadvantages of the
proposed preconditioners and possible future research directions.

1.1 Fractional diffusion equations

Consider the two dimensional initial-boundary value problem

⎧⎪⎪⎨⎪⎪⎩

𝜕u(x,y,t)
𝜕t

= d+(x, y, t) 𝜕
𝛼u(x,y,t)
𝜕+x𝛼

+ d−(x, y, t) 𝜕
𝛼u(x,y,t)
𝜕−x𝛼

+

+e+(x, y, t) 𝜕
𝛽u(x,y,t)
𝜕+y𝛽

+ e−(x, y, t) 𝜕
𝛽u(x,y,t)
𝜕−y𝛽

+ f (x, y, t), (x, y, t) ∈ Ω × (0,T),

u(x, y, t) = 0, (x, y, t) ∈ R2 ⧵Ω × [0,T],
u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

(2)

whereΩ = (L1,R1) × (L2,R2), 𝛼, 𝛽 ∈ (1, 2) is the fractional derivative order, f (x, y, t) is the source term and the nonnegative
functions d±(x, y, t) and e±(x, y, t) are the diffusion coefficients. Accordingly, in the one-dimensional setting we drop the
dependency on y, while the terms including e±(x, y, t) are not present.

The left-handed (𝜕+) and the right-handed (𝜕−) fractional derivatives in (2) are defined in Riemann–Liouville form as
follows:

𝜕𝛼u(x, y, t)
𝜕+x𝛼

= 1
Γ(2 − 𝛼)

𝜕2

𝜕x2

x

∫
L1

u(𝜉, y, t)
(x − 𝜉)𝛼−1 d𝜉,

𝜕𝛼u(x, y, t)
𝜕−x𝛼

= 1
Γ(2 − 𝛼)

𝜕2

𝜕x2

R1

∫
x

u(𝜉, y, t)
(𝜉 − x)𝛼−1 d𝜉,

𝜕𝛽u(x, y, t)
𝜕+y𝛽

= 1
Γ(2 − 𝛽)

𝜕2

𝜕y2

y

∫
L2

u(x, 𝜂, t)
(y − 𝜂)𝛽−1 d𝜂,

𝜕𝛽u(x, y, t)
𝜕−y𝛽

= 1
Γ(2 − 𝛽)

𝜕2

𝜕y2

R2

∫
y

u(x, 𝜂, t)
(𝜂 − y)𝛽−1 d𝜂.

1.2 First-order finite difference discretization

In this section, we consider the one-dimensional version of (2) (for two-dimensional derivation see Section 1.4 and
Reference 20). Applying the shifted Grünwald formulas we can approximate the left and right fractional derivatives by

𝜕𝛼u(x, t)
𝜕+x𝛼

= 1
h𝛼

x

⌊(x−L1)∕hx⌋∑
k=0

g(𝛼)k u(x − (k − 1)hx, t) + (hx),

𝜕𝛼u(x, t)
𝜕−x𝛼

= 1
h𝛼

x

⌊(R1−x)∕hx⌋∑
k=0

g(𝛼)k u(x + (k − 1)hx, t) + (hx),
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where ⌊⋅⌋ is the floor function, n1 is the discretization parameter giving hx = (R1 − L1)∕(n1 + 1) = (R1 − L1)h1, and g(𝛼)k
are the alternating fractional binomial coefficients defined as

g(𝛼)k = (−1)k
(
𝛼

k

)
= (−1)k

k!
𝛼(𝛼 − 1) · · · (𝛼 − k + 1), k = 0, 1, … , (3)

where
(

𝛼

0

)
= 1. Using the implicit Euler method for time discretization, we define the number of time steps (index m) to

be M, and thus ht = T∕M, and

u(m)
i − u(m−1)

i

ht
=

d(m)
+,i

h𝛼
x

i+1∑
k=0

g(𝛼)k u(m)
i−k+1 +

d(m)
−,i

h𝛼
x

ni−i+2∑
k=0

g(𝛼)k u(m)
i+k−1 + f (m)

i ,

where d(m)
±,i = d±(xi, tm), u(m)

i = u(xi, tm), and f (m)
i = f (xi, tm), where xi = L1 + ihx and tm = mht. After rearranging terms,

we find

h𝛼
x

ht
u(m)

i − d(m)
+,i

i+1∑
k=0

g(𝛼)k u(m)
i−k+1 − d(m)

−,i

n1−i+2∑
k=0

g(𝛼)k u(m)
i+k−1 =

h𝛼
x

ht
u(m−1)

i + h𝛼
x f (m)

i ,

or in matrix form, the linear systems(
𝜈M,n1In1 + D(m)

+ T𝛼,n1 + D(m)
− TT

𝛼,n1

)
u(m) = 𝜈M,n1 u(m−1) + h𝛼

x f(m), (4)

where

In1 ∶ The identity matrix of size n1, (5)

𝜈M,n1 =
h𝛼

x

ht
, (6)

u(m) =
[

u(m)
1 ,u(m)

2 , … ,u(m)
n1

]T
,

f(m) =
[

f (m)
1 , f (m)

2 , … , f (m)
n1

]T
,

[D(m)
± ]i,i = d(m)

± (xi, tm), i = 1, … ,n1,

and

T𝛼,n1 = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(𝛼)1 g(𝛼)0

g(𝛼)2 g(𝛼)1 g(𝛼)0

g(𝛼)3 g(𝛼)2 g(𝛼)1 g(𝛼)0

⋮ ⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋱ ⋱ ⋱

g(𝛼)n1−1 g(𝛼)n1−2 · · · ⋱ g(𝛼)2 g(𝛼)1 g(𝛼)0

g(𝛼)n1
g(𝛼)n1−1 · · · · · · g(𝛼)3 g(𝛼)2 g(𝛼)1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

with the coefficients g(𝛼)k given in (3).
Now define

(m)
𝛼,n1

=
(
𝜈M,n1In1 + D(m)

+ T𝛼,n1 + D(m)
− TT

𝛼,n1

)
,

b(m) = 𝝂M,n1 u(m−1) + h𝛼
x f(m). (8)
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Then, for each time step m, we solve the system

(m)
𝛼,n1

u(m) = b(m). (9)

1.3 Second-order finite difference discretization

For the second order finite difference discretization in space, we can just exchange the matrix T𝛼,n1 in (4) with a matrix
S𝛼,n1 defined by

S𝛼,n1 = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(𝛼)
1 w(𝛼)

0

w(𝛼)
2 w(𝛼)

1 w(𝛼)
0

w(𝛼)
3 w(𝛼)

2 w(𝛼)
1 w(𝛼)

0

⋮ ⋱ ⋱ ⋱ ⋱

⋮ ⋱ ⋱ ⋱ ⋱ ⋱

w(𝛼)
n1−1 w(𝛼)

n1−2 · · · ⋱ w(𝛼)
2 w(𝛼)

1 w(𝛼)
0

w(𝛼)
n1

w(𝛼)
n1−1 · · · · · · w(𝛼)

3 w(𝛼)
2 w(𝛼)

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where

w(𝛼)
0 = 𝛼

2
g(𝛼)0 ,

w(𝛼)
k = 𝛼

2
g(𝛼)k + 2 − 𝛼

2
g(𝛼)k−1, k ≥ 1,

and the coefficients g(𝛼)k are expressed as in relation (3).

1.4 Two-dimensional case

Similarly to 1D case, we can extend the discretization scheme to the two-dimensional setting. In the next paragraph we
summarize the main points of the numerical procedure, referring the reader in Reference 20 for further details. Define

hx =
R1 − L1

n1 + 1
= (R1 − L1)h1, xi = L1 + ihx, i = 1, … ,n1,

hy =
R2 − L2

n2 + 1
= (R2 − L2)h2, yi = L2 + ihy, i = 1, … ,n2,

and N = n1n2. The solution u(x, y, t) is discretized as u(m)
i,j = u(xi, yj, t(m)),

u(m) = [u(m)
1,1 , … ,u(m)

n1,1
,u(m)

1,2 , … ,u(m)
n1,2

, … ,u(m)
1,n2

, … ,u(m)
n1,n2

]T,

and the four diffusion function d+(x, y, t), d−(x, y, t), e+(x, y, t), e−(x, y, t) are discretized as d±,(m)
i,j = d±(xi, yj, t(m)) and e±,(m)

i,j =
e±(xi, yj, t(m)),

d(m)
± =

[
d±,(m)

1,1 , … , d±,(m)
n1,1

, d±,(m)
1,2 , … , d±,(m)

n1,2
, … , d±,(m)

1,n2
, … , d±,(m)

n1,n2

]T
,

e(m)
± =

[
e±,(m)

1,1 , … , e±,(m)
n1,1

, e±,(m)
1,2 , … , e±,(m)

n1,2
, … , e±,(m)

1,n2
, … , e±,(m)

n1,n2

]T
.

