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A powerful tool for analyzing and approximating the singular 
values and eigenvalues of structured matrices is the theory of 
Generalized Locally Toeplitz (GLT) sequences. By the GLT 
theory one can derive a function, called the symbol, which 
describes the singular value or the eigenvalue distribution of 
the sequence, the latter under precise assumptions. However, 
for small values of the matrix-size of the considered sequence, 
the approximations may not be as good as it is desirable, 
since in the construction of the GLT symbol one disregards 
small norm and low-rank perturbations. On the other hand, 
Local Fourier Analysis (LFA) can be used to construct 
polynomial symbols in a similar manner for discretizations, 
where the geometric information is present, but the small 
norm perturbations are retained.
The main focus of this paper is the introduction of the concept 
of sequence of “Toeplitz momentary symbols”, associated 
with a given sequence of truncated Toeplitz-like matrices. We 
construct the symbol in the same way as in the GLT theory, 
but we keep the information of the small norm contributions. 
The low-rank contributions are still disregarded, and we give 
an idea on the reason why this is negligible in certain cases 
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and why it is not in other cases, being aware that in presence 
of high nonnormality the same low-rank perturbation can 
produce a dramatic change in the eigenvalue distribution. 
Moreover, a difference with respect to the LFA symbols 
is that GLT symbols and Toeplitz momentary symbols 
are more general - just Lebesgue measurable - and are 
applicable to a larger class of matrices, while in the LFA 
setting only trigonometric polynomials are considered and 
more specifically those related to the approximation stencils. 
We show the applicability of the approach which leads to 
higher accuracy in some cases, when approximating the 
singular values and eigenvalues of Toeplitz-like matrices 
using Toeplitz momentary symbols, compared with the GLT 
symbol. Finally, since for many applications and their analysis 
it is often necessary to consider non-square Toeplitz matrices, 
we formalize and provide some useful definitions, applicable 
for non-square Toeplitz momentary symbols.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In many cases computing the numerical solution of partial differential equations 
(PDEs) requires the solution of structured (sparse) linear systems [5,24,28]. Hence, the 
spectral properties of the related coefficient matrix play a crucial role for designing an 
efficient and appropriate solver [1,13,21,30]. Moreover, the eigenvalues and eigenvectors 
themselves are of interest in many applications [9,26].

Depending on the linear differential operator and the used method in the discretiza-
tion process, the associated coefficient matrices can possess a very nice structure: often 
the associated matrix-sequences belong to the Toeplitz class or to the more general 
class of Generalized Locally Toeplitz (GLT) matrix-sequences [3,22,23]. One of the main 
advantages of belonging to the latter class is that crucial information of the involved 
matrices can be related to the concept of the symbol, a function which, under certain 
hypotheses, provides an asymptotic description of their eigenvalues and singular values. 
In the past years the theory of GLT sequences has been largely improved and success-
fully used for this purpose. However, since the results from the GLT theory apply only to 
matrix-sequences, it follows that its validity is of asymptotic type. Therefore, for small 
matrix-sizes n, the approximations may not be as accurate as it is desirable. Indeed, one 
aspect of the construction of the GLT symbol is that one disregards all parts that are 
small norm and low-rank perturbations. Consequently, for moderate size n the spectra 
of the matrices of interest can significantly differ from those studied by means of the 
GLT symbol. For instance, in the case of the Schoenmakers-Coffey matrix-sequences, 
coming from trading, risk management applications (see [31] and references therein), the 
symbol is zero and in fact the eigenvalues cluster at zero, but this is clearly observed 
only for large sizes of the corresponding concrete matrices and hence this result was 
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not known to people working in the related field of financial mathematics [31]. On the 
other hand, when employing the GLT approach for solving large linear systems stemming 
from PDEs and fractional differential equations (FDEs), approximated by local methods 
such as Finite Differences, Finite Elements, Finite Volumes, Isogeometric Analysis (see 
[3,4,22,23] and references therein), the results have been very satisfactory, in particular 
for designing preconditioners for the (preconditioned) Krylov methods and for defining 
prolongation and restriction operators in multigrid methods. The reason of such a suc-
cess is quite technical and relies on the fact that the spectral approximation has not to 
be necessarily very accurate: for instance a preconditioning matrix-sequence ensuring a 
clustering of radius 10−1 is often sufficient for an optimally convergent (preconditioned) 
Krylov method.

LFA is another common tool for the analysis of solvers for linear systems arising from 
the discretization of PDEs. It is predominantly used in the analysis and design of multi-
grid methods [38] and it contemplates the following two simplifications: we consider only 
constant coefficient operators and the discrete equation is supposed to be approximated 
with an infinite mesh, i.e., the boundary conditions are neglected. Hence, the geometric 
information is present and more information is kept in the symbol, since small norm 
perturbations are retained. However, a strong limitation is that the symbol is of trigono-
metric polynomial type, while in the GLT approach any Lebesgue measurable function 
is allowed.

The main aim of the paper is to introduce and exploit the concept of (singular value 
and spectral) “Toeplitz momentary symbols”, associated with a sequence of truncated 
Toeplitz-like matrices. Its construction is similar to that of the symbol in the GLT sense, 
but in practice we also keep the information of the small norm contributions. Even 
though the low-rank contributions are still disregarded, we give an idea on why this is 
negligible, at least in some cases.

In particular, we consider matrix-sequences of the form

{Xn}n = {Tn(f)}n + {Nn}n + {Rn}n,

where, for every n, Tn(f) is a Toeplitz matrix, Nn is a small norm matrix, and Rn is a 
low-rank matrix. While in the GLT setting an admissible small norm matrix-sequence 
{Nn}n consists of very general matrices, in our setting we want to consider sequences 
with a specific structure. We illustrate the applicability of the momentary symbols in 
several examples stemming from applications of interest, highlighting its efficacy and 
higher accuracy, when approximating the singular values and eigenvalues of truncated 
Toeplitz-like matrices, compared with the GLT symbol.

The structure of the paper is the following. Firstly, in Subsection 1.1 we fix the 
notation and introduce the fundamental preliminaries and results as Toeplitz matrices 
in the multilevel block setting and the concept of (spectral and singular value) asymptotic 
distributions. Subsection 1.2 introduces the axioms characterizing the theory of the GLT 
sequences, while Subsection 1.3 presents circulant matrices and other common matrix 
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algebras, together with their spectral properties. Furthermore, in Section 2 we define 
the notion of Toeplitz momentary symbols and we test its applicability in Examples 1-3, 
with a discussion on its limits and on links with the Local Fourier Analysis (LFA). 
Finally, since for spectral analysis of many problems it is often necessary to consider non-
square Toeplitz matrices, in Section 3 we formalize and provide some useful definitions, 
applicable for non-square momentary symbols. In the conclusive section, we highlight 
the main findings of the paper and we give an idea of possible extensions and future 
developments.

1.1. Background and definitions

Let f : G → C be a function belonging to L1(G), with G ⊆ R�, � ≥ 1, measurable 
set. We indicate by {An}n the matrix-sequence whose elements are the matrices An of 
dimension n × n. Let s, d ∈ N. If n = (n1, n2, . . . , nd) is a multi-index we indicate by 
{An}n∈Nd , or simply {An}n, the d-level s × s block matrix-sequence whose elements are 
the matrices An of size dn = dn(n, s) = sn1n2 · · ·nd. For simplicity, if not otherwise 
specified, we report the main background regarding the matrix-sequence in the scalar 
unilevel setting and we will indicate the strategies and references to generalize such 
results.

Definition 1. A square Toeplitz matrix An of order n is a matrix that has equal entries 
along each diagonal, and is defined by

An = [ai−j ]ni,j=1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a−1 a−2 ··· ··· a1−n

a1
. . . . . . . . .

...

a2
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . a−2

...
. . . . . . . . . a−1

an−1 ··· ··· a2 a1 a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A square Toeplitz matrix is expressed in the form Tn(f) ∈ Cn×n if it is associated with 
a function f , called the generating function, belonging to L1([−π, π]) and periodically 
extended to the whole real line. The matrix Tn(f) is defined as

Tn(f) =
[
f̂i−j

]n
i,j=1

,

where

f̂k := 1
2π

π∫
f(θ) e−kiθdθ, k ∈ Z, i2 = −1, (1)
−π
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are the Fourier coefficients of f , and

f(θ) =
∞∑

k=−∞
f̂kekiθ, (2)

is the Fourier series of f .

