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A NOTE ON THE SPECTRAL ANALYSIS OF MATRIX SEQUENCES VIA
GLT MOMENTARY SYMBOLS: FROM ALL-AT-ONCE SOLUTION OF

PARABOLIC PROBLEMS TO DISTRIBUTED FRACTIONAL ORDER MATRICES∗
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Abstract. The first focus of this paper is the characterization of the spectrum and the singular values of the
coefficient matrix stemming from the discretization of a parabolic diffusion problem using a space-time grid and
secondly from the approximation of distributed-order fractional equations. For this purpose we use the classical
GLT theory and the new concept of GLT momentary symbols. The first permits us to describe the singular value
or eigenvalue asymptotic distribution of the sequence of the coefficient matrices. The latter permits us to derive a
function that describes the singular value or eigenvalue distribution of the matrix of the sequence, even for small
matrix sizes, but under given assumptions. The paper is concluded with a list of open problems, including the use of
our machinery in the study of iteration matrices, especially those concerning multigrid-type techniques.
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1. Introduction and notation. As it is well known, many practical applications require to
numerically solve linear systems of Toeplitz kind and of large dimensions. As a consequence,
a number of iterative techniques such as preconditioned Krylov methods, multigrid procedures,
and sophisticated combinations of them have been designed (see [10, 27] and the references
therein). Linear systems with Toeplitz coefficient matrices of large dimension arise when
dealing with the numerical solution of (integro-)differential equations and of problems with
Markov chains. More recently, new examples of such applications to real-world problems have
emerged. The first focus of this paper is the characterization of the spectrum and the singular
values of the coefficient matrix stemming from the discretization of a parabolic diffusion
problem using a space-time grid. More specifically, we consider the diffusion equation in one
space dimension,

ut = uxx, x ∈ (a, b), t ∈ [0, T ],

and we approximate our parabolic model problem on a rectangular space-time grid consisting
of Nt time intervals and Nx space intervals.

The second focus concerns the matrix sequences involved with the discretization of
distributed-order fractional differential equations (FDEs), which have gained a lot of attention.
Owing to the nonlocal nature of fractional operators, independently of the locality of the
approximation methods, the matrix structures are dense, and, under assumptions of uniform
step-sizing and of constant coefficients in the involved operators, the matrices are again of
Toeplitz type (unilevel, or multilevel according to the dimensionality of the considered spatial
domains).

∗Received March 2, 2022. Accepted December 1, 2022. Published online on January 30, 2023. Recommended
by Silvia Noschese.

*Bergische Universität Wuppertal, Department of Mathematics and Computer Science, Gaußstraße 20, 42119
Wuppertal, Germany. ({bolten,furci}@uni-wuppertal.de).

†Uppsala University, Department of Information Technology, Lägerhyddsv. 1, SE-751 05, Uppsala, Sweden
(sven-erik.ekstrom@it.uu.se).

‡University of Insubria, Department of Science and High Technology, via Valleggio 11, 22100, Como, Italy
(s.serracapizzano@uninsubria.it).

136

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://doi.org/10.1553/etna_vol58s136


ETNA
Kent State University and

Johann Radon Institute (RICAM)

SPECTRAL ANALYSIS OF MATRIX SEQUENCES VIA GLT MOMENTARY SYMBOLS 137

When the fractional order is fixed, the spectral analysis of such matrices (conditioning,
extremal eigenvalues, . . . ) can be performed by exploiting the well-established analysis of
the spectral features of Toeplitz matrix sequences generated by Lebesgue-integrable functions
and the more recent Generalized Locally Toeplitz (GLT) theory [23]; see for instance [17, 18].
However, in the case of the numerical approximation of distributed-order fractional operators,
also the spectral analysis of the resulting matrices is more involved. We recall that distributed-
order FDEs can be interpreted as a parallel distribution of derivatives of fractional orders,
whose most immediate application consists of the physical modeling of systems characterized
by a superposition of different processes operating in parallel. As an example, we mention the
application of fractional distributed-order operators as a tool for accounting memory effects
in composite materials [13] or multi-scale effects [11]. For a detailed review on the topic we
refer the reader to [16].

In order to study the involved structured linear systems of both integral and differential
equations, we will use the classical theory of GLT matrix sequences [23, 24] and the new
concept of GLT momentary symbols. The first permits us to describe the singular value or
eigenvalue asymptotic distribution of a sequence of coefficient matrices; the latter permits us
to derive a function which describes the singular value or eigenvalue distribution of a fixed
matrix of the sequence, even for small matrix sizes, under given assumptions.

This paper is organized as follows. The remaining part of this section is devoted to
definitions, notation, and the necessary background for our analysis: in particular we provide a
formal definition of GLT momentary symbols. Section 2 is devoted to setting up the problem
and to derive the relevant matrix structures. The distributional analysis both for the eigenvalues
and singular values is the main focus of Section 2.3, while Section 3 contains similar results
for specific matrix structures with generating function depending on the matrix size and which
arise in the context of fractional differential equations with distributed orders. Section 4
contains conclusions and a list of open problems, including the use of our machinery in the
study of iteration matrices, especially those concerning multigrid-type techniques.

1.1. Background and definitions. Throughout this paper we use the following notations.
Letting f : G→ C be a function belonging to L1(G), with G ⊆ R`, ` ≥ 1, a measurable set,
we denote by {An}n the matrix sequence whose elements are given by the matrices An of
dimension n × n. Letting s, d ∈ N, n = (n1, n2, . . . , nd) be a multi-index, we indicate by
{An}n, the d-level s× s block matrix sequence whose elements are the matrices An of size
d = d(n, s) = sn1n2 · · ·nd.

1.2. Toeplitz and circulant matrix sequences. In the following we report the main
background concerning the concepts of Toeplitz and circulant matrices, for simplicity in the
scalar unilevel setting. We only provide the generalization in the block multilevel case of the
results that will be exploited for the purpose of the paper.

DEFINITION 1.1. An n× n Toeplitz matrix An is a matrix that has equal entries along
each diagonal and can be written as

An = [ai−j ]
n
i,j=1 =



a0 a−1 a−2 ··· ··· a1−n

a1
. . .

. . .
. . .

...

a2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . a−2

...
. . .

. . .
. . . a−1

an−1 ··· ··· a2 a1 a0


, ak ∈ C, k = 1− n, . . . , n− 1.
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In the following we focus on the two important subclasses given by the Toeplitz matrices
Tn(f) ∈ Cn×n and the circulant matrices Cn(f) ∈ Cn×n associated with a function f , called
the generating function.

DEFINITION 1.2. Given f belonging to L1([−π, π]) and periodically extended to the
whole real line, the matrix Tn(f) is defined as

Tn(f) =
[
f̂i−j

]n
i,j=1

,

where

(1.1) f̂k :=
1

2π

∫ π

−π
f(θ) e−kiθdθ, k ∈ Z, i2 = −1,

are the Fourier coefficients of f and

f(θ) =

∞∑
k=−∞

f̂kekiθ,

is the Fourier series of f .
DEFINITION 1.3. Let the Fourier coefficients of a given function f ∈ L1([−π, π]) be

defined as in formula (1.1). Then we define the n× n circulant matrix Cn(f) associated with
f as

(1.2) Cn(f) =

n−1∑
j=−(n−1)

âjZ
j
n = FnDn(f)F∗n,

where ∗ denotes the transpose conjugate and Zn is the n× n matrix defined by

(Zn)ij =

{
1, if i− j ≡ 1 modn,

0, otherwise.

Moreover,

Dn(f) = diag
(
sn(f(θcj,n))

)
, j = 1, . . . , n,

where

θcj,n =
(j − 1)2π

n
, j = 1, . . . , n,

and sn(f(θ)) is the nth Fourier sum of f given by

sn(f(θ)) =

n−1∑
k=1−n

f̂kekiθ.

The matrix Fn is the so-called Fourier matrix of order n, given by

(Fn)i,j =
1√
n

ei(i−1)θcj,n , i, j = 1, . . . , n.