The source term f (x, y, t) is discretized as f (m)
i,j = f (xi, yj, t(m)),

v(m−1∕2) =
[

f (m−1∕2)
1,1 , … , f (m−1∕2)

n1,1
, f (m−1∕2)

1,2 , … , f (m−1∕2)
n1,2

, … , f (m−1∕2)
1,n2

, … , f (m−1∕2)
n1,n2

]T
.

We also define the four matrices D(m)
± = diag(d(m)

± ) and E(m)
± = diag(e(m)

± ).
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If we have two fractional derivatives, 𝛼 and 𝛽, in each spatial direction we define the two matrices S𝛼,n1 and S𝛽,n2 (or
T𝛼,n1 and T𝛽,n2 for the considered first-order discretization).

We also define the two N × N matrices

A(m)
x = D(m)

+ (In2 ⊗ S𝛼,n1) + D(m)
− (In2 ⊗ ST

𝛼,n1
),

A(m)
y = E(m)

+ (S𝛽,n2 ⊗ In1) + E(m)
− (ST

𝛽,n2
⊗ In1),

where In denotes the identity matrix of size n, and ⊗ is the Kronecker product. Using Crank–Nicolson approach for time
discretization (e.g., see Reference 20) we obtain the system(1

r
IN + A(m)

x + s
r

A(m)
y

)
u(m) =

(1
r
IN − A(m−1)

x − s
r

A(m−1)
y

)
u(m−1) + 2h𝛼

x v(m−1∕2),

where r = ht
2h𝛼

x
, s = ht

2h𝛽
y
. In compact form we have

(m)
(𝛼,𝛽),Nu(m) = b(m),

where

(m)
(𝛼,𝛽),N = 1

r
IN + A(m)

x + s
r

A(m)
y ,

b(m) =
(1

r
IN − A(m−1)

x − s
r

A(m−1)
y

)
u(m−1) + 2h𝛼

x v(m−1∕2).

2 SPECTRAL ANALYSIS

In this section we provide some definitions that are used in the analysis. We also employ the theory of GLT matrix
sequences to study the spectral properties of (m)

𝛼,n1
of (9) (for both the first and second order version) as the matrix dimen-

sion tends to infinity. We refer the reader to Reference 22 for an introduction to the theory of GLT matrix sequences. Here,
we only list some basic properties that are used in the analysis that follows. The results reported in Sections 2.1 and 2.2
are taken from References 3,20.

Definition 1. Let {An}n be a matrix sequence and f ∶ D → C be a measurable function defined on a measurable set
D ⊂ Rk with 0 < 𝜇(D) < ∞.

• We say that the sequence {An}n has an asymptotic singular value distribution described by f , and we write {An}n ∼𝜎 f
if,

lim
n→∞

1
n

n∑
j=1

F(𝜎j(An)) =
1

𝜇(D)∫
D

F(|f (x)|)dx, ∀F ∈ Cc(R),

where Cc(R) is the set of continuous functions with compact support over R.
• We say that {An}n has an asymptotic eigenvalue distribution described by f , and write {An}n ∼𝜆 f if

lim
n→∞

1
n

n∑
j=1

F(𝜆j(An)) =
1

𝜇(D)∫
D

F(f (x))dx, ∀F ∈ Cc(C),

where Cc(R) is the set of continuous functions with compact support over R.

Definition 2. Let f ∈ L1([−𝜋, 𝜋]) and {fk}k∈Z its Fourier coefficients defined as

fk = 1
2𝜋

𝜋

∫
−𝜋

f (𝜃)e−ik𝜃 d𝜃, k = 0,±1,±2, … .
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The sequence of matrices {Tn(f )}n∈N, Tn(f ) = [fi−j]n
i,j=1, is called a Toeplitz sequence generated by f .

The eigenvalue and singular value distribution of Toeplitz sequences generated by f ∈ L1([−𝜋, 𝜋]) is given by
generalized Szegő theorem:23

Theorem 1. Let f ∈ L1([−𝜋, 𝜋]) and Tn(f ) be the Toeplitz matrix generated by f . Then f is the spectral symbol of the sequence,
that is

{Tn(f )}n ∼𝜎 f .

If, moreover, f is real-valued, then

{Tn(f )}n ∼𝜆 f .

The basic properties of the GLT class follow.

GLT1 Each GLT sequence {An}n has a singular value symbol f̃ ∶ [0, 1] × [−𝜋, 𝜋] → C. If all the matrices of the sequence
are Hermitian, then the distribution also holds in the eigenvalue sense. We call f̃ (x, 𝜃) the GLT symbol of {An}n
and we write {An}n ∼GLT f̃ .

GLT2 The set of GLT sequences is closed under linear combinations, products, inversion (whenever the symbol is zero
in at most a set of zero Lebesgue measure) and conjugation. The sequence obtained via algebraic operations on
a finite set of given GLT sequences is still a GLT sequence and its symbol is obtained by performing the same
algebraic manipulations on the corresponding symbols of the input GLT sequences.

GLT3 Every Toeplitz sequence generated by a function f ∈ L1([−𝜋, 𝜋]) is a GLT sequence and its symbol is f̃ (x, 𝜃) = f (𝜃).
If 𝛼 ∶ [0, 1] → C is a Riemann integrable function, the diagonal matrix sequence of the form {Dn(𝛼)}n, n ∈ N,
Dn(𝛼) = diagj=1,… ,n(𝛼(

j
n
)) is a GLT sequence with spectral symbol f̃ (x, 𝜃) = 𝛼(x).

2.1 Spectral analysis: Matrices T𝜶,n and S𝜶,n

From Reference 3 we know that T𝛼,n1 in (7) is a Toeplitz sequence with spectral symbol

g𝛼(𝜃) = −e−i𝜃(1 − ei𝜃)𝛼,
and thus from Theorem 1 and GLT3

{T𝛼,n}n = {Tn(g𝛼)}n ∼GLT,𝜎 g𝛼. (11)

Furthermore, as shown in Reference 20, S𝛼,n in (10) is a Toeplitz sequence with spectral symbol

w𝛼(𝜃) = −
(

2 − 𝛼(1 − e−i𝜃)
2

)(
1 − ei𝜃)𝛼, (12)

and thus from Theorem 1 and GLT3

{S𝛼,n}n = {Tn(w𝛼)}n ∼GLT,𝜎 w𝛼. (13)

2.2 Spectral analysis: Constant coefficient case

Theorem 2. Assuming d±(x, t) = d > 0 and that 𝜈M,n = o(1), we have for the first order spatial discretization{(m)
𝛼,n

}
n
∼GLT,𝜎,𝜆 d ⋅ p𝛼(𝜃),

where

p𝛼(𝜃) = g𝛼(𝜃) + g𝛼(−𝜃). (14)
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For the second order spatial discretization we have{(m)
𝛼,n

}
n
∼GLT,𝜎,𝜆 d ⋅ q𝛼(𝜃),

where

q𝛼(𝜃) = w𝛼(𝜃) + w𝛼(−𝜃). (15)

In the subsequent analysis, whenever either symbol p𝛼(𝜃) or q𝛼(𝜃) is applicable, we denote both symbols by 𝛼(𝜃).

Proposition 1. Let 𝛼 ∈ (1, 2), then the function p𝛼(𝜃) has a zero of order 𝛼 at 0.