In the following we can see how to define block Toeplitz matrices Tn(f) starting from 
matrix-valued function f : [−π, π] → Cs×s with f ∈ L1([−π, π]) and, more in general, 
how define d-level block Toeplitz matrices Tn(f) starting from d-variate matrix-valued 
function f : [−π, π]d → Cs×s with f ∈ L1([−π, π]d). For the block settings we will write 
the function f (and corresponding Fourier coefficients) in bold. In particular we can 
define the Fourier coefficients of a given function f : [−π, π]d → Cs×s as

f̂k := 1
(2π)d

∫
[−π,π]d

f(θ)e−i〈k,θ〉dθ ∈ Cs×s, k = (k1, . . . , kd) ∈ Zd,

where θ = (θ1, . . . , θd), 〈k,θ〉 =
∑d

i=1 kiθi, and the integrals of matrices are computed 
elementwise. The associated generating function, from the Fourier coefficients is

f(θ) =
∑
k

f̂kei〈k,θ〉. (3)

One nth multilevel block Toeplitz matrix associated with f is the matrix of dimension 
dn, where n = (n1, . . . , nd), dn = n1n2 · · ·nds, given by

Tn(f) =
∑

e−n≤k≤n−e

Tn1(eik1θ1) ⊗ · · · ⊗ Tnd
(eikdθ1) ⊗ f̂k,

where ⊗ denotes the Kronecker product, e is the vectors of all ones, and k ≤ q means 
kj ≤ qj for all j = 1, . . . , d. For a more detailed description and uses of the multi-index 
notation see [23]. In the following we introduce the definition of spectral distribution in the 
sense of the eigenvalues and of the singular values for a generic d-level matrix-sequence 
{An}n, and then the notion of GLT algebra.

Definition 2. [22,23,25,39] Let f, f : G → C be measurable functions, defined on a mea-
surable set G ⊂ R� with � ≥ 1, 0 < μ�(G) < ∞. Let C0(K) be the set of continuous 
functions with compact support over K ∈ {C, R+

0 } and let {An}n, be a sequence of ma-
trices with eigenvalues λj(An), j = 1, . . . , dn and singular values σj(An), j = 1, . . . , dn. 
Then,

• The matrix-sequence {An}n is distributed as the pair (f, G) in the sense of the sin-
gular values; we denote this by



56 M. Bolten et al. / Linear Algebra and its Applications 651 (2022) 51–82
{An}n ∼σ (f,G),

if the following limit relation holds for all F ∈ C0(R+
0 ):

lim
n→∞

1
dn

dn∑
j=1

F (σj(An)) = 1
μ�(G)

∫
G

F (|f(θ)|)dθ. (4)

The function f is called the singular value symbol which describes the singular value 
distribution of the matrix-sequence {An}n.

• The matrix-sequence {An}n is distributed as the pair (f, G) in the sense of the eigen-
values; we denote this by

{An}n ∼λ (f, G),

if the following limit relation holds for all F ∈ C0(C):

lim
n→∞

1
dn

dn∑
j=1

F (λj(An)) = 1
μ�(G)

∫
G

F (f(θ))dθ. (5)

The function f is called the eigenvalue symbol which describes the eigenvalue distri-
bution of the matrix-sequence {An}n.

Remark 1. If An is Hermitian, then f = f. For d = 1, if f (or f) is smooth enough, an 
informal interpretation of the limit relation (4) (or (5)) is that when the matrix-size of 
An is sufficiently large, then the n singular values (or eigenvalues) of An can, except for 
possibly o(n) outliers, be approximated by a sampling of |f(θ)| (or f(θ)) on an equispaced 
grid of the domain G. A grid often used to approximate the eigenvalues of a Hermitian 
matrix An, λj(An) ≈ f(θj,n), when f is an even function, is

θj,n = jπ

n + 1 , j = 1, . . . , n.

The generalization of Definition 2 and Remark 1 to the block setting can be found in [3]
and in the references therein.

1.2. Theory of Generalized Locally Toeplitz (GLT) sequences

We list part of the main axioms of the theory of GLT matrix-sequences: these axioms 
represent an equivalent characterization of the original definition of the GLT matrix-
sequences. While the original definition is quite involved and requires the introduction of 
several notions (see [35,36]), the advantage of the axioms below is that they are operative 
and emphasize the practical and operational features of the GLT class, see [3,4,22,23]
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for further details. We choose to report the axioms in the general multilevel and block 
setting. Nevertheless, we will specify section by section what type of matrix-sequences 
we are considering. In this paper we restrict our attention to the constant coefficient 
case. However, possible generalizations for the variable coefficient setting can be treated 
and will be the object of future research.

GLT1 Each GLT sequence has a unique GLT symbol f(θ) with θ ∈ [−π, π]d, that is 
{An}n ∼glt f(θ). The GLT symbol is also a singular value symbol, according to 
the first item in Definition 2 with � = d. If the sequence is Hermitian, then the 
distribution also holds in the eigenvalue sense, according to the second item in 
Definition 2 with � = d.

GLT2 The set of GLT sequences form a ∗-algebra, i.e., it is closed under linear combina-
tions, products, inversion (whenever the symbol is singular, at most, in a set of zero 
Lebesgue measure), and conjugation. Hence, as a particular case, the GLT matrix-
sequence obtained via algebraic operations of a finite set of GLT matrix-sequences 
has symbol given by performing the same algebraic manipulations of the symbols of 
the considered GLT matrix-sequences.

GLT3 Every Toeplitz sequence {Tn(f)}n generated by a function f = f(θ) belonging to 
L1([−π, π]d) is a GLT sequence and its GLT symbol is f . Each diagonal sampling 
sequence {Dn(a)}n with a Riemann-integrable over [0, 1]d is a GLT sequence and 
its GLT symbol is a.

GLT4 Every sequence, which is distributed as the constant zero in the singular value 
sense, is a GLT sequence with symbol 0 and is called zero-distributed. In particular:
• every sequence in which the rank divided by the size tends to zero, as the matrix-

size tends to infinity;
• every sequence in which the trace-norm (i.e., sum of the singular values) divided 

by the size tends to zero, as the matrix-size tends to infinity.

1.3. Eigenvalues and eigenvectors for common matrix algebras

We here introduce notation regarding a few common matrix algebras, to justify the 
choice of a specific sampling grid in subsequent sections. We consider particular matrix 
algebras τε,ϕ and the circulant algebra.

For real parameters ε, ϕ, the τε,ϕ-algebras are special cases, first introduced in [7], of 
the wider class of τ -algebras, see [7] and references therein. A matrix in the τε,ϕ-algebra 
is a polynomial of the generator

Tn,ε,ϕ =

⎡
⎢⎢⎣

ε 1
1 0 1

. . . . . . . . .
1 0 1

1 ϕ

⎤
⎥⎥⎦ .
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Here we restrict the analysis to the case where an element in the algebra τε,ϕ is a 
matrix, denoted Tn,ε,ϕ(f), generated by a function f of the form f(θ) = f̂0 + 2f̂1 cos θ
that is a matrix of the form

Tn,ε,ϕ(f) =

⎡
⎢⎢⎢⎣

f̂0+εf̂1 f̂1

f̂1 f̂0 f̂1

. . . . . . . . .
f̂1 f̂0 f̂1

f̂1 f̂0+ϕf̂1

⎤
⎥⎥⎥⎦ = Tn(f) +

⎡
⎣ εf̂1

ϕf̂1

⎤
⎦ ,

where |ε|, |ϕ| ≤ 1. For discussions on the case |ε|, |ϕ| > 1, see [15]. Note that, for |ε|, |ϕ| <
1, we find

Tn,ε,ϕ(f) = QnDn(f)Qt

n, (6)

where Dn is a diagonal matrix and Qn is a real-valued unitary matrix (QnQt

n = In) 
depending on (ε, ϕ). The entries on the diagonal of Dn(f) are the eigenvalues of Tn,ε,ϕ(f), 
which are explicitly given by the sampling of f on a grid θ(ε,ϕ)

j,n . That is,

λj(Tn,ε,ϕ(f)) = f(θ(ε,ϕ)
j,n ), j = 1, . . . , n,

Dn(f) = diag(f(θ(ε,ϕ)
j,n )), j = 1, . . . , n.

The matrix Qn, which depends on (ε, ϕ), is often referred to as a discrete sine (or cosine) 
transform (typically denoted by, for example, dst-1, dct-1; see, e.g., [8, Appendix 1]). 
We here define it as,

(Qn)i,j =
√

2h sin(Θ(ε,ϕ)
i,j,n ), i, j = 1, . . . , n,

where, for any fixed i = 1, . . . , n, Θ(ε,ϕ)
i,j,n is a grid depending on (ε, ϕ) and i, with j =

1, . . . , n being the grid index, and h is the denominator of the corresponding grid θ(ε,ϕ)
j,n

(e.g., for ε = ϕ = −1, θ(ε,ϕ)
j,n = jπ/n, then, h = 1/n).