In the case of the Fourier matrix, we have FnF∗n = In, that is, Fn is complex-symmetric and
unitary with In being the identity matrix of size n.
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TABLE 1.1
Different types of generating function and the associated Toeplitz matrix.

Type of generating function Associated Toeplitz matrix

univariate scalar f(θ) : [−π, π]→ C unilevel scalar Tn(f) ∈ Cn×n
d-variate scalar f(θ) : [−π, π]d → C d-level scalar Tn(f) ∈ Cd(n,1)×d(n,1)

univariate matrix-valued f(θ) : [−π, π]→ Cs×s unilevel block Tn(f) ∈ Cd(n,s)×d(n,s)
d-variate matrix-valued f(θ) : [−π, π]d → Cs×s d-level block Tn(f) ∈ Cd(n,s)×d(n,s)

The proof of the second equality in (1.2), which implies that the columns of the Fourier
matrix Fn are the eigenvectors of Cn(f), can be found in [23, Theorem 6.4]. Note that from
the definition it follows that, if f is a trigonometric polynomial of fixed degree less than n,
then the entries of Dn(f) are the eigenvalues of Cn(f), explicitly given by sampling the
generating function f using the grid θcj,n:

λj(Cn(f)) = f
(
θcj,n
)
, j = 1, . . . , n,

Dn(f) = diag
(
f
(
θcj,n
))
, j = 1, . . . , n.

The type of domain (either one-dimensional [−π, π] or d-dimensional [−π, π]d) and codomain
(either the complex field or the space of s× s complex matrices) of f gives rise to different
kinds of Toeplitz matrices; see Table 1.1 for a complete overview.

In particular, we provide the definition of a d-level s× s block Toeplitz matrices Tn(f)
starting from d-variate matrix-valued function f : [−π, π]d → Cs×s with f ∈ L1([−π, π]d).

DEFINITION 1.4. Given a function f : [−π, π]d → Cs×s, its Fourier coefficients are
given by

f̂k :=
1

(2π)d

∫
[−π,π]d

f(θ)e−i〈k,θ〉dθ ∈ Cs×s, k = (k1, . . . , kd) ∈ Zd,

where θ = (θ1, . . . , θd), 〈k,θ〉 =
∑d
i=1 kiθi, and the integrals of matrices are computed

elementwise. The associated generating function can be defined via its Fourier series as

f(θ) =
∑
k∈Zd

f̂kei〈k,θ〉.

The d-level s× s block Toeplitz matrix associated with f is the matrix of dimension d(n, s),
with n = (n1, . . . , nd), given by

Tn(f) =
∑

e−n≤k≤n−e

Tn1
(eik1θ1)⊗ · · · ⊗ Tnd(eikdθ1)⊗ f̂k,

where e is the vector of all ones and where s ≤ t means that sj ≤ tj for any j = 1, . . . , d.
DEFINITION 1.5. If n ∈ Nd and a : [0, 1]d → Cs×s, we define the nth d-level and s× s

block diagonal sampling matrix as the following multilevel block diagonal matrix of dimension
d(n, s):

Dn(a) = diage≤j≤n a
(

j
n

)
,

where we recall that e ≤ j ≤ n means that j varies from e to n, that is, 1 ≤ jk ≤ nk for all
k = 1, . . . , d. Furthermore, in assembling the matrix Dn(a), the lexicographic ordering is
used. More precisely, like the digits of a d-digit number smaller than 1 in a given basis, the
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quantity jd moves fastest, jd−1 second fastest, and so on till j1, which moves slowest. If d = 2
and n1 = 2, n2 = 4, then the ordering is the following: (1, 1), (1, 2), (1, 3), (1, 4), (2, 1),
(2, 2), (2, 3), (2, 4).

The following result provides an important relation between tensor products and multilevel
Toeplitz matrices.

LEMMA 1.6 ([24]). Let f1, . . . , fd ∈ L1([−π, π]), n = (n1, n2, . . . , nd) ∈ Nd. Then,

Tn1
(f1)⊗ · · · ⊗ Tnd(fd) = Tn(f1 ⊗ · · · ⊗ fd),

where the Fourier coefficients of f1 ⊗ · · · ⊗ fd are given by

(f1 ⊗ · · · ⊗ fd)k = (f1)k1 . . . (fd)kd , k ∈ Zd.

1.3. Asymptotic distributions. In this section we introduce the definition of asymptotic
distribution in the sense of the eigenvalues and of the singular values, first for a generic matrix
sequence {An}n, and then we report specific results concerning the distributions of Toeplitz
and circulant matrix sequences. Finally, we recall the notion of the GLT algebra, and we
introduce a general notion of GLT momentary symbols. We remind that, in a more specific
and limited setting, the notion of momentary symbols is given in [7]: here we generalize the
definition in [7].

DEFINITION 1.7 ([23, 24, 25, 33]). Let f, f : G→ C be measurable functions, defined on
a measurable set G ⊂ R`, with ` ≥ 1, 0 < µ`(G) <∞. Let C0(K) be the set of continuous
functions with compact support over K ∈ {C,R+

0 }, and let {An}n be a sequence of matrices
with eigenvalues λj(An), j = 1, . . . , dn, and singular values σj(An), j = 1, . . . , dn. Then:

• The matrix sequence {An}n is distributed as f in the sense of the singular values
and we write

{An}n ∼σ f,

if the following limit relation holds for all F ∈ C0(R+
0 ):

(1.3) lim
n→∞

1

dn

dn∑
j=1

F (σj(An)) =
1

µ`(G)

∫
G

F (|f(θ)|)dθ.

The function f is called the singular value symbol, which asymptotically describes
the singular value distribution of the matrix sequence {An}n.

• The matrix sequence {An}n is distributed as f in the sense of the eigenvalues and
we write

{An}n ∼λ f,

if the following limit relation holds for all F ∈ C0(C):

(1.4) lim
n→∞

1

dn

dn∑
j=1

F (λj(An)) =
1

µ`(G)

∫
G

F (f(θ))dθ.

The function f is called the eigenvalue symbol, which asymptotically describes the
eigenvalue distribution of the matrix sequence {An}n.

REMARK 1.8. Note that, ifAn is normal for any n or at least definitely, then {An}n ∼σ f
and {An}n ∼λ f imply that f = f. Of course this is true for Hermitian Toeplitz matrix
sequences as emphasized in Theorem 1.9 and Theorem 1.10.
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Moreover, considering the case d = 1, if f (or f) is smooth enough, then the informal
interpretation of the limit relation (1.3) (or (1.4)) is that, for n sufficiently large, the n singular
values (or eigenvalues) of An can be approximated by a sampling of |f(θ)| (or f(θ)) on an
equispaced grid of the interval G, up to the presence of possibly o(n) outliers. It is worthwhile
to notice that in most of the Toeplitz and PDE/FDE applications, the number of actual outliers
is often limited to O(1) with often a small number of outliers (see [4, 3, 23, 24] and the
references therein).

The generalization of Definition 1.7 and Remark 1.8 to the block setting and multilevel
block setting can be found in [4, 3] and in the references therein. In the case where the matrix
sequence is a Toeplitz matrix sequence generated by a function, the singular value distribution
and the spectral distribution have been well studied in the past few decades. In this respect, the
seminal work is that of Szegő reported in the book [25], where it is shown that the eigenvalues
of the Toeplitz matrices Tn(f) generated by a real-valued f ∈ L∞([−π, π]) are asymptotically
distributed as f . Moreover, under the same assumption on f , Avram and Parter [2, 28] proved
that the singular values of Tn(f) are distributed as |f |. This result has been undergone many
generalizations and extensions over the years (see [4, 3, 23, 24] and the references therein).

The generalized Szegő theorem that describes the singular value and spectral distribution
of Toeplitz sequences generated by a scalar f ∈ L1([−π, π]) is given as follows [34]:

THEOREM 1.9. Suppose that f ∈ L1([−π, π]). Let Tn(f) be the Toeplitz matrix
generated by f . Then we have

{Tn(f)}n ∼σ f.