Moreover, in connection with Proposition 1, it is worth noticing the following: if f is nonnegative with a unique zero
of order 𝛼 > 0, then the matrix Tn(f ) is positive definite for any n its minimal eigenvalue tends to zero as n tends to
infinity as n−𝛼; furthermore, if f is also bounded then the condition number of Tn(f ) grows asymptotically as n𝛼 (e.g., see
References 5,6).

3 MAIN RESULTS

In this section we propose two new preconditioners, based on the spectral symbol, for the one and two-dimensional
problems.

3.1 Proposed preconditioner: One dimension

To be consistent with Reference 3, so that results can be compared, we use the first-order spatial discretization for the one
dimensional case. We also omit the time dependency mark to simplify the notation. Thus, let Tn = T𝛼,n1 be defined as in
(7) and let n = 𝛼,n1 be defined as in (8).

As previously mentioned in Section 1, the proposed preconditioner is similar to a diagonal matrix Dn times a specific
𝜏 matrix, that is, 𝛼

= Dn𝜏n(𝛼(𝜽)), where both these parts will be clarified through this paragraph.
The product of two or more matrices as preconditioner is not a new proposal (see, e.g., Reference 24). The coefficient

matrix of the system n = 𝜈M,nIn + D+Tn + D−TT
n suggests the following candidate for the diagonal matrix

Dn = 1
2
(D+ + D−) ,

[Dn]i,i =
d+,i + d−,i

2
, (16)

that has been used in other preconditioning strategies (see e.g., Reference 3). Then, assuming that d± do not have a
common zero at x0 ∈ [L,R], we deduce that D−1

n is uniformly bounded and

D−1
n n = 𝜈M,nD−1

n + D−1
n D+Tn + D−1

n D−TT
n .

Defining 𝛿(x) = d+(x)
d+(x)+d−(x)

, 𝛿i = 𝛿(xi), 𝜹 = [𝛿1, 𝛿2, … , 𝛿n], and Gn = diag(𝜹), taking into account that d± are non negative
functions, we have that 0 ≤ 𝛿(x) ≤ 1 and also

D−1
n D+ = 2Gn,

D−1
n D− = 2(In − Gn).

Hence, D−1
n n can be written as

D−1
n n = 𝜈M,nD−1

n + D−1
n D+Tn + D−1

n D−TT
n

= 𝜈M,nD−1
n + 2GnTn + 2(In − Gn)TT

n

= 𝜈M,nD−1
n + (Tn + TT

n ) + (2Gn − In)(Tn − TT
n ).
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Since, from (11), Tn ∶= Tn(−e−i𝜃(1 − ei𝜃)𝛼) = Tn(g𝛼(𝜃)) and TT
n ∶= Tn(−ei𝜃(1 − e−i𝜃)𝛼) = Tn(g𝛼(−𝜃)) we have

D−1
n n = 𝜈M,nD−1

n + (Tn + TT
n ) + (2Gn − In)(Tn − TT

n )
= 𝜈M,nD−1

n + Tn(g𝛼(𝜃) + g𝛼(−𝜃)) + (2Gn − In)Tn(g𝛼(𝜃) − g𝛼(−𝜃))
= 𝜈M,nD−1

n + Tn(p𝛼(𝜃)) + (2Gn − In)Tn(2iℑ {g𝛼(𝜃)}), (17)

where p𝛼(𝜃), defined in (14), is real, positive and even. With ℑ we denote the imaginary part of a function. The above
derivation of the D−1

n n matrix is of interest since it makes clear why it is reasonable to use the 𝜏 preconditioner. The first
term of the above matrix, 𝜈M,nD−1

n , is diagonal with positive and o(1) entries, since we have supposed that the d± functions
do not have zeros at the same point in the domain [L,R] and 𝜈M,n = o(1). We mention here that although the entries of
this term are o(1), its effect on the eigenvalues of the preconditioned matrix can be significant. The reason is explained in
the end of this section. The third term in (17) is a diagonal matrix with entries in [−1, 1] times a skew-symmetric Toeplitz
matrix with generating function 2iℑ {g𝛼(𝜃)}. If d+ = d− this term is vanishing while if the d± are constant but not equal
it is a pure skew-symmetric Toeplitz (in that case (2Gn − In) = cIn for some constant c).

The term in (17) which is mainly responsible for the dispersion of the real part of the spectrum, is the second term, that
is, Tn(p𝛼(𝜃)). The 𝜏 preconditioner will effectively cluster the eigenvalues of this matrix, and consequently the eigenvalues
of the whole matrix D−1

n n. Hence, taking advantage of the essential spectral equivalence between the matrix sequences
{𝜏n(f )}n and {Tn(f )}n proven in Reference 21, we propose a preconditioner expressed as

𝛼 ,n = Dn𝜏n(p𝛼(𝜃)) = DnSnFnSn, (18)

where

Fn = diag(p𝛼(𝜽)), 𝜽 = [𝜃1, 𝜃2, … , 𝜃n] , 𝜃j =
j𝜋

n + 1
= j𝜋h, j = 1, … ,n,

with Dn defined in (16) and Sn being the sine transform matrix reported in (1).

3.1.1 Case I: d± are constants

In the case where the diffusion coefficient functions are constants, the (17) becomes:(
2

𝜈M,n

d+ + d−

)
In + Tn (p𝛼(𝜃)) +

(
d+ − d−

d+ + d−

)
Tn (2iℑ {g𝛼(𝜃)}) = Tn

(
2

𝜈M,n

d+ + d−
+ p𝛼(𝜃)

)
+ Tn

(
2
(

d+ − d−

d+ + d−

)
iℑ {g𝛼(𝜃)}

)
,

that is, is exactly the sum of a symmetric and a skew-symmetric Toeplitz matrix. It is worth noticing that according to
the GLT machinery, the term 2⋅𝜈M,n

d++d−
which is added to the symbol of the first Toeplitz matrix sequence does not change

the symbol of the sequence since is of order o(1). However it affects the speed in which the minimum eigenvalue of
the sequence approaches zero as the dimension of the matrix tends to infinity. Thus, in this special case, the 𝜏 part of
preconditioner is defined as

𝜏M,n

(
p𝛼(𝜃) +

2 ⋅ 𝜈M,n

d+ + d−

)
= Sndiag

(
p𝛼(𝜃) +

2 ⋅ 𝜈M,n

d+ + d−

)
Sn = SnF̂nSn.

Then,

𝜏−1
M,n

(
p𝛼(𝜃) +

2 ⋅ 𝜈M,n

d+ + d−

)[
Tn

(
2 ⋅ 𝜈M,n

d+ + d−
+ p𝛼(𝜃)

)
+ Tn

(
2 d+ − d−

d+ + d−
iℑ {g𝛼(𝜃)}

)]
∼ F̂

− 1
2

n Sn

[
Tn

(
2 ⋅ 𝜈M,n

d+ + d−
+ p𝛼(𝜃)

)
+ Tn

(
2 d+ − d−

d+ + d−
iℑ {g𝛼𝜃)}

)]
SnF̂

− 1
2

n

= F̂
− 1

2
n SnTn

(
2 ⋅ 𝜈M,n

d+ + d−
+ p𝛼(𝜃)

)
SnF̂

− 1
2

n + F̂
− 1

2
n SnTn

(
2 d+ − d−

d+ + d−
iℑ {g𝛼(𝜃)}

)
SnF̂

− 1
2

n .

The first term in the above sum is symmetric and its eigenvalues are strongly clustered at 1 since the conditions of the main
theoretical result of Reference 21 are fulfilled concerning the spectral equivalence between a 𝜏 matrix and a Toeplitz one.
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The second term is skew-symmetric and it does not affect the real part of the eigenvalues of the whole matrix. Moreover,
it is absent whenever d+ = d−. Hence, the real parts of the eigenvalues of the preconditioned matrix are strongly clustered
at 1 and are bounded by constants c,C with 0 < c ≤ 1 ≤ C < ∞.