In Table 1 we present the proper grids θ(ε,ϕ)
j,n and Θ(ε,ϕ)

i,j,n to give the exact eigenvalues 
and eigenvectors respectively for ε, ϕ ∈ {−1, 0, 1}.

Note that for Tn,−1,−1 matrices the nth eigenvector (column n of Qn) and for Tn,1,1
matrices the first eigenvector (column one of Qn) have to be normalized by 1/

√
2.

Since all grids θ(ε,ϕ)
j,n associated with τε,ϕ-algebras where ε, ϕ ∈ {−1, 0, 1} are uniformly 

spaced grids, we know that

θ
(1,1)
j,n < θ

(0,1)
j,n = θ

(1,0)
j,n

< θ
(−1,1)
j,n = θ

(1,−1)
j,n

< θ
(0,0)
j,n
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Table 1
Grids for τε,ϕ-algebras, ε, ϕ ∈ {−1, 0, 1}; θ(ε,ϕ)

j,n and Θ(ε,ϕ)
j,n are the 

grids used to compute the eigenvalues and eigenvectors, respectively. 
The standard naming convention (dst-* and dct-*) in parentheses; see, 
e.g., [8, Appendix 1].

θ
(ε,ϕ)
j,n Θ(ε,ϕ)

i,j,n

ε
ϕ -1 0 1 -1, 0, 1

-1 (dst-2) 
jπ
n

(dst-6) 
jπ

n+1/2

(dst-4) 
(j−1/2)π

n

(i − 1/2)θ(ε,ϕ)
j,n

0 (dst-5) 
jπ

n+1/2

(dst-1) 
jπ

n+1

(dst-7) 
(j−1/2)π
n+1/2

iθ
(ε,ϕ)
j,n

1 (dct-4) 
(j−1/2)π

n

(dct-8) 
(j−1/2)π
n+1/2

(dct-2) 
(j−1)π

n

(i − 1/2)θ(ε,ϕ)
j,n + π

2

< θ
(−1,0)
j,n = θ

(0,−1)
j,n

< θ
(−1,−1)
j,n , ∀j = 1, . . . , n.

Moreover, for a monotone f , and using [22, Theorem 2.12] it is possible also give 
bounds for eigenvalues of matrices belonging to τε,ϕ-algebras where ε, ϕ ∈ [−1, 1] (and 
are typically not equispaced) using the known eigenvalues for ε, ϕ ∈ {−1, 0, 1}.

We now describe matrices Cn(f) belonging to the circulant algebra.

Definition 3. Let the Fourier coefficients of a given function f ∈ L1([−π, π]) be defined 
as in formula (1). Then, we can define the nth circulant matrix Cn(f) associated with 
f , which is the square matrix of order n given by:

Cn(f) =
n−1∑

j=−(n−1)

f̂jZ
j
n = FnDn(f)Fh

n , (7)

where Zn is the n × n matrix defined by

(Zn)ij =
{

1, if mod(i− j, n) = 1,
0, otherwise.

Moreover,

Dn(f) = diag
(
sn(f)(θcj,n)

)
, j = 1, . . . , n, (8)

where

θcj,n = (j − 1)2π
n

, j = 1, . . . , n, (9)

and sn(f)(θ) is the nth Fourier sum of f given by



60 M. Bolten et al. / Linear Algebra and its Applications 651 (2022) 51–82
sn(f)(θ) =
n−1∑

k=1−n

f̂kekiθ. (10)

The matrix Fn is the so called Fourier matrix of order n, given by

(Fn)i,j = 1√
n

ei(i−1)θc
j,n , i, j = 1, . . . , n. (11)

Then, the columns of the Fourier matrix Fn are the eigenvectors of Cn(f). The proof 
of the second equality in (7) can be found in [22, Theorem 6.4].

One must be aware that Cn(f) is a good approximation of Tn(f) only when Sn(f)(θ)
converges to f(θ) in infinity norm, and this is highly nontrivial. In fact the latter is guar-
anteed only for continuous 2π-periodic functions belonging to the Dini-Lipschitz class, 
while there exist counterexamples when this condition is violated (see [18] and references 
therein, as the classical book by Zygmund [41]). In general, a circulant approximation 
ensuring that the matrix-sequence {Tn(f) − C̃n(f)} is zero distributed can be obtained 
for f ∈ L1([−π, π]) and for C̃n(f) being the Frobenius optimal approximation of Tn(f)
in the circulant algebra (see [33,34] and references there reported). However, when f is 
smooth, the set of smooth functions being a tiny subset of the Dini-Lipschitz class, the 
approximation produced by Cn(f) is much more precise than that given by the circulant 
Frobenius optimal approximation, see [32].

If f is a trigonometric polynomial of fixed degree less than n, the entries of Dn(f) are 
the eigenvalues of Cn(f), explicitly given by sampling the generating function f using 
the grid θcj,n,

λj(Cn(f)) = f
(
θcj,n

)
, j = 1, . . . , n,

Dn(f) = diag
(
f
(
θcj,n

))
, j = 1, . . . , n. (12)

In addition, when f is simply continuous, the associated circulant matrix Cn(f) can 
be defined exploiting formula (12) instead of (8). Finally, when Cn(f) is real symmetric, 
alternatives to the standard Fourier matrix decomposition in (7), can be constructed 
using the discrete sine transform, as for the τε,ϕ-algebras. This is due to the fact that 
the real and imaginary parts of the Fourier matrix are eigenvectors too. Hence, a real-
valued Qn such that

Cn(f) = QnDn(f)Qt

n,

can, for example, be defined as

(Qn)i,j =
√

2h sin(Θc
i,j,n), Θc

i,j,n =
{
iθcj,n + π

2 , j = 1, . . . ,
⌊
n+2

2
⌋
,

iθcj,n, j =
⌊
n+2

2
⌋

+ 1, . . . , n,
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where h = 1/n. Note that the elements of column j = 1 of Qn have to be normalized 
by 1/

√
2. For n even also the elements of column j = n/2 + 1 have to be normalized by 

1/
√

2.
The generalization for a d variate s ×s matrix-valued f via a tensor product argument 

of the decompositions (6) and (7), can be obtained easily [3,24]

2. Toeplitz momentary symbols: definition, results, and limitations

Consider sequences of unilevel matrices Xn ∈ Cn×n of the form

{Xn}n = {Tn(f)}n + {Nn}n + {Rn}n, (13)

where, for every n, Tn(f) is a Toeplitz matrix generated by f , Nn is a small norm matrix, 
and Rn is a low-rank matrix, in the sense that its rank divided by the size tends to zero 
as the matrix-size tends to infinity.

For clarity in this section we consider the sequences only in the unilevel, scalar form 
(13). However, the following theory holds also for more general sequences. It can be easily 
generalized to circulant sequences, where instead of Tn(f) we consider circulant matrices 
Cn(f), as in Definition 3, but with the restriction to f trigonometric polynomial or by 
considering the Frobenius optimal approximation with no restriction on the symbol (see 
the discussion in [36, Remark 0.1]. Moreover, we can also consider sequences generated 
by a multivariate and matrix-valued generating function f , {Tn(f)}n. Also, algebraic 
combinations (addition, multiplication, and inversion) of different GLT matrix-sequences 
{Xn}n are valid and this is due to the ∗-algebra nature of GLT matrix-sequences. Finally, 
we highlight that future attention will be given to the matrix-sequences involving also 
diagonal sampling matrices Dn(a), a : [0, 1]d → C (see GLT3), that will permit us 
to treat also variable coefficient matrix-sequences: in the current paper we restrict our 
attention to the GLT matrix-sequences generated only by Toeplitz matrix-sequences with 
L1 generating functions and zero-distributed matrix-sequences and this means that we 
are considering a closed ∗-subalgebra of the general GLT class.

As described in Section 1.1 the generating function for a sequence of Toeplitz matrices 
{Tn(f)}n is f . The matrix-sequences {Nn}n and {Rn}n are small norm and low-rank 
matrix-sequences in the sense described by the items in GLT4.

With the proposed notation, we introduce the notion of Toeplitz momentary symbols.