Moreover, if f is real-valued almost everywhere (a.e.), then

{Tn(f)}n ∼λ f.

Tilli [32] generalized the proof to the block-Toeplitz setting, and we report the extension of
the eigenvalue result to the case of multivariate Hermitian matrix-valued generating functions.

THEOREM 1.10. Suppose that f : [−π, π]d → Cs×s, f ∈ L1([−π, π]d), with positive
integers d, s. Let Tn(f) be the Toeplitz matrix generated by f . Then we have

{Tn(f)}n ∼σ f .

Moreover, if f is a Hermitian matrix-valued function a.e., then

{Tn(f)}n ∼λ f .

Concerning the circulant matrix sequences, though the eigenvalues of a circulant matrix
Cn(f) are explicitly known, a result like Theorem 1.9 and Theorem 1.10 does not hold for
sequences {Cn(f)}n in general. Indeed, the Fourier sum of f converges to f under quite
restrictive assumptions (see [35]). In particular, if f belongs to the Dini-Lipschitz class, then
{Cn(f)}n ∼λ f, (see [22] for more relationships between circulant sequences and spectral
distribution results).

1.4. Matrix algebras. Apart from the circulant algebra introduced in Section 1.2, we
recall that other particular matrix algebras have interesting properties and can be exploited for
our purpose. In particular, we mention the well-known τ -algebras; see [8] and the references
therein. Here, we restrict the analysis to the case of the matrix algebras τε,ϕ introduced in [8],
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where an element of the algebra is a matrix

Tn,ε,ϕ(g) =


a+ εb b
b a b

. . . . . . . . .
b a b

b a+ ϕb

 .

We can associate to this matrix a function g of the form g(θ) = a+ 2b cos θ. For some values
of ε and ϕ, the exact eigenvalues of Tn,ε,ϕ(g) are given by a sampling with specific grids; for
detailed examples see [7] and [21] for asymptotic results.

In Table 1.2 we provide the proper grids θ(ε,ϕ)
j,n and Θ

(ε,ϕ)
i,j,n to give the exact eigenvalues

and eigenvectors, respectively, for ε, ϕ ∈ {−1, 0, 1}.

TABLE 1.2
Grids for τε,ϕ-algebras, ε, ϕ ∈ {−1, 0, 1}; θ(ε,ϕ)

j,n and Θ
(ε,ϕ)
j,n are the grids used to compute the eigenvalues

and eigenvectors, respectively. For the standard naming convention (dst-* and dct-*) between parentheses, see,
e.g., [14, Appendix 1].

θ
(ε,ϕ)
j,n Θ

(ε,ϕ)
i,j,n

aaaaa
ε ϕ -1 0 1 -1, 0, 1

-1
(dst-2)

jπ
n

(dst-6)

jπ
n+1/2

(dst-4)

(j−1/2)π
n

(i− 1/2)θ
(ε,ϕ)
j,n

0
(dst-5)

jπ
n+1/2

(dst-1)

jπ
n+1

(dst-7)

(j−1/2)π
n+1/2

iθ
(ε,ϕ)
j,n

1
(dct-4)

(j−1/2)π
n

(dct-8)

(j−1/2)π
n+1/2

(dct-2)

(j−1)π
n

(i− 1/2)θ
(ε,ϕ)
j,n + π

2

Since all grids θ(ε,ϕ)
j,n associated with τε,ϕ-algebras, where ε, ϕ ∈ {−1, 0, 1}, are uni-

formly spaced grids, we know that

θ
(1,1)
j,n < θ

(0,1)
j,n = θ

(1,0)
j,n

< θ
(−1,1)
j,n = θ

(1,−1)
j,n

< θ
(−1,0)
j,n = θ

(0,−1)
j,n

< θ
(−1,−1)
j,n , ∀j = 1, . . . , n.

For j = 1, . . . , dn/2e,

θ
(−1,1)
j,n = θ

(1,−1)
j,n ≤ θ(0,0)

j,n ,

with equality only for j = dn/2e and n odd.
For j = dn/2e+ 1, . . . , n,

θ
(0,0)
j,n < θ

(−1,1)
j,n = θ

(1,−1)
j,n .

In addition, we observe the further relationship θ(1,0)
j,n < θ

(0,0)
j,n for any j, which will be used in

equation (2.7).
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1.5. Theory of Generalized Locally Toeplitz (GLT) sequences. In this section we
introduce the main properties from the theory of Generalized Locally Toeplitz (GLT) sequences
and the practical features that are sufficient for our purposes; see [4, 3, 23, 24].

In particular, we consider the multilevel and block setting with d being the number of
levels.

GLT1 Each GLT sequence has a singular value symbol f(θ, x), which is measurable accord-
ing to the Lebesgue measure and according to the second item in Definition 1.7 with
` = 2d. In addition, if the sequence is Hermitian, then the distribution also holds in
the eigenvalue sense.
We specify that a GLT sequence {An}n has GLT symbol f(θ, x) by the notation
{An}n ∼GLT f(θ, x), (θ, x) ∈ [−π, π]d × [0, 1]d.

GLT2 The set of GLT sequences forms a ∗-algebra, i.e., it is closed under linear combina-
tions, products, inversion (whenever the symbol is singular on, at most, a set of zero
Lebesgue measure), and conjugation. Hence, we obtain the GLT symbol of alge-
braic operations of a finite set of GLT sequences by performing the same algebraic
manipulations of the symbols of the considered GLT sequences.

GLT3 Every Toeplitz sequence {Tn(f)}n generated by a function f(θ) belonging to the space
L1([−π, π]d) is a GLT sequence and with GLT symbol given by f . Every diagonal
sampling sequence {Dn(a)}n generated by a Riemann integrable function a(x),
x ∈ [0, 1]d is a GLT sequence and with GLT symbol given by a.

GLT4 Every sequence which is distributed as the constant zero in the singular value sense is
a GLT sequence with symbol 0. In particular this applies to
• every sequence in which the rank divided by the size tends to zero as the matrix

size tends to infinity;
• every sequence in which the trace-norm (i.e., the sum of the singular values)

divided by the size tends to zero as the matrix size tends to infinity.

From a practical viewpoint, on the one hand, for a sequence belonging to the GLT class,
one of the main advantages is that under certain assumptions, crucial spectral and singular
value information can be derived using the concept of the GLT symbol. On the other hand, the
above properties imply the following important features of the GLT symbol. Given a sequence
{An}n obtained by algebraic operations of a finite set of GLT sequences, the small-norm and
low-rank terms of which the sequence is composed should be neglected in the computation of
the GLT symbol. Consequently, it happens that for small matrix sizes n, the approximations
may not be as accurate as desired.

For this reason, in [7], it has been introduced and exploited the concept of (singular value
and spectral) “momentary symbols”, starting from the special case of Toeplitz structures.
Here we generalize the notion to that of “GLT momentary symbols”: the construction stems
from that of the symbol in the GLT sense, but in practice the information of the small-norm
contributions is kept in the symbol, and this may lead to higher accuracy, at least in some
emblematic cases, when approximating the singular values and eigenvalues of Toeplitz-like
matrices, even for small dimensions.

1.6. The GLT momentary symbol sequence. For clarity, in this section we consider
the matrix sequences in detail only in the unilevel and scalar setting. We want to avoid a
cumbersome notation, but the ideas are extensible in a straightforward manner to the case
where the involved GLT symbols are also matrix-valued and multivariate, as briefly sketched.
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As an example, we take the following second-order differential equation with Dirichlet
boundary conditions:

(1.5)
−(a(x)u′(x))′ + b(x)u′(x) + c(x)u(x) = f(x), x ∈ (0, 1),

u(0) = α, u(1) = β.