3.1.2 Case II: d−(x) = d+(x) > 0

In this case, the term 2Gn − In = 0 in 17 is equal to zero and the preconditioned matrix becomes 𝜏−1
n (p𝛼(𝜃))(𝜈M,nD−1

n +
Tn(p𝛼(𝜃))) which is similar to the SPD

𝜏−1
n (p𝛼(𝜃))(𝜈M,nD−1

n + Tn(p𝛼(𝜃))) ∼ F−1∕2
n Sn(𝜈M,nD−1

n + Tn(p𝛼(𝜃)))SnF−1∕2
n

= 𝜈M,nF−1∕2
n Sn(D−1

n )SnF−1∕2
n + F−1∕2

n Sn(Tn(p𝛼(𝜃)))SnF−1∕2
n . (19)

In the above splitting in positive symmetric terms, the first one has o(n) eigenvalues tending to infinity while the second
one fulfills the main theoretical result of Reference 21 and thus, for every n, it has eigenvalues belonging to an interval
[c,C] with c,C constants and 0 < c ≤ 1 ≤ C < ∞. The claim about the spectrum of the first term can be proved if we
equivalently show that the inverse of it, that is, Fn(SnDnSn) has at most o(n) eigenvalues tending to 0 as n → ∞. Since Fn is
the diagonal matrix formed by the values p𝛼(j𝜋h), j = 1, … ,n, which has a unique zero at zero of order 𝛼, there will be an
index ĵ with ĵ of order o(n) such that p𝛼(j𝜋h) being of order o(1) for all j ≤ ĵ. Thus, at most o(n) eigenvalues of Fn can tend
to zero. Using Rayleigh quotient and taking into account that the matrix Dn is a diagonal matrix with entries bounded
from above end below by positive universal constants, our claim is proved. Consequently, using the Weyl’s theorem on
(19) we obtain that

𝜆k
(
𝜈M,nF−1

n Sn(D−1
n )Sn + F−1

n Sn(Tn(p𝛼(𝜃)))Sn
) ≤ 𝜈M,n𝜆k(F−1

n Sn(D−1
n )Sn) + 𝜆n

(
F−1

n Sn(Tn(p𝛼(𝜃)))Sn
)
.

Accordingly, at most o(n) eigenvalues of 𝜏−1
n (p𝛼(𝜃))(𝜈M,nD−1

n + Tn(p𝛼(𝜃))) can tend to infinity. Clearly the term 𝜈M,n which
in general tends to zero as O(n1−𝛼), can further reduce the number of eigenvalues tending to infinity.

We remark that as in the semi elliptic case (see Reference 25 and especially the numerical experiments therein), if the
equal functions d± have a root then we expect an unpredictable asymptotical behavior of the eigenvalues of coefficient
matrix 𝛼 .

3.1.3 Case III: General case

In the case where d+ ≠ d− the term (2Gn − In)(Tn − TT
n ) is nonzero and it affects the spectrum of the preconditioned

matrix. Specifically,

𝜏−1
n (p𝛼(𝜃))(𝜈M,nD−1

n + Tn(p𝛼(𝜃)) + (2Gn − In)Tn(2iℑ {g𝛼(𝜃)}))

∼ F−1∕2
n Sn(𝜈M,nD−1

n + Tn(p𝛼(𝜃)) + (2Gn − In)Tn(2iℑ {g𝛼(𝜃)}))SnF−1∕2
n

= F−1∕2
n Sn(𝜈M,nD−1

n )SnF−1∕2
n + F−1∕2

n Sn(Tn(p𝛼(𝜃)))SnF−1∕2
n + F−1∕2

n Sn(2Gn − In)Tn(2iℑ {g𝛼(𝜃)})SnF−1∕2
n ,

where only the, new, third term can add imaginary quantity on the eigenvalues. However, we have observed through
experimentation, that the effect of this third term on the real part of the eigenvalues is negligible. In this sense, we chose
all the numerical experiments given in Section 4 belong to this case mainly for showing the performance of our proposal
there were our spectral analysis do not explicitly and in depth cover the topic.

3.2 Proposed preconditioner: Two dimensions

In the two-dimensional case we use the second order spatial discretization, in order to be consistent with Reference 20
and be able to readily compare the results. In this case, as reported in Section 1.4, the coefficient matrix of the system is
defined as

(m)
(𝛼,𝛽),N = 1

r
IN + D(m)

+ (In2 ⊗ S𝛼,n1) + D(m)
− (In2 ⊗ ST

𝛼,n1
) + s

r

(
E(m)
+ (S𝛽,n2 ⊗ In1) + E(m)

− (ST
𝛽,n2

⊗ In1)
)
. (20)



BARAKITIS et al. 11 of 22

We recall that S𝛼,n1 = Tn1(w𝛼(𝜃)) and S𝛽,n2 = Tn2(w𝛽(𝜃)) (see 12 and 13). Again, for simplicity we here omit the time
dependency in the notation.

Now let (𝛼,𝛽)(𝜃1, 𝜃2) = q𝛼(𝜃1) + s
r
q𝛽(𝜃2) where q is the real, nonnegative and even function defined in (15), 𝜃1, 𝜃2 ∈

[−𝜋, 𝜋], and n1, n2 the two integers used for the discretization of the domain [Lx,Rx] × [Ly,Ry]. Using the grid in (1) we
define the diagonal matrices

Fn1,j = diag((𝛼,𝛽)(𝜃i,n1 , 𝜃j,n2), i = 1, … ,n1),

for each j = 1, … ,n2. Then, the N × N diagonal matrix is expressed as

FN =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Fn1,1

Fn1,2

⋱

⋱

Fn1,n2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (21)

Let Sn1 and Sn2 be the discrete sine transform matrices of sizes n1 and n2, respectively, as they defined in (1). Then,
generalizing the idea of (18), our proposed preconditioner for this case is

(𝛼,𝛽),N = DN
(
Sn2 ⊗ Sn1

)
FN

(
Sn2 ⊗ Sn1

)
, (22)

where

DN = (D+ + D− + E+ + E−)∕4.

The motivation of the above construction is to create a preconditioner that properly acts on the different sources affect-
ing the spectrum of (𝛼,𝛽),N . Specifically, the diagonal part operates on the spatial space treating the influence that the
coefficients of the equation have on the matrix, while the 𝜏 matrix focuses on the spectral space and the ill-conditioning
generated by the discretization of the fractional differential operator. This observation is a direct result of the GLT symbol
associated to (𝛼,𝛽),N and has been extensively studied in References 25 and 26, for the case of semi elliptic differen-
tial equations. In the simplest, but not unusual in applications, case where d± = d, e± = e, we can counterbalance the
influence of the term 1

r
in the spectrum of (𝛼,𝛽),N incorporating it into the 𝜏 part of the preconditioner. Particularly, we

define ̂ (𝛼,𝛽)(𝜃1, 𝜃2) = 1
r
+ d ⋅ q𝛼(𝜃1) + s

r
e ⋅ q𝛽(𝜃2) replacing the sampling of (𝛼,𝛽) with that of ̂ (𝛼,𝛽) for the construction of

F̂N instead of FN in (21). Accordingly, the new corresponding preconditioner ̂ (𝛼,𝛽),N is defined as

̂ (𝛼,𝛽),N =
(
Sn2 ⊗ Sn1

)
F̂N

(
Sn2 ⊗ Sn1

)
. (23)

The following theorem shows that in this case, the spectrum of the preconditioned matrix is bounded by positive
constants independent of the size of the matrix.

Theorem 3. Assume that d± = d > 0, e± = e > 0. In this case the coefficient matrix of the system becomes

AN = 1
r
IN + (In2 ⊗ Â𝛼

n1) + (A𝛽
n2
⊗ In1) =

(
In2 ⊗

(1
r
In1 + Â𝛼

n1

))
+ (A𝛽

n2
⊗ In1) = In2 ⊗ A𝛼

n1
+ A𝛽

n2
⊗ In1 , (24)

where

A𝛼
n1

= 1
r
IN + Tn1 (d ⋅ (w𝛼(𝜃) + w𝛼(−𝜃))) = Tn1

(1
r
+ d ⋅ q𝛼(𝜃)

)
,

A𝛽
n2

= Tn2

(
e s

r
⋅ (w𝛽(𝜃) + w𝛽(−𝜃))

)
= Tn2

(
e s

r
⋅ q𝛽(𝜃)

)
.