Definition 4 (Toeplitz momentary symbols). Let {Xn}n be a matrix-sequence and assume 
that there exist matrix-sequences {A(j)

n }n, {Rn}n, scalar sequences c(j)n , j = 0, . . . , t, and 
Lebesgue integrable functions fj defined over [−π, π], t nonnegative integer independent 
of n, such that {Rn}n is zero-distributed (as in item GLT4 in Section 1.2),

{
A

(j)
n

c
(j)

}
= Tn(fj),
n n
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c(0)n = 1, c(s)n = o(c(r)n ), t ≥ s > r, (14)

{Xn}n = {A(0)
n }n +

t∑
j=1

{A(j)
n }n + {Rn}n.

Then, by a slight abuse of notation,

fn = f0 +
t∑

j=1
c(j)n fj (15)

is defined as the Toeplitz momentary symbol for Xn and {fn} is the sequence of Toeplitz 
momentary symbols for the matrix-sequence {Xn}n.

According to Subsection 1.1, the Toeplitz momentary symbols could be matrix-valued 
with a number of variables equal to d and domain [−π, π]d, if the basic matrix-sequences 
appearing in Definition 4 are, up to proper scaling, multilevel Toeplitz matrix-sequences 
with matrix-valued generating functions. For example in the scalar d-variate setting 
relation (15) takes the form

fn =
t∑

j=0

c(j)n fj,

which is a plain multivariate (possibly block) version of (15).
As expected there are links with the notion of Toeplitz generating function and with 

the GLT theory, as reported in the next result. Its proof is plain and relies essentially 
on the structure of the considered matrix-sequences and on the assumption in (14).

Theorem 1. Assume that the matrix-sequence {Xn}n satisfies the requirements in Defini-
tion 4. Then {Xn}n is a GLT matrix-sequence and the generating function f0 of the main 
term A(0)

n = Tn(f0) is the GLT symbol of {Xn}n, that is, {Xn}n ∼glt f0. Furthermore 
limn→∞ fn = f0 uniformly on the definition domain.

Proof. Let ‖ · ‖S,1 denote the trace norm (also called Schatten 1-norm), that is the sum 
of the singular values of the argument. Then, using (14) and the relation between the 
norms of Tn(fj) and fj from [37, Corollary 4.2], for any j = 1, . . . , t, we obtain

‖A(j)
n ‖S,1 ≤ n

2π c
(j)
n ‖fj‖L1 = o(n).

By the results in [22, Corollary 5.6 and Theorem 5.8], we know that ‖Wn‖S,1 = o(n)
implies that the related matrix-sequence is zero-distributed. Hence, by item GLT4, we 
infer that {A(j)

n }n is a GLT sequence with zero symbol, for any j = 1, . . . , t, and the 
same is true for {Rn}n, because is a low-rank matrix-sequence, again by GLT4. Finally, 
due to the structure of ∗-algebra of the GLT matrix-sequences (see item GLT2), the 
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GLT symbol of {Xn}n is that of {Tn(f0)}n that is f0, by item GLT3. The fact that f0

is the uniform limit in the L1 topology of fn is a direct consequence of (14), that is of 
the infinitesimal nature of c(j)n , for any j = 1, . . . , t. �

Definition 4 is quite general and in our examples we require some restrictions. In the 
following we will focus our attention to the case of three terms, i.e. t = 2, as it happens 
in the approximation of second order differential operators. As already mentioned our 
examples will belong to this more specific framework.

More in detail, we take into considerations the following three components.

1. g(1)(n) = 1 for all n: The matrix g(1)(n)Tn(f1) = Tn(f1) is the Toeplitz matrix 
generated by f1;

2. g(2)(n) → 0: The matrix g(2)(n)Tn(f2) = Nn(f2) is a small norm matrix, such that 
‖Nn(f2)‖ → 0 as n → ∞;

3. |g(0)(n)| → ∞: The matrix g(0)(n)Tn(f0) = Ln(f0) is a diverging matrix. (Ln denot-
ing “large-norm”);

4. if we define {X̂n}n = {g(1)(n)Tn(f1)}n + {g(2)(n)Tn(f2)}n + {g(0)(n)Tn(f0)}n, then 

{Yn}n =
{

X̂n

g(0)(n)

}
n

is a matrix-sequence satisfying Definition 4 with

Yn = Tn(f0) + c(1)n Tn(f1) + c(2)n Tn(f2),

c(1)n = 1
g(0)(n)

, c(2)n = g(2)(n)
g(0)(n)

= o(c(1)n ),

c
(1)
n , c(2)n being both infinitesimal, while {X̂n}n is its non-normalized version (as it is 

considered in the LFA setting).

In the multivariate case, where n = (n1, . . . , nd) we denote the function by g(j)(n), 
j = 0, 1, 2. With the previous notations, given the matrix-sequence

{Xn}n = {g(1)(n)Tn(f1)}n + {g(2)(n)Tn(f2)}n + {g(0)(n)Tn(f0)}n + {Rn}n,

where g(j)(n) can be of the form described in items 1-3 and Rn is a low-rank matrix, 
that is rank(Rn)

n → 0, the nonscaled Toeplitz momentary symbol is defined as

fn(θ) =
2∑

j=0
g(j)(n)fj(θ), (16)

and of course f0(θ) is the GLT symbol of the matrix-sequence 
{

Xn

g(0)(n)

}
n
, Xn = X̂n+Rn.

We now illustrate specific examples in which the new notion cannot help, at least 
when the eigenvalues are considered.
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Remark 2. The remark is composed of two specific examples showing the different sta-
bility of eigenvalues and singular values, under a perturbation of minimal rank one and 
as small as we want in spectral norm.

Case 1: eigenvalue distribution and Toeplitz momentary symbols Consider the matri-
ces Tn(eiθ) and Xn = Tn(eiθ) + αe1e

T
n with α �= 0. By direct inspection 

{αe1e
T
n}n ∼σ,λ 0 and hence it is a GLT matrix-sequence with zero symbol, inde-

pendently of the parameter α. If we look at the Toeplitz momentary symbols, then 
they coincide with the GLT symbol for both {Tn(eiθ)}n and {Xn}n: however while 
in the first case, the eigenvalues are all equal to zero and hence {Tn(eiθ)}n ∼λ 0, 
in the second case they distribute asymptotically as the GLT symbol eiθ (which is 
also the Toeplitz momentary symbol for any n). This shows that in the nonnormal 
setting the distribution function (if it exists) can be discontinuous with respect to 
any reasonable norm of the matrix-sequence, since the modulus of the parameter 
α is allowed to be as small as we want.

Case 2: singular value distribution and Toeplitz momentary symbols Take the same ex-
ample as before. Again {αe1e

T
n}n is a GLT matrix-sequence with zero symbol, 

independently of the parameter α, and hence we deduce that both {Tn(eiθ)}n and 
{Xn}n share the same GLT symbol eiθ (which is also the Toeplitz momentary 
symbol for any n). However, from the viewpoint of the singular values no dra-
matic change is observed and the GLT symbol describes well the singular values of 
both the matrix-sequences. In fact, due to the interlacing results for singular val-
ues, from the GLT theory we know that zero-distributed matrix-sequences do not 
change the singular value distribution which is continuous and stable with respect 
to the entries of the matrix-sequence.

As already mentioned, in this setting, it must be emphasized that the asymptotic eigen-
value distribution is discontinuous with respect to the standard norms or metrics widely 
considered in the context of matrix-sequences, as the approximating class of sequences 
(a.c.s.) metric.

Remark 3. LFA is a common tool for the analysis of solvers for linear systems arising from 
the discretization of PDEs: an introduction to LFA and to its use in multigrid methods 
can be found in [40]. In this respect we briefly mention the LFA, because of its connection 
with the GLT world and to the present setting of Toeplitz momentary symbols. With 
respect to the GLT analysis, two simplifications are made: i) only constant coefficient 
operators are considered and ii) the discrete equation is considered on an infinite mesh, 
i.e., the boundary conditions are neglected. For a given grid spacing h ∈ Rd the infinite 
grid is given by

Ωh := {h · k : k ∈ Zd}.
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By discretizing the PDE using, e.g., Finite Differences, we obtain a stencil representation 
of the differential operator over the grid Ωh. Often this representation includes the grid 
spacing h, as a scaling factor, and as a consequence, in general the trigonometric poly-
nomial symbol fh defined over the basic interval [0, 2π]d and associated to the stencil, 
tends to infinity for h → 0, as in (16). Usually, the grid spacing depends on the system 
size, thus from a GLT-viewpoint the matrix is a “large-norm” matrix that is not covered 
by the GLT theory, even if a simple scaling allows to employ again all the GLT tools. 
Nevertheless, the inclusion of the h allows for, e.g., the analysis of discretizations of 
PDEs involving first and second order derivatives.