The well-posedness of the previous diffusion-convection-advection problem holds in the case
where a(x) ∈ C1(0, 1). Furthermore, uniqueness and existence of the solution are guaranteed
in the case where a(x) > 0, c(x) ≥ 0, and with continuous functions b(x), c(x) on [0, 1]
with f(x) ∈ L2([0, 1]) (see [9]). For a more exhaustive discussion regarding the conditions
of existence and uniqueness, even in the multidimensional case, we refer to [29, 31] and the
references therein.

From a GLT viewpoint, we only require the following much weaker assumptions:
• a(x), c(x) are real-valued functions, continuous almost everywhere, defined in [0, 1],
• b(x) is a real-valued function on [0, 1] such that |b(x)xα| is bounded for some
α < 3/2,

while f(x) is a general function.
We employ central second-order finite differences for approximating the given equation.

We define the stepsize h = 1
n+1 and the points xk = kh for k belonging to the interval

[0, n + 1]. Let ak := a(x k
2
) for any k ∈ [0, 2n + 2], and set bj := b(xj), cj := c(xj),

fj := f(xj) for every j = 0, . . . , n+ 1. We compute approximations uj of the values u(xj),
for j = 1, . . . , n, by solving the following linear system

(1.6) An


u1

u2

...
un−1

un

+Bn


u1

u2

...
un−1

un

+ Cn


u1

u2

...
un−1

un

 = h2


f1 + 1

h2 a1α+ 1
2hb1α

f2

...
fn−1

fn + 1
h2 a2n+1β − 1

2hbnβ

 ,
where

An =


a1 + a3 −a3

−a3 a3 + a5 −a5

. . . . . . . . .
−a2n−3 a2n−3 + a2n−1 −a2n−1

−a2n−1 a2n−1 + a2n+1

 ,

Bn =
h

2


0 b1
−b2 0 b2

. . . . . . . . .
−bn−1 0 bn−1

−bn 0

 , Cn = h2 diag(c1, . . . , cn).

In the case where a(x) ≡ 1 and b(x) ≡ 1, we find the basic Toeplitz structures

Kn = Tn(2− 2 cos θ) =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 ,
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Hn = Tn(i sin θ) =
1

2


0 1
−1 0 1

. . . . . . . . .
−1 0 1

−1 0

 ,

which are of importance sinceAn = Dn(a)Kn+En andBn = hDn(b)Hn with {En}n ∼σ 0,
as an immediate check in [5] can show. Therefore, by using the GLT axioms (as done in detail
in [5]), we obtain

{An}n ∼GLT a(x)(2− 2 cos θ),

{
1

h
Bn

}
n

∼GLT ib(x) sin θ,

{
1

h2
Cn

}
n

∼GLT c(x).

As a conclusion {Bn}n ∼GLT 0, {Cn}n ∼GLT 0, and hence, setting Xn = An +Bn +Cn the
actual coefficient matrix of the linear system in (1.6)), again by the ∗-algebra structure of the
GLT matrix sequences, we deduce

{Xn}n ∼GLT a(x)(2− 2 cos θ).

Now, following [7], the idea is to consider not only the asymptotic setting but also the case of
moderate sizes. As a consequence, for increasing the precision of the evaluation of eigenvalues
and singular values, we can associate to

Xn = An +Bn + Cn

the specific symbol fn(x, θ) = a(x)(2− 2 cos θ) + hib(x) sin θ + h2c(x).
We are now in position to give a formal definition of GLT momentary symbols.
DEFINITION 1.11 (GLT momentary symbols). Let {Xn}n be a matrix sequence, and

assume that there exist matrix sequences {A(j)
n }n, {Rn}n, scalar sequences c(j)n , j = 0, . . . , t,

and measurable functions fj defined over [−π, π]× [0, 1], and with t a nonnegative integer
independent of n, such that {Rn}n is zero-distributed (as in item GLT4 in Section 1.5),{

A
(j)
n

c
(j)
n

}
n

∼GLT fj ,

c(0)
n = 1, c(s)n = o(c(r)n ), t ≥ s > r,

{Xn}n = {A(0)
n }n +Rn +

t∑
j=1

{A(j)
n }n.(1.7)

Then, with a slight abuse of notation,

(1.8) fn = f0 +

t∑
j=1

c(j)n fj

is defined as the GLT momentary symbol for Xn, and {fn} is the sequence of GLT momentary
symbols for the matrix sequence {Xn}n.

Of course, in line with Section 1.5, the momentary symbol could be matrix-valued with a
number of variables equal to 2d and domain [−π, π]d × [0, 1]d if the basic matrix sequences
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appearing in Definition 1.11 are, up to proper scaling, matrix-valued and multilevel GLT
matrix sequences. For example in the scalar d-variate setting, relation (1.8) takes the form

fn =

t∑
j=0

c
(j)
n fj,

which is a plain multivariate (possibly block) version of (1.8).
Clearly there is a link with GLT theory stated in the next result.
THEOREM 1.12. Assume that the matrix sequence {Xn}n satisfies the requirements in

Definition 1.11. Then, {Xn}n is a GLT matrix sequence, and the GLT symbol f0 of the main
term A

(0)
n is the GLT symbol of {Xn}n, that is, {Xn}n ∼GLT f0 and limn→∞ fn = f0 a.e. on

the definition domain.
Proof. Since fn is a linear combination of measurable functions, fn is still a measurable

function. Furthermore, because c(j)n → 0 as n→∞, for all j = 1, . . . , t, we deduce that for
all ε > 0

lim
n→∞

m {x ∈ D : |fn − f0| > ε} = 0,

and therefore fn converges a.e. to f0 as n tends to infinity.
From the point of view of the considered matrix sequences, the relation{

A
(j)
n

c
(j)
n

}
n

∼GLT fj ,

with c(j)n infinitesimal for all j = 1, . . . , t, implies
{
A

(j)
n

}
n
∼GLT,σ 0 for all j = 1, . . . , t,

while we know that {Rn}n ∼GLT,σ 0 by the assumption and item GLT4. From the ∗-algebra
structure of the GLT matrix sequences, we infer that

{Xn}n ∼GLT f0,

and hence the proof is concluded.
The given definition of momentary symbols is inspired, as it is clear from the initial

example of a diffusion-convection-advection equation, by the example of approximated
differential equations, where the presence of differential operators of different orders induces,
after a possible proper scaling, a structure like that reported in (1.7).

The idea is that the momentary symbol can be used for giving a more precise evaluation
either of the spectrum or of the eigenvalues for moderate sizes of the matrices and not only
asymptotically. However, we should be aware that, intrinsically, there is no general recipe
especially for the eigenvalues. In fact, as already proven in [30], a rank-one perturbation of
infinitesimal spectral norm actually can change the spectra of matrix sequences, sharing the
same GLT symbol and even sharing the same sequence of momentary symbols.

EXAMPLE 1. Take the matrices Tn(eiθ), and let Xn = Tn(eiθ) + e1e
T
n c

(1)
n with

c
(1)
n = n−α and α > 0 any positive number independent of the matrix size n. By direct

inspection {e1e
T
n c

(1)
n }n ∼σ 0, and hence it is a GLT matrix sequence with zero symbol,

independently of the parameter α. If we look at the GLT momentary symbols, then they
coincide with the GLT symbol for both {Tn(eiθ)}n and {Xn}n. However, while in the first
case the eigenvalues are all equal to zero, in the second case they distribute asymptotically as
the GLT symbol eiθ (which is also the GLT momentary symbol for any n).
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EXAMPLE 2. Take a positive function a defined on [0, 1], the matrices Dn(a)Tn(eiθ),
and Xn = Dn(a)Tn(eiθ) + e1e

T
n c

(1)
n with c(1)

n = n−α and α > 0 any positive number
independent of the matrix size n. Since {e1e

T
n c

(1)
n }n is a GLT matrix sequence with zero

symbol independent of the parameter α, we deduce that both {Dn(a)Tn(eiθ)}n and {Xn}n
share the same GLT symbol a(x)eiθ (which is also the momentary symbol for any n). Again
there is a dramatic change: while in the first case the eigenvalues are all equal to zero, in
the second case they distribute asymptotically as the function âeiθ, where â is the limit (if it
exists) of the geometric mean of sampling values present in Dn(a) as n tends to infinity. Since
n−α/n converges to 1 independently of the parameter α as n tends to infinity, â will depend
only on the diagonal values of Dn(a). As a conclusion, the eigenvalue distributions do not
coincide with the GLT momentary symbols, and this is a message that the present tool could
be ineffective and even misleading, when very non-normal matrices are considered.