Then, the spectrum of the preconditioned matrix sequence
{
−1
̂ (𝛼,𝛽),N

AN

}
N

is bounded by positive constants c,C independent

of N.
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Proof. We recall that

hx = (Rx − Lx)h1, hy = (Ry − Ly)h2,

r = ht

2h𝛼
x
, s = ht

2h𝛽
y

,

and

F̂N = In2 ⊗ F𝛼
n1
+ F𝛽

n2
⊗ In1 , (25)

where In is the identity matrix of order n and

F𝛼
n1

= diag
(

d ⋅ 𝛼(𝜃i,n1) +
1
r

)
, i = 1, … ,n1, (26)

F𝛽
n2

= diag
(

e s
r
⋅ 𝛽(𝜃j,n2)

)
, j = 1, … ,n2. (27)

The matrix AN is SPD since each of its terms is a Kronecker product of a diagonal with a SPD Toeplitz matrix. Hence,

−1
N AN =

(
Sn2 ⊗ Sn1

)
F̂−1

N
(
Sn2 ⊗ Sn1

)
AN ,

which is similar to the matrix

F̂−1∕2
N

(
Sn2 ⊗ Sn1

)
AN

(
Sn2 ⊗ Sn1

)
F̂−1∕2

N .

Thus,

F̂−1∕2
N (Sn2 ⊗ Sn1)

(
(In2 ⊗ A𝛼

n1
) + (A𝛽

n2
⊗ In1)

)
(Sn2 ⊗ Sn1)F̂

−1∕2
N

= F̂−1∕2
N

(
(Sn2 ⊗ Sn1)(In2 ⊗ A𝛼

n1
)(Sn2 ⊗ Sn1) + (Sn2 ⊗ Sn1)(A

𝛽

n2 ⊗ In1)(Sn2 ⊗ Sn1)
)

F̂−1∕2
N

= F̂−1∕2
N

(
In2 ⊗ Sn1 A𝛼

n1
Sn1 + Sn2 A𝛽

n2
Sn2 ⊗ In1

)
F̂−1∕2

N

= F̂−1∕2
N

(
In2 ⊗ (F𝛼

n1
)1∕2(F𝛼

n1
)−1∕2

Sn1 A𝛼
n1

Sn1(F
𝛼
n1
)−1∕2(F𝛼

n1
)1∕2 +

+ (F𝛽
n2
)1∕2(F𝛽

n2
)−1∕2

Sn2 A𝛽
n2

Sn2(F
𝛽
n2
)−1∕2(F𝛽

n2
)1∕2 ⊗ In1

)
F̂−1∕2

N

= F̂−1∕2
N

⎛⎜⎜⎜⎝(In2 ⊗ (F𝛼
n1
)1∕2)(In2 ⊗ (F𝛼

n1
)−1∕2

Sn1 A𝛼
n1

Sn1(F
𝛼
n1
)−1∕2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=L

)(In2 ⊗ (F𝛼
n1
)1∕2) +

+ ((F𝛽
n2
)1∕2 ⊗ In1)((F

𝛽
n2
)−1∕2

Sn2 A𝛽
n2

Sn2(F
𝛽
n2
)−1∕2)⊗ In1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=R

((F𝛽
n2
)1∕2 ⊗ In1)

⎞⎟⎟⎟⎠ F̂−1∕2
N

= F̂−1∕2
N (In2 ⊗ (F𝛼

n1
)1∕2)L(In2 ⊗ (F𝛼

n1
)1∕2)F̂−1∕2

N
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=AL

+ F̂−1∕2
N ((F𝛽

n2
)1∕2 ⊗ In1)R((F

𝛽
n2
)1∕2 ⊗ In1)F̂

−1∕2
N

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=AR

. (28)

Let

P𝛼
n1

= Sn1 F𝛼
n1

Sn1 ,

P𝛽
n2

= Sn2 F𝛽
n2

Sn2 .

Then, (see Reference 21), there exist positive constants c and C independent of n1,n2, such that

c < 𝜎
((

P𝛼
n1

)−1A𝛼
n1

)
< C ⇒ c < 𝜎

(
(F𝛼

n1
)−1∕2

Sn1 A𝛼
n1

Sn1(F
𝛼
n1
)−1∕2) < C,
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and

c < 𝜎

((
P𝛽

n2

)−1
A𝛽

n2

)
< C ⇒ c < (F𝛽

n2
)−1∕2

Sn2 A𝛽
n2

Sn2(F
𝛽
n2
)−1∕2 < C.

Consequently, for every normalized vector x ∈ RN we find that:

c < xTLx < C, c < xTRx < C.

Since the matrices AL, AR that form (28) are SPD, we recall some properties concerning such kind of matrices. Specifically,
we use the inequality A > B for A,B SPD matrices if A − B > 0 is positive definite. In addition if A, B, C, D, and E are SPD,
then

A > B ⇔ EAE > EBE, (29)

A > B and C > D ⇔ A + C > B + D. (30)

Therefore, we infer {
cIN < L < CIN ,

cIN < R < CIN ,

and, using (29) and (30), we deduce {
cF̂−1

N (In2 ⊗ F𝛼
n1
) < AL < CF̂−1

N (In2 ⊗ F𝛼
n1
),

cF̂−1
N (F𝛽

n2
⊗ In1) < AR < CF̂−1

N (F𝛽
n2
⊗ In1).

(31)

Using again (29) and (30), taking into account the two inequalities of (31), and (25), we have

cF̂−1
N (In2 ⊗ F𝛼

n1
) + cF̂−1

N (F𝛽
n2
⊗ In1) = cF̂−1

N F̂N = cIN ,

CF̂−1
N (In2 ⊗ F𝛼

n1
) + CF̂−1

N (F𝛽
n2
⊗ In1) = CF̂−1

N F̂N = CIN .

Consequently, we conclude that

cIN ≤ F−1∕2
N (Sn1 ⊗ Sn2)AN(Sn1 ⊗ Sn2)F

−1∕2
N ≤ CIN .

Therefore, the spectrum of the preconditioned matrix, which is similar to the F−1∕2
N (Sn1 ⊗ Sn2)AN(Sn1 ⊗ Sn2)F

−1∕2
N , lies

in [c,C]. Moreover, from Reference 21 we expect all the eigenvalues to be clustered at 1, something that is numerically
confirmed in the next section. ▪

Corollary 1. Let the functions d+(x, y, t), d−(x, y, t), e+(x, y, t), e−(x, y, t) being strictly positive functions on Ω, with

d+(x, y, t) = d−(x, y, t) = e+(x, y, t) = e−(x, y, t). Then, the preconditioned matrix sequence
{
−1
̂ (𝛼,𝛽),N

(m)
(𝛼,𝛽),N

}
N

is bounded

by positive constants c,C independent of N.

Proof. The proof can be easily obtained from the results of Theorem 3 and the observation that the coefficient matrix in
(20) can be bounded by

Ac
N ≤ (m)

(𝛼,𝛽),N ≤ AC
N ,

where

Ac
N = 1

r
IN + c(In2 ⊗ S𝛼,n1) + c(In2 ⊗ ST

𝛼,n1
) + s ⋅ c

r

(
(S𝛽,n2 ⊗ In1) + (ST

𝛽,n2
⊗ In1)

)
,

AC
N = 1

r
IN + C(In2 ⊗ S𝛼,n1) + C(In2 ⊗ ST

𝛼,n1
) + s ⋅ C

r

(
(S𝛽,n2 ⊗ In1) + (ST

𝛽,n2
⊗ In1)

)
,



14 of 22 BARAKITIS et al.

and
c = min

(x,y,t)∈Ω
{d+(x, y, t), d−(x, y, t), e+(x, y, t), e−(x, y, t)},

C = max
(x,y,t)∈Ω

{d+(x, y, t), d−(x, y, t), e+(x, y, t), e−(x, y, t)}.