In LFA, periodic boundary conditions are used for analyzing the operator on the 
infinite grid and hence, the resulting associated matrix is of circulant banded type: in 
this way the approximations to the eigenvalues of this operator are obtained by evaluating 
the symbol of the operator at equispaced points, thus via the eigenvalues of a banded 
circulant matrix with the same symbol. For nonnormal matrices this leads to a huge 
deviation from the true eigenvalues, when small matrices are considered. To overcome this 
limitation, semi-algebraic analysis techniques have been developed [20]. Our approach 
with Toeplitz momentary symbols is a way for joining the two techniques, those based 
on LFA and those based on the GLT theory.

We here illustrate the applicability of the Toeplitz momentary symbols introduced in 
Definition 4.

Example 1. For the second order Finite Difference discretization of the problem
⎧⎪⎪⎨
⎪⎪⎩
u′′(x) + u(x) = f(x), x ∈ (0, 1),
u(x) = 0, x = 0,
u′(x) = 0, x = 1,

(17)

we have Xnun = fn, where,

Xn = 1
h2

⎡
⎢⎢⎣

2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

⎤
⎥⎥⎦

︸ ︷︷ ︸
Ln(f0)

+ In︸︷︷︸
Tn(f1)

+ 1
h2

⎡
⎢⎣

−1

⎤
⎥⎦

︸ ︷︷ ︸
Rn

,

where h = (n + 1)−1. By notation established above we have,

Xn = Ln(f0) + Tn(f1) + h−2Rn

= g(0)(n)Tn(f0) + g(1)(n)Tn(f1) + h−2Rn,

where
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g(0)(n) = h−2, f0(θ) = 2 − 2 cos θ,

g(1)(n) = 1, f1(θ) = 1.

However, using the definition of Toeplitz momentary symbol, we deduce that {Xn}n has 
nonscaled Toeplitz momentary symbol given by

fn(θ) = g(0)(n)f0(θ) + g(1)(n)f1(θ)

= h−2(2 − 2 cos θ) + 1.

The standard GLT approach cannot be used for the sequence {Xn}n as it is defined, 
since the first term diverges. If we want to be able to construct a GLT symbol, for 
instance to analyze a solver for a linear system, we should normalize the matrix Xn by 
multiplication with h2 obtaining

h2Xn =

⎡
⎢⎢⎣

2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

⎤
⎥⎥⎦

︸ ︷︷ ︸
Tn(f0)

+ h2In︸︷︷︸
Nn(f1)

+

⎡
⎢⎣

−1

⎤
⎥⎦

︸ ︷︷ ︸
Rn

=

⎡
⎢⎢⎣

2+h2 −1
−1 2+h2 −1

. . . . . . . . .
−1 2+h2 −1

−1 1+h2

⎤
⎥⎥⎦ . (18)

The matrix h2Xn can be written as

h2Xn = Tn(f0) + Nn(f1) + Rn

= g(0)(n)Tn(f0) + g(1)(n)Tn(f1) + Rn,

where

g(0)(n) = 1, f0(θ) = 2 − 2 cos θ,

g(1)(n) = h2, f1(θ) = 1.

Since {h2Xn}n is Hermitian and both the sequences {Nn}n and {Rn}n are zero-
distributed (by GLT4), from the GLT theory, we infer that the spectral symbol is given 
by {h2Xn}n ∼σ,λ f0.

Moreover, if we sample the latter eigenvalue symbol f0(θ) with the grid θj,n =
jπ/(n + 1), associated with the τ0,0-algebra defined in Section 1.3, we will obtain an 
approximation of the eigenvalues of h2Xn, with an error O(h). Instead, since h2Xn be-
longs to the τ0,1-algebra, see Section 1.3, the exact eigenvalues of h2Xn are given by
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λj(h2Xn) = 2 + h2 − 2 cos(θ(0,1)
j,n ), (19)

θ
(0,1)
j,n = π(j − 1/2)

n + 1/2 , j = 1, . . . , n.

Sampling f0 with the grid θ(0,1)
j,n leads to an error of h2 for each eigenvalue.

If we now focus on the Toeplitz momentary symbols, we deduce that the sequence 
{h2Xn}n has Toeplitz momentary symbols given by fn(θ) with

fn(θ) = 2 + h2 − 2 cos θ,

in accordance with Definition 4. If we sample the latter on the grid θ(0,1)
j,n , we obtain 

the exact eigenvalues since the evaluations fn(θj,n) coincide with (19). Consequently 
this example highlights that, for finite matrices, the Toeplitz momentary symbols fn(θ)
describe more accurately the spectrum than the standard spectral symbol f0(θ), from 
the theory of GLT matrix-sequences, with f0 = limn→∞ fn uniformly on the definition 
domain, in accordance with Theorem 1.

Note that if in (17) pure Dirichlet boundary conditions, instead of Dirichlet-Neumann, 
are imposed then the matrix h2Xn belongs to the τ0,0-algebra, since Rn = 0. The eigen-
values λj(h2Xn) can then be computed by changing θ(0,1)

j,n to θ(0,0)
j,n in (19); θ(0,0)

j,n is 
defined in Table 1. Similarly, if periodic boundary conditions are imposed in (17), the 
matrix h2Xn would be circulant and θcj,n, defined in (9), should be used in (19) to obtain 
the exact eigenvalues. Hence, the different low-rank matrices Rn in (18) from boundary 
conditions shift the grid which gives the exact eigenvalues using (19).

However, as stressed in Remark 2, this result is possible since the main terms are Her-
mitian and hence normal. The nonnormal setting is delicate and the notions of Toeplitz 
generating function and Toeplitz momentary symbols could lead to wrong conclusions, 
due to the wild behavior of the eigenvalues.

Example 2. In this example we study a constructed non-Hermitian matrix-sequence 
where we have four different symbols: the singular and eigenvalue symbols from GLT 
theory, and the respective momentary symbols. Consider

Xn =

⎡
⎣ 2

1 2
. . . . . .

1 2

⎤
⎦

︸ ︷︷ ︸
Tn(f1)

+ hIn︸︷︷︸
Nn(f2)

=

⎡
⎢⎣

2+h
1 2+h

. . . . . .
1 2+h

⎤
⎥⎦ ,

where h = 1/n, and

Tn(f1) = g(1)(n)Tn(f1),

Nn(f2) = g(2)(n)Tn(f2),
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g(1)(n) = 1, f1(θ) = 2 + eiθ,

g(2)(n) = h, f2(θ) = 1.

By the theory of GLT sequences, the singular value symbol is f1, that is,

{Xn}n ∼σ f1. (20)

Using Definition 4, the Toeplitz momentary symbols are

fn(θ) = 2 + h + eiθ.

Concerning the singular values of Xn, they are σj(Xn) =
√

λj(Xt

nXn), and can be 
approximated by sampling |f(θ)| or |fn(θ)| with an appropriate grid. However, now we 
look at the matrix-sequence {Xt

nXn}n, and by the GLT theory we infer that

{Xt

nXn}n ∼σ,λ f1(−θ)f1(θ) = g(θ) = 5 + 4 cos θ,

while {Xt

nXn}n has Toeplitz momentary symbols given by fn(−θ)fn(θ) = gn(θ) =
1 + (2 + h)2 + 2(2 + h) cos θ.

We know that for every n the matrix Xt

nXn = Tn,0,−1/(2+h)(gn), since,

Xt

nXn =

⎡
⎢⎢⎢⎣

ĝn0 ĝn1
ĝn1 ĝn0 ĝn1

. . . . . . . . .
ĝn1 ĝn0 ĝn1

ĝn1 ĝn0

⎤
⎥⎥⎥⎦− 1

2 + h

⎡
⎣

ĝn1

⎤
⎦ ,

where ĝn0 = 1 + (2 + h)2 and ĝn1 = 2 + h. As n grows, the matrix Xt

nXn tends towards 
the matrix Tn,0,−1/2(g). We have no closed form expressions for the grids θ(0,−1/2)

j,n or 
θ
(0,−1/(2+h))
j,n .

2.0.1. Analysis of the matrix-sequence in Example 2
Taking into consideration the discussion in Example 2, in the following lemma, we 

provide a bound for part of the spectrum of matrices belonging to the τ0,−1/2-algebra. 
The same argument can be done for matrices belonging to the τ0,−1/(2+h)-algebra.