In this setting it must be emphasized that the asymptotic eigenvalue distribution is dis-
continuous with respect to the standard norms or metrics widely considered in the context of
matrix sequences.

As a conclusion of the present section, we report preliminary numerical evidence of the
use of GLT momentary symbols for having a more precise estimate of the spectrum when
compared with the standard GLT symbol, at least for moderate matrix orders. Consider the
coefficient matrices in (1.6) approximating the linear differential operator in (1.5). For the sake
of simplicity we consider b(x) ≡ 0 so that the related matrices are real symmetric positive
definite. As first case we take a(x) = 1 + x2 and c(x) = 6 + sin(x3). We compute Es and
Ems, which are the averaged sum of the absolute errors, using as reference functions the GLT
symbol

fs(x, θ) = a(x)(2− 2 cos θ)

and the associated GLT momentary symbols

fms(x, θ) = a(x)(2− 2 cos θ) + h2c(x),

respectively. In both cases, we pick n = ν2, and we sample with

xi = i/(ν + 1), i = 1, . . . , ν, θj = jπ/(ν + 1), j = 1, . . . , ν

by rearranging in non-decreasing order in order to compare with the true eigenvalues.
As already mentioned, Es is the averaged sum of the absolute errors when comparing

sorted eigenvalues with sorted symbol approximations with the grid given above. Ems is
analogously defined but for the related GLT momentary symbols.

We observe that the estimates provided by the GLT momentary symbols are always better
with this metric, and in addition we have Es − Ems > 0, which is not theoretically expected.
Indeed Table 1.3 shows the advantage for moderate matrix sizes, while the advantage becomes
less evident when the matrix sizes grow.

We tested several other examples, and we observed an advantage for moderate sizes, while
this is not necessarily true for matrices of large order and it depends on the sampling grid.

2. All-at-once solution of parabolic problems. The aim of this section is that of
describing as accurately as possible the spectra and singular values of the structured linear
system sequence stemming from the space-time discretization of a parabolic diffusion problem.
Thus, we consider the diffusion equation in one space dimension,

ut = uxx, x ∈ (a, b), t ∈ [0, T ],
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TABLE 1.3
Comparison between the averaged sum of the errors with a(x) = 1 + x2 and c(x) = 6 + sin(x3).

n Es Ems Es − Ems
n−1 ∑ |λj − fs(x, θ)| n−1 ∑ |λj − fms(x, θ)|

9 0.31659454914897317 0.29510847614861735 2.148607300035582 · 10−2

16 0.22558459755745924 0.2198017354258519 5.782862131607336 · 10−3

25 0.18608391764879742 0.18492972171356425 1.1541959352331654 · 10−3

36 0.16554176225430134 0.1655179810161299 2.378123817142752 · 10−5

49 0.14997522607499242 0.14991040173853432 6.482433645810248 · 10−5

64 0.1316103011775121 0.13148627818739497 1.2402299011712858 · 10−4

81 0.11825980438015823 0.11822102653019283 3.877784996540734 · 10−5

100 0.10762803505912259 0.1076237122985601 4.322760562489036 · 10−6

400 0.057367307847965725 0.05736596577310507 1.3420748606537969 · 10−6

900 0.03901486832603214 0.03901462915216716 2.391738649770714 · 10−7

1600 0.029525883049866225 0.029525795496153927 8.75537122975445 · 10−8

where we prescribe u at t = 0 and impose a periodicity condition u(x± (b− a), t) = u(x, t).
We approximate our parabolic model problem on a rectangular space-time grid consisting

of Nt time intervals and Nx space intervals. We obtain a sequence of linear systems in which
each component is of the form

(2.1) Anx = b, An = JNt ⊕QNx = JNt ⊗ INx + INt ⊗QNx ∈ RN×N , x, b ∈ RN ,

where N = NtNx, n = (Nt, Nx), Im is the identity matrix of size m, and the matrices JNt
and QNx come from the discretizations in time and space, respectively. In the following,
we describe the time and space discretization and, in particular, how this leads to structured
components of the matrix An.

2.1. Time discretization. The principal ingredients of the time discretization are:
• Choosing Nt equispaced points in [0, T ] with stepsize ht = T/Nt, that is, tj = jht,

for j = 1, . . . , Nt.
• A discretization in time by a standard backwards Euler scheme.

Regarding notations, for the sake of simplicity, since we are considering a 2D problem, the
symbols will have as Fourier variable (θ, ξ) instead of the standard choice (θ1, θ2) indicated
in the notations of Section 1.2 (see Definition 1.4).

The resulting matrix is JNt , which has the following unilevel scalar Toeplitz structure:

(2.2) JNt =
1

ht


1
−1 1

. . . . . .
−1 1

 =
1

ht
TNt(fJ),

where fJ is the generating function of the matrix sequence {Tn(fJ)}n with

fJ(θ) = 1− eiθ.

2.2. Space discretization. The principal elements of the space discretization are:
• Choosing Nx equispaced points in [a, b]. Since we are considering periodic bound-

ary conditions, we have as step size hx = (a − b)/Nx and xj = hx(j − 1), for
j = 1, . . . , Nx.

• A discretization in space using second-order finite differences.
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Consequently, the space discretization matrix will be the circulant matrix QNx of the
form:

QNx =
1

h2
x


2 −1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 −1 2

 =
1

h2
x

CNx(fQ),

where

fQ(ξ) = 2− 2 cos ξ

is the generating function of the matrix.
Of course a choice of Dirichlet boundary conditions would lead to the standard discrete

Laplacian TNx(fQ): the analysis is equivalent since also this matrix admits a well-known
diagonalization matrix that is the sine transform matrix of type I, which is real, orthogonal,
and symmetric.

2.3. Analysis of the coefficient matrixAn. We have seen that discretizing the problem
of interest for a sequence of discretization parameters hx and ht leads to a sequence of linear
systems whose approximation error tends to zero as the coefficient matrix size grows to infinity.
The nth coefficient matrix component is of the form

(2.3) An =
1

ht
TNt(fJ)⊗ INx + INt ⊗

1

h2
x

CNx(fQ).

In order to design efficient solvers for the considered linear systems, it is of crucial
importance to know the spectral properties of the matrix sequence {An}n. Hence, this section
is devoted to the analysis of the structure of the matrix sequence {An}n in (2.1). In particular,
we provide the singular values and spectral analysis using algebraic tricks, GLT theory, and
the concept of GLT momentary symbols.

2.4. GLT analysis of the coefficient sequence {An}n. The asymptotic spectral and
singular value distributions for the matrix size d(n) sufficiently large of the matrix sequence
{An}n depend on how hx and ht approach zero. Letting ch := h2

x/ht, we have three different
cases to consider.
CASE 1. [ch →∞] : If ht → 0 faster than C1h

2
x, where C1 is a constant, then we can

consider the matrix

htAn = TNt(fJ)⊗ INx + INt ⊗
ht
h2
x︸︷︷︸

c−1
h →0

CNx(fQ).