Then, using Rayleigh quotient we obtain

−1
̂N

Ac
N ≤ −1

̂N
(m)

(𝛼,𝛽),N ≤ −1
̂N

AC
N

𝜆1(−1
̂N

Ac
N) ≤ 𝜆1(−1

̂N
(m)

(𝛼,𝛽),N) ≤ 𝜆N(−1
̂N

(m)
(𝛼,𝛽),N) ≤ 𝜆N(−1

̂N
AC

N),

and the proof is completed. ▪

In the subsequent section we report several numerical experiments which numerically confirm that a similar spectral
behavior of the preconditioned matrix is expected in the more general case where the coefficients functions of the equation
are all different to each other.

4 NUMERICAL EXAMPLES

In this section we present three numerical examples to show the efficiency of the proposed preconditioners, compared
with preconditioners discussed in Reference 3 (one dimension) and Reference 20 (two dimensions). We have chosen to
compare our work with these works since they are the most recent and have shown their superiority against the other
proposals in the literature.

• Example 1 is a one-dimensional problem, taken from Reference 3 Example 1. We compare and discuss the precondi-
tioners therein with the proposed 𝛼 ,n, and a few variations based on the spectral symbol. The fractional derivatives
are of order 𝛼 ∈ {1.2, 1.5, 1.8}.

• Example 2 is a two-dimensional problem, taken from Reference 20 Example 1. We compare and discuss the precondi-
tioners therein with the proposed (𝛼,𝛽),N . The fractional derivatives are 𝛼 = 1.8 and 𝛽 = 1.6.

• Example 3 is the same experiment as Example 2, but with the fractional derivatives 𝛼 = 1.8 and 𝛽 = 1.2.

The numerical experiments presented in Tables 1–4 were implemented in Julia v1.1.0, using GMRES from the pack-
age IterativeSolvers.jl (GMRES tolerance is set to 10−7) and the FFTW.jl package. Benchmarking is done with
BenchmarkTools.jl with 100 samplings and minimum time is presented in milliseconds. Experiments were run, in
serial, on a computer with dual Intel Xeon E5 2630 v4 2.20 GHz (10 cores each) CPUs, and with 128 GB of RAM.

Figures 1–3,5, and 6 show the scaled spectra of the preconditioned coefficient matrix −1𝛼,n1 (and −1(𝛼,𝛽),N ) for
different preconditioners  , fractional derivatives 𝛼, and matrix orders n1 (and 𝛽, N = n1,n2). The scaling by a constant
c0 is performed as follows: we find the smallest disk enclosing all the eigenvalues of the considered matrix A. The center
is denoted c0 and the radius is r. Then, the spectrum is scaled as 𝜆j(A)∕c0 and the circle scaled and centered in (1, 0). The
Julia package BoundingSphere.jl was used to compute c0 and r for all figures. The current scaling of the eigenvalues of
preconditioned coefficient matrices is a visualization of the important effect for the convergence rate of GMRES of both
the clustering and of the shape of the clustering.

In Tables 1–4, for each preconditioner, we present the number of iterations (it), minimal timing (ms), and the condition
number of the preconditioned matrix 𝜅. The best results are highlighted in bold.

4.1 Example 1

We compare the proposed preconditioner 𝛼 ,n with the ones presented in Example 1 from Reference 3 (and two alter-
native symbol-based preconditioners). We consider the one-dimensional form of (2) in the domain [L1,R1] × [t0,T] =
[0, 2] × [0, 1], where the diffusion coefficients

d+(x) = Γ(3 − 𝛼)x𝛼,
d−(x) = Γ(3 − 𝛼)(2 − x)𝛼.
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T A B L E 1 Example 1: 1D, 𝛼 = {1.2, 1.5, 1.8}: Numerical experiments with GMRES and different preconditioners

In1
C,n1

FULL,n1
𝜶 ,n1

𝜶 n1 + 1 (it) (ms) 𝜿 (it) (ms) 𝜿 (it) (ms) 𝜿 (it) (ms) 𝜿

1.2 26 28.0 1.7 9.6 13.0 9.6 3.3 14.0 3.8 1.6 7.2 2.3 30.8

27 39.0 24.3 11.5 14.0 53.5 3.6 14.0 17.6 1.8 8.6 13.3 63.7

28 46.0 114.9 13.4 13.0 119.8 3.8 14.0 68.8 2.0 9.9 58.2 132.2

29 51.0 594.5 15.5 12.0 574.0 4.2 13.0 312.7 2.2 9.9 285.2 274.7

210 54.0 2882.0 17.9 11.0 1927.0 4.5 12.0 1415.0 2.4 10.9 1450.0 571.4

211 56.0 18569.0 20.5 10.0 11749.0 4.9 11.0 8840.0 2.5 12.8 9773.0 1189.7

1.5 26 32.0 2.0 33.4 12.0 8.8 7.1 13.0 3.2 1.8 6.7 2.2 16.1

27 60.0 37.2 51.2 12.0 46.7 9.2 13.0 16.4 2.1 8.0 12.5 33.3

28 89.0 213.1 75.8 12.0 111.3 12.0 13.0 64.5 2.3 8.5 52.6 70.9

29 122.0 1389.0 109.9 12.0 544.2 15.8 12.0 288.9 2.6 10.0 280.2 152.7

210 158.0 8007.0 157.7 11.0 1779.0 21.2 11.0 1366.0 2.9 10.0 1386.0 331.8

211 195.0 56266.0 224.7 10.0 11538.0 28.6 10.0 8551.0 3.2 11.0 9142.0 724.3

1.8 26 32.0 2.1 136.5 9.0 6.6 23.0 10.0 2.6 2.6 6.1 2.2 9.7

27 67.0 42.2 266.3 9.0 36.1 37.8 11.0 14.5 2.8 6.8 11.2 19.5

28 131.0 332.3 494.8 9.0 89.8 63.0 10.0 53.6 2.9 7.0 47.2 40.8

29 231.2 3085.0 893.8 9.0 446.8 106.3 9.0 257.9 2.9 8.6 262.8 86.9

210 341.0 20620.0 1589.3 8.0 1503.0 180.5 8.0 1191.0 3.0 10.0 1370.0 187.5

211 470.0 163700.0 2800.9 8.0 10197.0 308.3 7.0 7759.0 3.0 11.0 9125.0 408.1

Note: For each preconditioner we present: average number of iterations for one time step (it), total timing in milliseconds (ms) to attain the approximate
solution at time T, and the condition number 𝜅 of the preconditioned matrix, −1𝛼,n1

. The best results are highlighted in bold.

F I G U R E 1 Example 1: 1D, 𝛼 = {1.2, 1.5, 1.8}: Scaled spectra of the resulting matrices when the preconditioners In1
, C,n1

, and FULL,n1

are applied to the coefficient matrices 𝛼,n1
and n1 = 26 − 1. Left: 𝛼 = 1.2. Middle: 𝛼 = 1.5. Right: 𝛼 = 1.8

are non-constant in space. Furthermore, the source term is

f (x, t) = −32e−t
(

x2 + (2 − x)2(8 + x2)
8

− 3(x3 + (2 − x)3)
3 − 𝛼

+ 3(x4 + (2 − x)4)
(4 − 𝛼)(3 − 𝛼)

)
,

and the initial condition is

u(x, 0) = 4x2(2 − x)2,
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T A B L E 2 Example 1: 1D, 𝛼 = {1.2, 1.5, 1.8}: Numerical experiments with GMRES and different preconditioners