Lemma 2. Let f(θ) = f̂0 + 2f̂1 cos θ be a monotonically decreasing trigonometric polyno-
mial. Then, for j = 2, . . . , n − 1,

λj(Tn,0,−1(f)) ≤ λj(Tn,0,−1/2(f)) ≤ λj+1(Tn,0,0(f)).

Proof. Since f is monotonically decreasing, from the relations between the grids in Ta-
ble 1, we have that for j = 1, . . . , n − 1,
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Fig. 1. Example 2: The eigenvalues λj(Xt

nXn) for n = 5. The largest eigenvalue, λ1, is an outlier for the 
standard symbol g(θ) (blue line), but is in the range of the momentary symbol gn(θ) (red line). Light 
green regions show the intervals where the respective eigenvalues lie, bounded by θ(0,0)

j,n and θ(0,−1)
j,n . (For 

interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

λj(Tn,0,−1(f)) ≤ λj(Tn,0,0(f)) ≤ λj+1(Tn,0,0(f)). (21)

We can write the matrix Tn,0,−1/2(f) in terms of rank 1 correction of the matrices 
Tn,0,0(f) and Tn,0,−1(f) as follows:

Tn,0,−1/2(f) = Tn,0,0(f) +
(
− f̂1

2 enet

n

)
,

Tn,0,−1/2(f) = Tn,0,−1(f) +
(
f̂1

2 enet

n

)
,

where en = [0, 0, . . . , 1]t. Hence, from the Interlacing Theorem [6], for j = 1, . . . , n − 1,

λj(Tn,0,−1(f)) ≤ λj(Tn,0,−1/2(f)) ≤ λj+1(Tn,0,−1(f)),

and, for j = 2, . . . , n,

λj(Tn,0,0(f)) ≤ λj(Tn,0,−1/2(f)) ≤ λj+1(Tn,0,0(f)).

Then, if we combine the latter relations together with formula (21), we have that for 
j = 2, . . . , n − 1,

λj(Tn,0,−1(f)) ≤ λj(Tn,0,−1/2(f)) ≤ λj+1(Tn,0,0(f)). �
To illustrate the relation between the different grids, in Fig. 1 we show the spectrum 

of Xt

nXn for n = 5. On the ordinate the five eigenvalues λj, j = 1, . . . , 5 are indicated. 
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Diamonds indicate when their values are attained by the GLT symbol and by the Toeplitz 
momentary symbol. The upper red curve is the graph of the Toeplitz momentary symbols 
gn(θ), the lower blue curve the graph of the GLT symbol g(θ). Further, vertical bars 
represent the grids θ(0,0)

j,n (green) and θ(0,−1)
j,n (violet). Clearly, the true eigenvalues of 

Xt

nXn are attained by gM (θ) in between the corresponding grid points of θ(0,0)
j,n and 

θ
(0,−1)
j,n , i.e., in the light green area. This is not true for g(θ) from the GLT theory, further 

the GLT symbol cannot attain the value of λ1 at all, since it is an outlier. Therefore, 
another advantage of using the Toeplitz momentary symbols with respect to the GLT 
symbol is a better approximation of possible outliers.

Finally, a simple observation on the eigenvalues of the non-Hermitian Xn follows. By 
direct inspection we have

{Xn}n ∼λ 2.

Note that f1 in (20) is not equal to 2, and there is no general approach in the theory 
of GLT sequences, or elsewhere, to find the spectral symbol for general non-Hermitian 
matrix-sequences and this because it is just impossible as emphasized in Remark 2.

Example 3. In this example we study a bivariate problem, from a space-time discontin-
uous Galerkin discretization [5, Example 6.2]. Time is considered the first variable and 
the corresponding discretization parameter is N . The second variable is in space, dis-
cretized by the parameter n. Of course the two parameters associated to the time-steps 
in time and space are usually connected via a meaningful CFL condition involving the 
ratio N/n2 (see the seminal paper [10]). Here we do not consider specific constraints, in 
order to provide the spectral analysis in the most general setting.

Hence, as in [5, Example 6.2], we set n = (N, n − 1), and the resulting matrix has the 
form

2Nn−1CN,n(1) =

⎡
⎢⎢⎢⎢⎣
A2(n−1)
B2(n−1) A2(n−1)

. . . . . .
B2(n−1) A2(n−1)

⎤
⎥⎥⎥⎥⎦ ,

where

A2(n−1) = N

12n2

([
9 −9
3 5

]
⊗ Tn−1(2 + cos θ2)

)
+
[

3 0
0 1

]
⊗ Tn−1(1 − cos θ2),

B2(n−1) = N

12n2

([
0 −12
0 4

]
⊗ Tn−1(2 + cos θ2)

)
.
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From the structure of 2Nn−1CN,n(1) it is possible to find a suitable permutation matrix 
P ∈ R2N(n−1)×2N(n−1) such that 2Nn−1CN,n(1) is transformed into a 2 ×2 block bi-level 
Toeplitz matrix Xn = P

(
2Nn−1CN,n(1)

)
P t of the form

Xn = g(1)(n)Tn(f (1)) + g(2)(n)Tn(f (2)),

where, g(1)(n) = 1, g(2)(n) = N
n2 and, following the notation in (3),

f (1)(θ1, θ2) = f̂ (1)
(0,0) + f̂ (1)

(0,1)e
iθ2 + f̂ (1)

(0,−1)e
−iθ2 ,

f (2)(θ1, θ2) =

f̂ (2)
(0,0) + f̂ (2)

(0,1)e
iθ2 + f̂ (2)

(1,0)e
iθ1 + f̂ (2)

(0,−1)e
−iθ2 + f̂ (2)

(1,1)e
i(θ1+θ2) + f̂ (2)

(1,−1)e
i(θ1−θ2).

In particular, we have

f̂ (1)
(0,0) =

[3 0

0 1

]
, f̂ (1)

(0,1) = f̂ (1)
(0,−1) =

⎡
⎣−3

2 0

0 −1
2

⎤
⎦ ,

and

f̂ (2)
(0,0) =

⎡
⎣ 3

2 −3
2

1
2

5
6

⎤
⎦ , f̂ (2)

(0,1) = f̂ (2)
(0,−1) =

⎡
⎣ 3

8 −3
8

1
8

5
24

⎤
⎦ ,

f̂ (2)
(1,0) =

⎡
⎣0 −2

0 2
3

⎤
⎦ , f̂ (2)

(1,1) = f̂ (2)
(1,−1) =

⎡
⎣0 −1

2

0 1
6

⎤
⎦ .

Note that the term g(2)(n) depends on the behavior of N
n2 and therefore is possibly 

related to a CFL condition. In [5, Example 6.2] the GLT symbol is defined by assuming 
N/n2 → 0 as N, n → ∞, that is,

Xn = Tn(f (1)),

hence,

{Xn}n ∼σ f (1),

where we can simplify the expression of f (1) as

f (1)(θ1, θ2) =
[

3 0
0 1

]
(1 − cos θ2).
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An equally valid GLT symbol would be to assume g(2)(n) = N/n2 = 1. In this setting 
the sequence is

{Xn}n = {Tn(f (1)) + Tn(f (2))}n

and the singular value distribution is given by

{Xn}n ∼σ f̃ = f (1) + f (2),

where

f̃(θ1, θ2) =⎡
⎢⎣

9
2 −3

2

1
2

11
6

⎤
⎥⎦+

⎡
⎢⎣

15
4

−3
4

1
4

17
12

⎤
⎥⎦ cos θ2 +

⎡
⎢⎣ 0 −1

0 1
3

⎤
⎥⎦ cos θ2eiθ1 +

⎡
⎢⎣ 0 −2

0 2
3

⎤
⎥⎦ eiθ1 .

We remind that the GLT symbol is unique (unlike the singular value or eigenvalue 
symbol). The latter statement seems in contrast with the two GLT symbols we have 
derived for {Xn}n. However, here with a little abuse of notation we have indicated, 
with the same symbol, two different matrix-sequences: the first concerns the case where 
N/n2 → 0 as N, n → ∞, while the second refers to the case where N/n2 ≡ 1, ∀ N, n. 
Hence it is obvious that the two different matrix-sequences have two different GLT sym-
bols which, by the way, are not equivalent via rearrangement [2]; see also the discussion 
before Definition 5 in Section 3.

Note that for a diverging choice of g(2)(n), the GLT symbol is not defined, unless we 
proceed to a proper scaling.

However, the momentary singular value symbol can be constructed independently 
from the behavior of g(2)(n). Then, {Xn}n has Toeplitz momentary symbols given by fn
with

fn(θ1, θ2) = f (1)(θ1, θ2) + g(2)(n)f (2)(θ1, θ2).