Then, the sequence satisfies {htAn}n = {TNt(fJ) ⊗ INx + Nn}n, where Nn is a
small-norm matrix in the sense of item 2 of property GLT4 with ‖Nn‖ < C2, C2

constant. Consequently, from GLT4, {Nn}n is a matrix sequence distributed in
the singular value sense as 0, which implies that {Nn}n is zero-distributed in the
GLT sense as described in GLT4. Moreover, since fJ is a trigonometric polynomial,
Theorem 1.10, properties GLT1–GLT4, and Lemma 1.6 imply that

{htAn}n ∼GLT fJ(θ)⊗ 1 + 1⊗ 0 = f
(1)
A (θ, ξ).
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The 1 present in fJ(θ) ⊗ 1 should be interpreted as 1e0iξ, and 1 ⊗ 0 should be
interpreted as 1e0iθ ⊗ 0e0iξ . Hence, the GLT symbol of the sequence {htAn}n is the
bivariate function

f
(1)
A (θ, ξ) = fJ(θ) = 1− eiθ,

and it should be interpreted as the function fJ(θ)⊗ 1, which is constant in the second
component.
From the property GLT1, the function f (1)

A (θ, ξ) describes the singular value distri-
bution in the sense of relation (1.3). In more detail,

{htAn}n ∼GLT,σ 1− eiθ.

However, the matrix sequence {htAn}n is not symmetric, hence the distribution
may not hold in the eigenvalue sense (see also Example 1 and Example 2 at the end
of Section 1.6), and in this specific case actually it does not hold with the function
1− eiθ: in fact, if a real symmetric (or Hermitian) matrix sequence has an eigenvalue
distribution function, then this function is necessarily real-valued almost everywhere;
conversely, a non-Hermitian matrix sequence can have a real-valued eigenvalue
distribution function (there are indeed many possible concrete examples). Because of
the structure of JNt = 1

ht
TNt(fJ) in equation (2.2), it is straightforward to see that

the asymptotic spectral distribution is given by f(θ, ξ) = 1, according to relation (1.4),
that is,

{htAn}n ∼λ 1.

CASE 2. [ch → 0] : If h2
x → 0 faster than C1ht, where C1 is a constant, then we have

h2
xAn =

h2
x

ht︸︷︷︸
ch→0

TNt(fJ)⊗ INx + INt ⊗ CNx(fQ).

Then, the sequence satisfies {h2
xAn}n = {Nn + INt ⊗ CNx(fQ)}n, where Nn is a

small-norm matrix in the sense of item 2 of property GLT4 with ‖Nn‖ < C2, C2

constant. Hence, {Nn}n is a matrix sequence distributed in the singular value sense,
and consequently in the GLT sense, as 0. Moreover, fQ belongs to the Dini-Lipschitz
class, consequently, properties GLT2–GLT4 and Lemma 1.6 imply that

{h2
xAn}n ∼GLT 0⊗ 1 + 1⊗ fQ(ξ) = 1⊗ fQ(ξ) = f

(2)
A (θ, ξ),

where the GLT symbol is given by

f
(2)
A (θ, ξ) = fQ(ξ) = 2− 2 cos ξ.

In this case the function f
(2)
A (θ, ξ) is a singular value symbol for the sequence

{h2
xAn}n and also an eigenvalue symbol since the matrices CNx(fQ) are Hermitian

for each Nx. Hence we have

{h2
xAn}n ∼GLT,σ,λ 2− 2 cos ξ.

CASE 3. [ch = c = constant] : The last case is when h2
x and ht are proportional and related

by the constant ch = c =
h2
x

ht
independent of the various step-sizes. In this setting we
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have

h2
xAn =

h2
x

ht︸︷︷︸
ch

TNt(fJ)⊗ INx + INt ⊗ CNx(fQ).

Consequently, from GLT2, GLT3, and Lemma 1.6, the following relationship holds
when ch is a constant

{h2
xAn}n ∼GLT cfJ(θ)⊗ 1 + 1⊗ fQ(ξ) = f

(3)
A (θ, ξ).

From considerations analogous to the case 1 and 2, we have

{h2
xAn}n ∼GLT,σ c(1− eiθ) + (2− 2 cos ξ).

Since the matrix h2
xAn is not Hermitian, the eigenvalue symbol f(θ, ξ) cannot be

directly derived by f (3)
A (θ, ξ) (see again the discussion in the examples after Defini-

tion 1.11).
In this setting the situation is simple because the involved two-level structure can be
simply block-diagonalized, while the use of the GLT momentary symbol becomes
useful in approximating the singular values of the sequence {h2

xAn}n.

2.5. Analysis of the coefficient matrix sequence {An}n by algebraic manipulations
and GLT momentary symbols. The first observation is that the matrix in (2.3) admits a
decomposition which shows in evidence a lower-triangular matrix, which is similar to the
original one, and hence all the eigenvalues are known exactly. In fact, by looking carefully
at (2.3), we obtain that

1

ht
TNt(fJ)⊗ INx = INt

[
1

ht
TNt(fJ)

]
INt ⊗ FNxINxF∗Nx

and

INt ⊗
1

h2
x

CNx(fQ) = INtINtINt ⊗ FNx
1

h2
x

DNxF∗Nx ,

where FNx is the unitary Fourier matrix of size Nx, F∗Nx is its transpose conjugate and hence
its inverse, and DNx is the diagonal matrix containing the eigenvalues of CNx(fQ), that is,
fQ(2πj/Nx) = 2− 2 cos(2πj/Nx), j = 0, 1, . . . , Nx − 1.

Since TNt(fJ) is a lower bidiagonal matrix with 1 on the main diagonal, it can be easily
seen that the eigenvalues of An in (2.3) are exactly

1

ht
+

1

h2
x

(2− 2 cos(2πj/Nx)), j = 0, 1, . . . , Nx − 1,

each of them with multiplicity Nt. As a consequence, by taking a proper normalization, the
spectral radius ρ(h2

xAn) will coincide simply with 4 + ch.
It is clear that in this context, due to the high non-normality of the term TNt(fJ), after

proper scalings depending on ht and hx, the eigenvalues are a uniform sampling of the function

ht
h2
x

(2− 2 cos θ),

which is not the GLT symbol and is not the associated GLT momentary symbol. The latter
statement is not surprising given the discussion regarding the asymptotic behaviour of the
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matrix sequences reported in Example 1 and in Example 2, when discussing the potential and
the limitations of the notion of GLT momentary symbols. Also in this setting, by imposing
(quite artificial) periodic boundary conditions in time, the term TNt(fJ) will change into
CNt(fJ), and magically a one-rank correction repeated Nt times to the matrix An will
produce a new matrix with the same GLT and momentary symbols as before: however, in
this case the eigenvalues will be exactly the sampling of such functions. This is a further
confirmation of the delicacy of the eigenvalues, which can have dramatic changes due to
minimal corrections, when we are in a context of highly non-normal matrices.

2.5.1. Singular values of h2
xAn (exact). The singular values σ1(h2

xAn), . . . ,
σd(n)(h

2
xAn) of the matrix h2

xAn are given by the positive square roots of the eigenvalues of
the Hermitian matrix h4

xAnA
T
n. Hence, in order to provide exactly σi(h2

xAn), i = 1 . . . , d(n),
we are interested in the spectrum of the matrix

h4
xAnA

T
n =



Q̃2
Nx

−chQ̃Nx
−chQ̃Nx Q̃2

Nx
+ c2hINx −chQ̃Nx

−chQ̃Nx Q̃2
Nx

+ c2hINx
. . .

. . . . . . −chQ̃Nx
−chQ̃Nx Q̃2

Nx
+ c2hINx


,

where Q̃Nx = CNx + chINx . Note that h4
xAnA

T
n is not a pure block-tridiagonal Toeplitz

matrix because of the missing constant c2h in the block in the top left corner. However,
for each fixed Nt and Nx, the matrix Q̃Nx is a circulant matrix with generating function
fQ̃Nx

(ξ) = 2 − 2 cos ξ + ch, which is also its GLT momentary symbol. Thus we infer that
h4
xAnA

T
n is similar to a matrix Xd(n) whose explicit expression is reported below:

h4
xAnA

T
n ∼ Xd(n) =



D2
Q̃

−chDQ̃

−chDQ̃ D2
Q̃

+ c2hINx −chDQ̃

−chDQ̃ D2
Q̃

+ c2hINx
. . .