1,n1
2,n1

TRI,n1

̃ 𝜶 ,n1

𝜶 n1 + 1 (it) (ms) 𝜿 (it) (ms) 𝜿 (it) (ms) 𝜿 (it) (ms) 𝜿

1.2 26 8.0 1.1 1.2 9.0 1.0 2.1 5.0 0.7 1.3 7.5 2.1 29.2

27 8.0 7.5 1.3 10.0 8.6 2.2 5.0 5.9 1.4 8.5 12.2 58.7

28 7.0 32.0 1.3 10.0 37.4 2.4 5.0 32.0 1.5 9.9 52.0 118.6

29 7.0 180.9 1.4 10.0 191.2 2.6 5.0 171.0 1.5 9.9 254.3 239.7

210 6.0 959.7 1.4 9.0 1066.0 2.8 5.0 928.7 1.6 11.0 1363.0 484.0

211 6.0 7026.0 1.5 9.0 7675.0 3.0 5.0 6914.0 1.7 12.0 10787.0 976.3

1.5 26 16.0 1.5 2.5 8.0 1.0 2.1 7.0 1.0 2.4 8.7 2.7 13.6

27 20.0 14.4 3.1 9.0 8.1 2.3 8.0 7.5 3.0 8.0 12.1 26.3

28 24.0 67.9 4.0 9.0 35.3 2.7 11.0 40.2 4.0 8.4 47.7 51.8

29 26.0 366.7 5.2 10.0 197.5 3.0 13.0 227.3 5.4 9.9 248.1 103.0

210 27.0 1810.0 6.9 10.0 1105.0 3.5 15.0 1331.0 7.4 10.0 1636.0 205.9

211 25.4 11212.0 9.0 11.0 8179.0 4.0 18.0 9684.0 10.4 11.0 10563.0 424.5

1.8 26 25.0 2.5 8.4 6.0 0.8 1.6 7.0 1.0 3.5 8.0 2.3 9.0

27 40.0 27.3 14.3 6.0 6.3 1.7 10.0 8.7 5.6 7.8 11.3 17.0

28 61.0 159.8 25.3 7.0 31.0 1.8 15.0 48.3 9.4 6.9 43.3 33.1

29 88.0 1083.0 44.7 7.0 170.1 2.0 22.0 325.4 16.6 7.0 222.4 65.4

210 120.0 6277.0 78.8 7.0 999.3 2.3 31.0 1983.0 30.0 8.9 1569.0 130.1

211 158.0 46716.0 138.2 7.0 7309.0 2.6 44.7 15756.0 54.6 10.0 10249.0 259.8

Note: For each preconditioner we present the average number of iterations for one time step (it), the total timing in milliseconds (ms) to attain the approximate
solution at time T, and the condition number 𝜅 of the preconditioned mass matrix, −1𝛼,n1

. The best results are highlighted in bold.

T A B L E 3 Example 2: 2D, 𝛼 = 1.8, 𝛽 = 1.6: Numerical experiments with GMRES and different preconditioners

IN 2,N MGM,N (𝜶,𝜷) ,N

n1 = n2 (it) (ms) 𝜿 (it) (ms) 𝜿 (it) (ms) 𝜿 (it) (ms) 𝜿

24 37.0 32.2 57.4 21.0 64.8 48.6 10.0 40.8 3.7 8.0 35.1 1.9

25 73.0 331.4 167.4 17.6 551.1 31.7 11.0 383.1 5.4 8.0 296.8 2.7

26 137.0 35440.0 429.4 17.0 10465.0 310.7 11.0 16146.0 8.2 9.0 6569.0 4.3

27 251.0 1644134.0 966.8 17.0 213713.0 678.4 10.0 352471.0 12.2 9.0 135535.0 7.7

Note: For each preconditioner we present the average number of iterations for one time step (it), the total timing in milliseconds (ms) to attain the approximate
solution at time T, and the condition number 𝜅 of the preconditioned matrix, −1(𝛼,𝛽),N . The best results are highlighted in bold.

leading to the analytical solution u(x, t) = 4e−tx2(2 − x)2. We assume hx = ht = 2∕(n1 + 1), that is, 𝜈M,n1 = h𝛼−1
x and the

number of time steps M = (n1 + 1)T∕(R1 − L1) = (n1 + 1)∕2. The set of fractional derivatives 𝛼, for which a solution is
computed for, is {1.2, 1.5, 1.8} and in addition we consider the following set of partial dimensions for n1: {26 − 1, 27 −
1, 28 − 1, 29 − 1}.

In Table 1 we present the results for the following preconditioners

• Identity (In1 ): GMRES without any preconditioner.
• Circulant (C,n1 ): Described in Reference 17 and implemented using FFT.
• “Full” symbol (FULL,n1 ): Defined as Sn1 diag

(
𝜈M,n1 + d+,ig𝛼(𝜃j,n1) + d−,ig𝛼(−𝜃j,n1), j = 1, 2, … n1

)
Sn1 and implemented

using FFT.
• Symbol (𝛼 ,n1 ): Proposed in Section 3.1, Dn1Sn1 diag

(
p𝛼(𝜃j,n1), j = 1, 2, … n1

)
Sn1 , and implemented using FFT.
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T A B L E 4 Example 3: 2D, 𝛼 = 1.8, 𝛽 = 1.2: Numerical experiments with GMRES and different preconditioners

IN 2,N MGM,N (𝜶,𝜷) ,N

n1 = n2 (it) (ms) 𝜿 (it) (ms) 𝜿 (it) (ms) 𝜿 (it) (ms) 𝜿

24 49.0 37.1 57.8 26.5 79.7 42.8 18.0 39.0 8.2 10.0 37.0 1.9

25 92.0 394.0 162.9 32.0 713.8 104.0 26.0 450.7 16.7 12.0 329.0 2.7

26 173.0 44532.0 401.7 41.0 17197.0 231.6 33.0 35021.0 32.8 13.0 7493.0 4.4

27 316.0 2070478.0 876.4 51.0 438344.0 515.8 41.0 1107711.0 62.9 14.5 171500.0 7.9

Note: For each preconditioner we present: average number of iterations for one time step (it), total timing in milliseconds (ms) to attain the approximate
solution at time T, and the condition number 𝜅 of the preconditioned matrix, −1(𝛼,𝛽),N . The best results are highlighted in bold.

F I G U R E 2 Example 1: 1D, 𝛼 = {1.2, 1.5, 1.8}: Scaled spectra of the resulting matrices when the preconditioners 𝛼 ,n1
are applied to

the coefficient matrices 𝛼,n1
for n1 = 26 − 1

In Figure 1 we present the scaled spectra of the resulting matrices, when the preconditioners In1 , C,n1 , and FULL,n1

are applied to the coefficient matrices 𝛼,n1 when n1 = 26 − 1 and 𝛼 = 1.2 (left), 𝛼 = 1.5 (middle), and 𝛼 = 1.8 (right).
We conclude that the spectral behavior resulting from the circulant and “full” symbol preconditioner resemble each
other, but the condition number is lower for the “full” symbol preconditioner, as seen in Table 1. In Figure 2 we show
the scaled spectra of the resulting matrices when the preconditioners 𝛼 ,n1 are applied to the coefficient matrices 𝛼,n1

with n1 = 26 − 1 and 𝛼 = {1.2, 1.5, 1.8}. We note that strong clustering of the eigenvalues of the preconditioned matrices
with few large eigenvalues. The condition number is higher for the symbol preconditioner, compared to the “full” symbol
preconditioner, however, as seen in Table 1 both the number of iterations and execution time are lower for the symbol
preconditioner. This numerically confirms what we mentioned in Section 3.1 explaining the Equation (17), and the moti-
vation of using a diagonal times a proper 𝜏 as preconditioner. In detail, this two terms preconditioner properly acts on the
different sources affecting the spectrum of the matrix: the diagonal part operates on the spatial space treating the influ-
ence that the coefficients of the equation have on the matrix, while the 𝜏 matrix focuses on the spectral space and the
ill-conditioning generated by the discretization of the fractional differential operator. Consequently, this better clustering
observed in Figure 2, is the reason that the preconditioned GMRES method (see Reference 27) performs in general very
well with this preconditioner. In Table 2 we present the results for the following preconditioners:
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F I G U R E 3 Example 1: 1D, 𝛼 = {1.2, 1.5, 1.8}: Scaled spectra of the resulting matrices when the preconditioners 1,n1
, 2,n1

, and TRI,n1

are applied to the matrices 𝛼,n1
and n1 = 26 − 1. Left: 𝛼 = 1.2. Middle: 𝛼 = 1.5. Right: 𝛼 = 1.8

• First derivative (1,n1 ): Tridiagonal preconditioner based on the finite difference discretization of the first derivative,
proposed in Reference 3 and implemented using the Thomas algorithm.

• Second derivative (2,n1 ): Tridiagonal preconditioner based on the finite difference discretization of the second
derivative, proposed in Reference 3 and implemented using the Thomas algorithm.

• Tridiagonal (TRI,n1 ): Tridiagonal preconditioner based on the three main diagonals of the coefficient matrix and
implemented using the Thomas algorithm.