The same reasoning as in Example 2 can be used for choosing a grid for attaining a 
good approximation of the singular values of Xn. Because of the bidiagonal structure 
of 2Nn−1C

[1,1,0]
N,n (1) we can, after symmetrization in both variables, define the Toeplitz 

momentary symbol for Xn, that is, {Xn}n has Toeplitz momentary symbols defined as

fn(θ1, θ2) = f (1)(θ1, θ2) + N

12n2

[
9 i

√
27

i
√

27 5

]
(2 + cos θ2). (22)

The exact eigenvalues are given by sampling the momentary eigenvalue symbol with 
two grids θ(1)

j,N and θ(2)
j,n−1. For θ(1)

j,N any grid can be used since the symbol (22) does 
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not explicitly depend on θ1. Furthermore, this means that the multiplicity of all distinct 
eigenvalues of Xn is N . This is not taken into account by the univariate symbol f [1,1]

[1,1,0](θ)
in [5, Example 6.2],

f [1,1]
[1,1,0](θ) = (2 − 2 cos θ)

[
3/2 0

0 1/2

]
.

We have the grid θ(2)
j,n−1 = jπ

n for j = 1, . . . , n − 1. For each sampling of (22) a 2 × 2
eigenvalue problem is to be solved (or an analytic expression can be derived for two 
separate eigenvalue functions, as it is done in [5, Example 6.2]).

3. Non-square Toeplitz matrices

For many applications and their analysis, it is often recommended or even necessary 
to consider non-square Toeplitz matrices: a canonical example is given by the restriction 
and prolongation operators in multigrid algorithms (see e.g. [19]), but we can also find 
such structures in the non-diagonal blocks of the two by two saddle point coefficient 
matrices stemming from the numerical approximation of Navier-Stokes equations (see 
[12,29] and references therein). Furthermore, the analysis of level by level multigrid 
matrix-sequences via the GLT theory was sketched in [36, Section 3.7]. In this section 
we formalize some useful definitions, applicable both in the standard GLT setting, and 
for the momentary symbols. In Definition 6 we define symbols that are matrix-valued, 
but not square. These symbols generate non-square Toeplitz matrices, by the standard 
definition. Indeed, in Definition 9 we reported the standard definition of a non-square 
Toeplitz matrix, generated by scalar or square matrix-valued symbols. Combining these 
non-square Toeplitz matrices with standard Toeplitz matrices, we can describe a wider 
class of matrices Xn, and the associated matrix-sequences {Xn}n. We start with a simple 
concrete example, in order to make the notations used in the rest of the section easier 
to understand.

For f(θ) = 2 − 2 cos θ, the generating function of the standard scaled Laplacian, we 
have

Tn(f) =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Setting

f [2](θ) =
[

2 −1
−1 2

]
+
[

0 −1
0 0

]
eiθ +

[
0 0

−1 0

]
e−iθ,
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with N = n/2 and an even n, we infer Tn(f) = TN (f [2]) where,

TN (f [2]) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
2 −1

−1 2

] [
0 0

−1 0

]
[

0 −1
0 0

] [
2 −1

−1 2

] [
0 0

−1 0

]

. . . . . . . . .

[
0 −1
0 0

] [
2 −1

−1 2

] [
0 0

−1 0

]
[

0 −1
0 0

] [
2 −1

−1 2

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and for an odd n, we deduce Tn(f) = TN (f [2]) where

TN (f [2]) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
2 −1

−1 2

] [
0 0

−1 0

]
[

0 −1
0 0

] [
2 −1

−1 2

] [
0 0

−1 0

]

. . . . . . . . .

[
0 −1
0 0

] [
2 −1

−1 2

] [
0

−1

]
[

0 −1
] [

2
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

That is, in the case of a matrix-valued symbol f generating a Toeplitz matrix TN (f), 
the parameter N does not have to be an integer (but multiple of 1/s if f ∈ Cs×s, since 
n = sN is the integer-valued size of the matrix).

Hence, for the Laplacian above it is true that {Tn(f)} ∼λ f , but it is also true 
that {Tn(f)} ∼λ f [2] and this non uniqueness of the symbol is not surprising and in 
fact it is a richness of the theory and it was discussed in detail in [17]. In reality, not 
only to every matrix-sequence admitting a spectral distribution, it happens that the 
distribution function is not unique, but in reality there are infinitely many distribution 
functions: these symbols are all equivalent via rearrangement, that is if k and q are two 
spectral symbols (real-valued for the sake of simplicity) on domains D1 and D2, then 
it is true that for every [α, β] the measure in D1 such that k ∈ [α, β] divided by the 
measure of D1 is equal to the measure in D2 such that q ∈ [α, β] divided by the measure 
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of D2. This (huge) degree of freedom is a positive side of the theory, because there exist 
special spectral symbols that provide more information than others. For instance in the 
GLT theory in the Hermitian setting, when approximating a d dimensional differential 
equation with variable coefficients on a set Ω, it is customary that the GLT symbol (which 
is unique) shows naturally 2d variables: more precisely the GLT symbol is k(x, θ), x ∈ Ω
(the d physical variables), θ ∈ [−π, π]d (the Fourier d variables). Of course we can have 
a monotonic non-decreasing uni-variate eigenvalue symbol, which is the one that we 
visualize when we plot the eigenvalues in non-decreasing order. Interestingly enough, 
this theory is connected to a deep branch of analysis known as ‘rearrangement theory’ 
(see again [17] and especially [2] and the technical references there reported).

According to the previous case, we provide a series of definitions and an example of 
application.

Definition 5 (f and the corresponding s × s matrix-valued symbol f [s]). A univariate and 
scalar-valued generating function f(θ) has a corresponding s ×s matrix-valued generating 
function f [s] defined by

f [s](θ) =
∞∑

�=−∞
Ts(e−i�sθf(θ))︸ ︷︷ ︸

f̂ [s]�

ei�θ, (23)

where f̂ [s]
� are the corresponding matrix-valued Fourier coefficients. Then,

Tns(f) = Tn(f [s]).

Moreover, it is possible to extend the idea to a multivariate s1 × s1 matrix-valued gener-
ating function f [s1]. Indeed, following a similar procedure in the other level and hence in 
the other variable, from f [s1] we define the generating function f [s1s2], which is a multi-
variate and s1s2 × s1s2 matrix-valued function. Then, we have the equivalent definition 
of Tns2(f [s1]) as Tn(f [s1s2]).

Remark 4. If the Fourier series of a generating function f exists, as defined in (2), then 
the circulant matrix Cn(f) defined in (7) can be rewritten as

Cn(f) =
∞∑

�=−∞
Tn(ei�nθf(θ)) =

∞∑
�=−∞

Tn

( ∞∑
k=−∞

f̂kei(�n+k)θ

)
. (24)

Note that, from (23) in Definition 5, we can set s = n and the equality in (24) becomes

Cn(f) = f [n](0) =
∞∑

�=−∞
f̂ [n]
� .
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Hence, the circulant matrix Cn(f) can be seen as the sum of all the Fourier coefficients 
of the matrix-valued version f [n](θ) of f .

Definition 6 (Non-square matrix-valued function). A non-square s× r Lebesgue inte-
grable matrix-valued function f : [−π, π] → Cs×r, where s, r ∈ N, can be defined via its 
Fourier coefficients f̂k ∈ Cs×r, as follows:

f(θ) =
∞∑

k=−∞
f̂keikθ, f̂k ∈ Cs×r.

Notice that f Lebesgue integrable, f = (fl,m)m=1,...,s
l=1,...,r , simply means that every scalar 

function fl,m is Lebesgue integrable, l = 1, . . . , r, m = 1, . . . , s.

Definition 7 (Non-square Toeplitz matrices). The matrix Tn(f), with n = (n1, . . . , nd)
and f : [−π, π]d → Cs×r is a multivariate and non-square matrix-valued generating 
function, is defined as

Tn(f) =
∑
k

Tn1(eik1θ1) ⊗ · · · ⊗ Tnd
(eikdθ1) ⊗ f̂k, f̂k ∈ Cs×r.

In the following we want to introduce and exploit the concept of non-square identity 
matrix In×m ∈ Rn×m, n �= m, that permits us to write a non-square Toeplitz matrix in 
terms of a square Toeplitz matrix.

Definition 8 (Non-square identity matrix). For an identity matrix In×m ∈ Rn×m the 
following possibilities are admissible:

1. n = m: In×m = In = Tn(1);
2. n > m: In×m is obtained from In removing (n −m) columns from the right;
3. n < m: In×m = It

m×n.