. . . . . . −chDQ̃

−chDQ̃ D2
Q̃

+ c2hINx


,

with DQ̃ = diag`=1,...,Nx

(
fQ̃Nx

(ξ`,Nx)
)

. Consequently we study the spectrum of Xd(n) to

attain formulas for the exact singular values of h2
xAn. Let us consider a permutation matrix P

that transforms Xd(n) into an Nt ×Nt block diagonal matrix PXd(n)P
T, which has on the

main diagonal, for k = 1, . . . , Nx, blocks of the form

(
PXd(n)P

T
)kNt
i,j=(k−1)Nt+1

=


C2
k −chCk

−chCk C2
k + c2h −chCk

−chCk C2
k + c2h

. . .
. . . . . . −chCk

−chCk C2
k + c2h

 ,
(2.4)

where Ck = DQ̃(k, k) = fQ̃Nx
(ξk,Nx).
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Hence, the union of the eigenvalues of all blocks of PXd(n)P
T is equivalent to the

full spectrum of h4
xAnA

T
n. These local eigenvalue problems can be solved analytically (or

numerically) independently of each other. For example for Nt = 2, we have for every
k = 1, . . . , Nx the characteristic equation∣∣∣∣∣∣∣

(
fQ̃Nx

(ξk,Nx)
)2

− λ −ch(fQ̃Nx
(ξk,Nx))

−ch(fQ̃Nx
(ξk,Nx))

(
fQ̃Nx

(ξk,Nx)
)2

+ c2h − λ

∣∣∣∣∣∣∣ = 0.

Thus, we have as singular values the union, for k = 1, . . . , Nx, of the quantities

σ(1)(k, ch) =

√
2(fQ̃Nx

(ξk,Nx))2 + c2h

2
− ch

2

√
4(fQ̃Nx

(ξk,Nx))2 + c2h,

σ(1)(k, ch) =

√
2(fQ̃Nx

(ξk,Nx))2 + c2h

2
+
ch
2

√
4(fQ̃Nx

(ξk,Nx))2 + c2h.

Clearly, solving the characteristic equation for k = 1, . . . , Nx becomes more and more
complex as Nt grows. Hence, in the next section we provide two possible approximations
given by GLT theory and by the GLT momentary formulations.

2.5.2. Singular values of h2
xAn (approximation) via GLT momentary symbols. For

the case 2 in Section 2.4 and in Section 2.5, we have already shown that

{h2
xAn}n ∼σ f (2)

A (θ, ξ) = 2− 2 cos ξ,

and the subsequent sequence {f (2)
n }n with

f (2)
n (θ, ξ) = ch(1− eiθ) + (2− 2 cos ξ)

is the sequence of GLT momentary functions.
Remark 1.8 suggests to exploit these relations in order to obtain a better approximation of

the singular values of h2
xAn with respect to the information obtained by the pure GLT symbol.

In the following, we compute the quantities |f (2)
A (θ, ξ)| and |f (2)

n (θ, ξ)| using the specific grid

(2.5) θj,Nt =
jπ

Nt + 1
, j = 1, . . . , Nt ξ`,Nx =

2π(`− 1)

Nx
, ` = 1, . . . , Nx.

We can observe in Figure 2.1 that the singular values of h2
xAn (blue circles) are well approx-

imated by sampling |f (2)
n (θ, ξ)| on the grid (2.5) (red stars). The approximation by using

|f (2)
A (θ, ξ)| instead is good when ch is small (see the top panel of Figure 2.1 for Nt = 2 and

Nx = 10), but it tends to become a substantially less accurate approximation otherwise; see
the bottom panel of Figure 2.1 and Figure 2.2, where Nt = 10 and Nx = 10.

2.5.3. The 2-norm of h2
xAn (approximation). In the following we are interested in

providing a bound for the 2-norm of the matrix h2
xAn. When referring to the singular values

of h2
xAn, we will not assume the standard ordering

σ1(h2
xAn) ≥ σ2(h2

xAn) ≥ · · · ≥ σd(n)(h
2
xAn)

since it is more natural to associate the ordering to the equispaced grid of the domain of
the related GLT symbol. By definition we have ‖h2

xAn‖2 = maxj=1...,d(n) σj(h
2
xAn).
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FIG. 2.1. Singular values of h2
xAn and samplings of |f (2)

A (θ, ξ)| and |f (2)
n (θ, ξ)| on the grid (2.5) forNt = 2

and Nx = 10 (top) and Nt = 10 and Nx = 10 (bottom).

From the previous section we know that it can be computed by taking the square root of
the maximal eigenvalue of the block in (2.4), corresponding to ξNx/2+1,Nx = π. Since

maxk

(
fQ̃Nx

(ξk,Nx)
)

= 4 + ch, we are interested in estimating the maximal eigenvalue of

(2.6)


(4 + ch)2 −ch(4 + ch)
−ch(4 + ch) (4 + ch)2 + c2h −ch(4 + ch)

−ch(4 + ch) (4 + ch)2 + c2h
. . .

. . . . . . −ch(4 + ch)
−ch(4 + ch) (4 + ch)2 + c2h

 .

For this purpose we exploit the concept of τε,ϕ-algebras of Section 1.4.
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FIG. 2.2. Singular values and samplings of |f (2)
A (θ, ξ)| and |f (2)

n (θ, ξ)| for Nt = 10 and Nx = 10 on the
grid in (2.5).

In our case

a = (4 + ch)2 + c2h, b = −ch(4 + ch),

and the matrix belongs to the τ ch
4+ch

,0-algebra since the element with indices i, j = 1 is

a + (ch/(4 + ch))b. Hence, we have g(θ) = (4 + ch)2 + c2h − 2ch(4 + ch) cos θ, which
coincides with the momentary symbol gn of the matrix (2.6). Due to the interlacing theorem
(see [6, Cor III,1.5]), the irreducible tridiagonal character of h2

xAn, and the specific relation
between algebras [7], the following relationships can be derived

gn

(
π(Nt − 1/2)

Nt + 1/2

)
︸ ︷︷ ︸

max(λj(TNt,1,0(g)))

< ‖h2
xAn‖22︸ ︷︷ ︸

max(λj(TNt,ch/(4+ch),0(g)))

(2.7)

< gn

(
πNt
Nt + 1

)
︸ ︷︷ ︸

max(λj(TNt,0,0(g)))

< gn(π)︸ ︷︷ ︸
max(λj(TNt,−1,−1(f)))=max(gn)

.

As a consequence, good upper and lower bounds for the 2-norm of h2
xAn are reported in the

following set of inequalities:√
gn

(
π(Nt − 1/2)

Nt + 1/2

)
< ‖h2

xAn‖2 <

√
gn

(
πNt
Nt + 1

)
.

In Table 2.1 we present approximations of the 2-norm of h2
xAn using the grid sampling from

τ1,0 (lower bound), τ0,0 (upper bound), and τ−1,−1. Note that the sampling on the latter
grid is equivalent to a sampling of the singular value momentary symbols f (2)

n (θ, ξ) at their
maximum point. The two-norm ‖h2

xAn‖2 is computed numerically. We see that the 2-norm
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is well described by the two bounds given above, as Nt increases. Hence, for this type of
example, the GLT momentary symbols provide, at least for moderate sizes, a more precise
alternative to the pure GLT symbol.

TABLE 2.1
Approximations of the 2-norm for different Nt and ch. The upper and lower bounds have as their maximum√

max gn = 4 + 2ch.