• Alternative symbol based (̃𝛼 ,n1
): Constructed by Sn1 Dn1 diag(p𝛼(𝜃j,n1))Sn1 and implemented using FFT.

As in Figure 1, in Figure 3 we present the scaled spectra of the preconditioned matrix. The spectral behavior of the three
preconditioners (first and second derivative and the tridiagonal) for different values of 𝛼 correlate well with the results
presented in Table 2. In the left panel of Figure 3 the best clustering is obtained using the tridiagonal preconditioner,
followed by the first derivative, and then by the second derivative. Since 𝛼 = 1.2, a value close to one, this behavior is
expected. When 𝛼 = 1.5, as presented in the middle panel of Figure 3, the results are similar for the three preconditioners,
but the second derivative preconditioner performs in the best way as n1 increases. In the right panel of Figure 3 we see
that the best clustering is observed for the second derivative preconditioner, and also show the best performances for all
n1 and all reported quantities (iterations, timings, and condition numbers). The better performance of the preconditioners
reported in Table 2 as opposed the ones in Table 1 is expected: this is due to the computational complexity of (n) for the
Thomas algorithm, as opposed to (n log n) for the DFT.

In Figure 4 we present the scaled spectrum of an alternative symbol based preconditioner, ̃𝛼 ,n1
, which performs

slightly better than the proposed preconditioner 𝛼 ,n1 in Section 3.1 (compare Tables 1 and 2). This is mainly due to the
avoided multiplication with the inverse of Dn for ̃𝛼 ,n1

, since the spectrum of the resulted preconditioned matrices using
̃𝛼 ,n1

and 𝛼 ,n1 are comparable. Furthermore, in this case it seems that the most efficient choice of preconditioner is
problem specific, depending on d±.

4.2 Example 2

The considered two-dimensional example is originally from Reference 28 (Example 4) and is also discussed in Refer-
ence 20 (Example 1). In (2), define 𝛼 = 1.8, 𝛽 = 1.6, and

d+(x, y) = Γ(3 − 𝛼)(1 + x)𝛼(1 + y)2, d−(x, y) = Γ(3 − 𝛼)(3 − x)𝛼(3 − y)2,

e+(x, y) = Γ(3 − 𝛽)(1 + x)2(1 + y)𝛽 , e−(x, y) = Γ(3 − 𝛽)(3 − x)2(3 − y)𝛽 .

The spatial domain is Ω = [0, 2] × [0, 2] and the time interval is [t0,T] = [0, 1]. The initial condition is

u(x, y, 0) = u0(x, y) = 16x2y2(2 − x)2(2 − y)2,
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F I G U R E 4 Example 1: 1D, 𝛼 = {1.2, 1.5, 1.8}: Scaled spectra of the resulting matrices when the preconditioners ̃𝛼 ,n1
are applied to

the matrices 𝛼,n1
for n1 = 26 − 1

and the source term is

f (x, y, t) = −16e−t (x2(2 − x)2y2(2 − y)2 + g𝛼(x, y) + g𝛼(2 − x, 2 − y) + g𝛽(y, x) + g𝛽(2 − y, 2 − x)
)
,

where

g𝛾 (x, y) =
(

8x2−𝛾 − 24x3−𝛾

3 − 𝛾
+ 24x4−𝛾

(4 − 𝛾)(3 − 𝛾)

)
(1 + x)𝛾 (1 + y)2y2(2 − y)2,

such that the solution to the FDE is given by u(x, y, t) = 16e−tx2(2 − x)2y2(2 − y)2. Let h = hx = hy = 2∕(n + 1), with n =
n1 = n2 = M, and ht = 1∕(M + 1). Then,

1
r
= 2h𝛼

ht
= 2𝛼+1M

(n + 1)𝛼
= 2𝛼+1n

(n + 1)𝛼
,

s
r
= h𝛼

h𝛽
= 2𝛼−𝛽(n + 1)𝛽−𝛼.

In Table 3 (and also Table 4) we present the results for the following preconditioners:

• Second derivative (2,N ): Preconditioner based on the finite difference discretization of the second derivative, proposed
in Reference 20 and implemented using one Galerkin projection multigrid V-cycle.

• Algebraic multigrid (MGM,N): Preconditioner based on algebraic multigrid, proposed in Reference 20 and implemented
using one algebraic multigrid V-cycle.

• Symbol ((𝛼,𝛽),N ): Proposed preconditioner and implemented using FFT.

We mention that in multi-dimensional setting, a negative results holds concerning the optimality of circulant algebra
when it is used for preconditioning Toeplitz matrices generated by function with zeros of order greater than one (e.g., see
References 29,30). Thus, we find a comparison with such kind of preconditioners to be unnecessary .

For details on the multigrid based preconditioners, 2,N (Galerkin projection multigrid) and MGM,N (algebraic multi-
grid), see Reference 20. The proposed symbol-based preconditioner, (𝛼,𝛽),N , performs better than the multigrid-based
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F I G U R E 5 Example 2: 2D, 𝛼 = 1.8, 𝛽 = 1.6: Scaled spectra of the resulting matrices when the preconditioners are applied to the
matrices (𝛼,𝛽),n2

1
and n1 = 24. Left: Preconditioners IN , 2,N , and MGM,N Right: Preconditioner (𝛼,𝛽) ,N

preconditioners, as seen in Table 3. In Figure 5 we present the scaled spectra of the preconditioned matrices for N =
n1n2 = 28. The clustering is better for the proposed symbol-based preconditioners than the other three, as seen comparing
the left and right panels. We note in Table 3 that the number of iterations are essentially constant both for the algebraic
multigrid and the symbol-based preconditioners.

By fine tuning of the parameters for the multigrid-based preconditioners, such as number of smoothing steps,
W-cycles and so forth, these results might be improved. However, the simplicity of the proposed preconditioner, where
no fine-tunings are required, is advantageous.

4.3 Example 3

By modifying the coefficients 𝛼 = 1.8 and 𝛽 = 1.6 in Example 2, to 𝛼 = 1.8 and 𝛽 = 1.2 we obtain Example 3. In Table 4
we present the same type of computations as in Table 3. As discussed in Reference 20, the performance of the proposed
multigrid-based preconditioners depend on the fractional derivatives 𝛼 and 𝛽. Since, in this example, 𝛼 and 𝛽 differ more
than in Example 2, and 𝛽 is far away from two, we clearly see in Table 4 that the multigrid-based preconditioners perform
worse than in Example 2. Especially note the worse behavior of the condition number for the algebraic multigrid-based
preconditioner MGM,N . The condition numbers are essentially the same for the symbol-based preconditioner (𝛼,𝛽),N in
Examples 2 and 3.

In Figure 6 we present the same scaled spectra as in Figure 5, but regarding Example 3. Again, we note the
advantageous clustering properties of the proposed symbol-based preconditioner in the right panel.

5 CONCLUSIONS

The purpose of the article was the theoretical and numerical exploration of proper preconditioners based on the spectral
symbols of the coefficient matrix for FDE problems. Beside the theoretical study, we have compared our results with past
ones, especially those presented in References 3,20. As expected, and numerically shown in Example 1 which concerns
the one-dimensional case, our the proposed preconditioners performs slightly worse, at least in sequential computations,
than the tridiagonal preconditions, because of the computational complexity involved. However, in the more challenging
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F I G U R E 6 Example 3: 2D, 𝛼 = 1.8, 𝛽 = 1.2: Scaled spectra of the resulting matrices when the preconditioners are applied to the
coefficient matrices (𝛼,𝛽),n2

1
, and n1 = 24. Left: Preconditioners IN , 2,N , and MGM,N Right: Preconditioner (𝛼,𝛽) ,N

two-dimensional case, as discussed in Examples 2 and 3, the proposed preconditioners do indeed perform better than the
previously proposed multigrid-based preconditioners proposed and studied in Reference 20.

We note that future directions of research may include more complex problems, further analysis, and more extensive
numerical experimentation. Also, problems where the fractional derivatives are close to three may be considered, since
then we expect the symbol-based preconditioners to be even more advantageous, maybe even in the one-dimensional
case.
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