Definition 9 (Non-square Toeplitz matrix Tn×m(f) ∈ Cn×m). We denote by Tn×m(f), 
with n �= m, n, m ∈ N, a non-square Toeplitz matrix generated by a univariate and 
scalar-valued generating function f . It is defined as

1. n > m: Tn×m(f) = Tn(f)In×m;
2. n < m: Tn×m(f) = In×mTm(f);

where In×m is defined in Definition 8.

Definition 10 (Non-square multilevel block Toeplitz matrix Tn×m(f)). A multilevel non-
square Toeplitz matrix, denoted by Tn×m(f), where n = (n1, . . . , nd) and m =
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(m1, . . . , md), generated by a multivariate and non-square matrix-valued function f :
[−π, π]d → Cs×r, where s, r ∈ N is defined as

Tn×m(f) =
∑
k

Tn1×m1(eik1θ1) ⊗ · · · ⊗ Tnd×md
(eikdθd) ⊗ f̂k,

where f̂k ∈ Cs×r are the Fourier coefficients of f .
The size of the matrix Tn×m(f) is dn × dm which is given by dn = sn1n2 · · ·nd and 

dm = rm1m2 · · ·md.

Example 4. In this example we show how a classical non-square Toeplitz matrix can be 
naturally treated with the aforementioned notions of non-square generating function and 
related Toeplitz matrix. We consider the prolongation matrix stemming from the linear 
interpolation operator used in multigrid methods (MGM) [38,19]. That is, for n odd, the 
matrix Pn×(n−1)/2, with the following structure

Pn×(n−1)/2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1 1
0 2

1 1
0 2

. . .
1 1
0 2

1 1
0 2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn×(n−1)/2.

If we consider the following 2 × 1 matrix-valued generating function,

p(θ) =
[

1
2

]
+
[

1
0

]
eiθ,

we can write

T(n+1)/2(p) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1 1
0 2

1 1
0 2

. . .
1 1
0 2

1 1
0 2

1 1
0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

Pn×(n−1)/2
...
0
1

0 · · · 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦ ∈ R(n+1)×(n+1)/2.

Then, removing the last row (by multiplication from the left with In×(n+1)) and last 
column (by multiplication from the right with I(n+1)/2×(n−1)/2), we can express the 
matrix Pn×(n−1)/2 as
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Pn×(n−1)/2 = In×(n+1)T(n+1)/2(p)I(n+1)/2×(n−1)/2.

This implies that Pn×(n−1)/2 shares the same momentary singular value symbol

p(θ) =
[

1
2

]
+
[

1
0

]
eiθ, (25)

with the matrix T(n+1)/2(p) + R1, which differs from T(n+1)/2(p) just for a rank 1 cor-
rection matrix R1, whose expression is given by

R1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...
0
1

0 · · · 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦ = (en + en−1)eTn ,

ej , j = 1, . . . , n, being the vectors of the canonical basis of Cn.
An additional confirmation of this fact can be seen following a more classical construc-

tion of the matrix Pn×(n−1)/2, which can be derived in analogous way, see [11]. Indeed, 
we can obtain Pn×(n−1)/2 multiplying the matrix Tn(g), where g(θ) = 2 + 2 cos θ, with a 
so-called cutting matrix Zn×(n−1)/2, as follows,

Pn×(n−1)/2 = Tn(g)Zn×(n−1)/2,

where, defining the generating function fz(θ) =
[ 0

1

]
, we have

Zn×(n−1)/2 = In×n+1T(n+1)/2(fz)I(n+1)/2×(n−1)/2.

By Definition 5, for s = 2, the matrix-valued version of g is

g[2](θ) = T2(g) + T2(e−2iθg)eiθ + T2(e2iθg)e−iθ

=
[
2 1
1 2

]
+
[
0 1
0 0

]
eiθ +

[
0 0
1 0

]
e−iθ.

We then have

Pn×(n−1)/2 = In×n+1T(n+1)/2(g[2]fz)I(n+1)/2×(n−1)/2,

where

g[2](θ)fz(θ) =
([

2 1
1 2

]
+
[
0 1
0 0

]
eiθ +

[
0 0
1 0

]
e−iθ

)[
0
1

]
=
[
1
2

]
+
[
1
0

]
eiθ (26)

= pn(θ),
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where pn(θ) is defined in (25). Then, the first part of the example shows that we can treat 
non-square (s �= r) matrix-valued generating function as any other generating function, 
as long as we take care to transform all involved generating functions to blocks of correct 
sizes and scalar-valued generating functions (which are not just a constant) should be 
treated as matrices of size 1 × 1 and have to be resized for valid multiplication.

In the following we want to show how non-square sequences can be studied exploiting 
the concept of non-square momentary symbols.

Let us consider the matrix h2Xn defined by (18) in Example 1 and its associated 
momentary symbols

fn(θ) = 2 + h2 − 2 cos θ,

where h = 1/(n + 1). In many applications the study of the spectrum of a matrix of the 
form

Y(n−1)/2 = PHh2XnP,

could be of interest, where P = Pn×(n−1)/2. Indeed, the matrix Y(n−1)/2 could be seen as 
the matrix on the coarse level of a multigrid procedure, obtained using as prolongation 
operator the matrix P .

The matrix Y(n−1)/2 is symmetric by construction and its resulting eigenvalue mo-
mentary symbol can be constructed as

yn(θ) = pH

n (θ)fn(θ)pn(θ) =(
[ 1 2 ] + [ 1 0 ] e−iθ) ([ 2+h2 −1

−1 2+h2

]
+
[ 0 −1

0 0

]
eiθ +

[
0 0
−1 0

]
e−iθ

) ([ 1
2

]
+
[ 1

0

]
eiθ

)
=

4 + 6h2 + 2(h2 − 2) cos θ = 4 − 4 cos θ + h2(6 + 4 cos θ),

where pH

n (θ) is the momentary singular value symbol of PH and fn(θ) is the 2 × 2 block 
version of fn(θ). An additional confirmation of this fact can be seen, by noticing that, 
by direct computation, we have

Y(n−1)/2 = T(n−1)/2(yn) + R(n−1)/2,

where R(n−1)/2 is a matrix with the only non-zero element being a −1 in the bottom 
right corner.

In addition, the matrix Y(n−1)/2 belongs to the τ0,1/(2−h2)-algebra and we can employ 
the strategy of Example 2 to choose the appropriate grid for the eigenvalue approxima-
tions via its momentary eigenvalue symbol.

Furthermore, we mention that the procedure described in the present example gen-
eralizes and justifies the approach presented in [27]. Indeed, the author constructs the 
symbol at the coarse levels by the 2 ×2 matrix-valued version of the symbol of the prob-

lem and projects it by the function B(x) 
[
1
0

]
, where B(x) is the chosen symbol of the 



80 M. Bolten et al. / Linear Algebra and its Applications 651 (2022) 51–82
prolongation operator. The latter is then a particular case of the product of the form 
(26). Finally, we remark that in a pure GLT context the present reasoning was already 
considered and described concisely in [36, Section 3.7].

4. Conclusions

In this paper we introduced and exploited the concept of the Toeplitz momentary 
symbols. We showed how the idea behind its construction is similar to that of the symbol 
stemming from the GLT theory, but in practice it is applicable in order to obtain more 
precise estimates of eigenvalues and singular values.

We illustrated the efficacy of the momentary symbols in Examples 1-4, including the 
multilevel block and non-square settings. Object of further research will be the extension 
of the proposed tools to more challenging structures coming from applications of interest. 
In particular, we plan to apply the Toeplitz momentary symbols approach to the iteration 
matrix-sequences stemming from Parallel-in-Time problems.

Finally, we mention that in many recent works [14,16], under specific hypotheses on 
the generating function f , it is possible to give an accurate description of the eigenvalues 
of Tn(f) via an asymptotic expansion of the form

λj(Tn(f)) = c0(θj,n) + hc1(θj,n) + h2c2(θj,n) + h3c3(θj,n) + . . . ,

and the functions ck(θ) can be approximated by so-called matrix-less methods. We high-
light that in the Hermitian case, we have c0 = f and the subsequent functions c1, c2, . . .
can be seen as part of the momentary singular value symbol fn. In the non-Hermitian 
case, the situation is much more involved and the approach can be successful only in 
specific well selected cases, which deserve a careful study. Then, efficient and fast algo-
rithms can be designed for computing the singular values and eigenvalues of Tn(f) (plus 
its possible block, and variable coefficient generalizations) and this will be investigated 
in the future.
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