Nt ch

√
gn

(
π(Nt−1/2)
Nt+1/2

)
‖h2

xAn‖2
√

gn

(
πNt
Nt+1

)
4 + 2ch

1 1/8 4.06394205 4.12500000 4.12689350 4.25
10 1/8 4.24460651 4.24505679 4.24508270 4.25

100 1/8 4.24994073 4.24994128 4.24994131 4.25
1000 1/8 4.24999940 4.24999940 4.24999940 4.25

1 1 4.58257569 5.00000000 5.09901951 6.00
10 1 5.96286240 5.96511172 5.96614865 6.00

100 1 5.99959287 5.99959555 5.99959689 6.00
1000 1 5.99999589 5.99999589 5.99999590 6.00

1 8 10.58300524 12.00000000 14.42220510 20.00
10 8 19.78560029 19.78964627 19.80461186 20.00

100 8 19.99765486 19.99765952 19.99767802 20.00
1000 8 19.99997634 19.99997634 19.99997636 20.00

3. The case of approximations of distributed-order differential operators via asymp-
totic expansion and GLT momentary symbols. In this last section we focus on the matrix
sequences arising from the numerical approximation of a partial differential fractional operator.
We recall that fractional-order differential equations have received tremendous attention in the
last years for their ability to model anomalous diffusion phenomena (see [12, 13, 15, 16] and
the references therein). Among them a new direction is represented by distributed-order equa-
tions (see, e.g., [1] and references therein). More specifically, the following model equation is
considered, in which the fractional order is distributed via a definite integral:

∂u(x, t)

∂t
=

∫ 2

1

ρ(α)
∂uα(x, t)

∂|x|α
dα+ f(x, t), (x, t) ∈ Ω = [a, b]× [0, T ],

u(x, 0) = u0(x), x ∈ (a, b),

u(a, t) = u(b, t) = 0, t ∈ (0, T ],

(3.1)

where ρ(α) is the kernel function that satisfies

ρ(α) ≥ 0, 0 <

∫ 2

1

ρ(α)c(α) <∞ , c(α) = − 1

2 cos(απ2 )
> 0 ,

while f(x, t) is the source term and ∂αu(x,t)
∂|x|α is the Riesz fractional derivative of order

1 < α < 2 with respect to x defined as

∂αu(x, t)

∂|x|α
= c(α)(aD

α
xu(x, t) +x D

α
b u(x, t)).
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The left-sided and right-sided Riemann-Liouville fractional derivatives aDα
xu(x, t), xDα

b u(x, t)
are in turn defined as

aD
α
xu(x, t) =

1

Γ(2− α)

d2

dx2

∫ x

a

(x− y)1−αu(y, t)dy,

xD
α
b u(x, t) =

1

Γ(2− α)

d2

dx2

∫ b

x

(y − x)1−αu(y, t)dy,

where Γ(·) is the gamma function. As done in [1], we adopt a second-order finite difference
method to discretize (3.1). Let n, m, l be positive integers, h = b−a

n+1 be the spatial width,
∆t = T

m be the time step size, ∆α = 1
m be the fractional step size, and consider the partition

xi = a+ ih, i = 0, 1, . . . , n+ 1, tj = j∆t, j = 0, 1, . . . ,m.

Furthermore, we divide the interval (1, 2) into l uniform subintervals and denote by ∆α the
length of such subintervals. The midpoint of each subinterval is given byαk = 1 + (k − 1

2 )∆α,
k = 1, 2, . . . , l.

In particular, the matrices under consideration take the form

(3.2)
hα`

∆α
Tn = c`Tn(gα`) + c`−1h

∆αTn(gα`−1
) + · · ·+ c1h

∆α(`−1)Tn(gα1
),

where ` is a positive integer, all the coefficients cj are positive, independent of n, and contained
in a specific positive range [c∗, c

∗] (see [26, Proposition 3.8, Corollary 3.11] for the details
concerning the matrices and the related generating functions). More importantly, all the
functions gα` are globally continuous, monotonically increasing in the interval [0, π], and even
in the whole definition domain [−π, π].

The goal is to exploit the notion of GLT momentary symbols and use it in combination
with the asymptotic expansions derived in a quite new research line (see [19] and the references
therein) in order to have a very precise description of the spectrum of such matrices.

Indeed, under specific assumptions on the generating function f and fixing an integer
ν ≥ 0, it is possible to give an accurate description of the eigenvalues of Tn(f) via the
following asymptotic expansion:

λj(Tn(f)) = w0(θj,n) + hw1(θj,n) + h2w2(θj,n) + . . .+ hνwν(θj,n) + Ej,n,ν ,

where the eigenvalues of Tn(f) are arranged in ascending order, h = 1
n , and θj,n = jπ

n = jπh,
for j = 1, . . . , n, and Ej,n,ν = O(hν+1) is the error. Moreover, {wk}k=1,2,... is a sequence
of functions from [0, π] to R. The idea of such procedure is that a numerical approximation of
the value wk(θj,n) can be obtained by fast interpolation-extrapolation algorithms (see [20]
and references therein). In particular, choosing ν proper grids θj,n1

, θj,n2
, . . . θj,nν with

n�nν > · · · > n1, an approximation of the quantities w̃k(θj,n) ≈ wk(θj,n) can be obtained.
In the Hermitian case, we find that w̃0 coincides with the generating function.

Concerning the example in (3.2), the idea is to link the functions w̃
cigαi
k , k = 1, . . . , ν,

associated with each cigαi with the GLT momentary symbols of h
α`

∆α Tn. More precisely, for
j = 1, . . . , n, for a fixed ν, we approximate the eigenvalues of h

α`

∆α Tn by

λj

(
hα`

∆α
Tn
)
≈ c`gα`(θj,n) +

ν∑
t=1

ht

(
w̃α`t (θj,n) +

1∑
i=`−1

w̃αit−1(θj,n)h−(1−∆α(`−i))

)
,

(3.3)
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where, for the sake of notation, we denoted by w̃αit the approximation of the tth asymptotic
expansion coefficient associated with cigαi and the term w̃αi0 coincides with the evaluations of
cigαi .

We highlight that the terms in brackets on the right-hand side of the equality act as possible
asymptotic expansion coefficients associated with the GLT momentary symbols gn of h

α`

∆α Tn.
Note that formula (3.3) can be rewritten in compact form as

λj

(
hα`

∆α
Tn
)
≈

ν∑
t=1

ht

(
w̃α`t (θj,n) +

1∑
i=`

w̃αit−1(θj,n)h−(1−∆α(`−i))

)
.

Hence, it is easy to see that the GLT momentary symbols correspond to taking ν of the
asymptotic expansion equal to 1.

In the following we consider the cases where ` = 2, ` = 5, and ` = n as in [26, Section 4]
and confirm at least numerically the conjecture in (3.3) for a fixed ν = 4.

3.1. Examples. For ` = 2, ∆α is 1
2 , and the matrix in (3.2) becomes

2hα2Tn = c2Tn(gα2
) + c1h

1
2Tn(gα1

),

where α1 = 5
4 and α2 = 7

4 . Exploiting the procedure based on formula (3.3) with ν = 4, we
compute an approximation of the eigenvalues of c2Tn(gα2) + c1h

1
2Tn(gα1

) by

c2gα2
(θj,n)+h

[
w̃α2

1 (θ̃j,n) + h−
1
2 c1gα1

(θj,n)
]

+

ν∑
t=2

ht
[
w̃α2
t (θj,n) + h−

1
2 w̃α1

t−1(θj,n)
]
,

for j = 1, . . . , n. We consider the cases where n = 100, 500, 1000 using an initial grid with
n1 = 10 points, and we compare the aforementioned approximations with those obtained
by the evaluations of the GLT and GLT momentary symbols associated with the sequence
described by the matrices in (3.2).

In Figure 3.1 we can observe that the approximation of the spectrum obtained by com-
puting the evaluations of the GLT momentary symbols is better than that provided by the
evaluations c`gα`(θj,n). Moreover, by combining the notions of GLT momentary symbols
with the asymptotic expansion described before (see Figure 3.2), the approximation errors
are significantly reduced for almost all the eigenvalues. Note that the particular shape of the
asymptotic expansion error depends on the fact that in correspondence with the grid points
θj,nt , t = 1, . . . , ν, the quantities w̃αit are calculated exactly by the extrapolation-interpolation
procedure. Moreover, note that the accuracy of the approximation via the combination of
GLT momentary symbols and spectral asymptotic expansion seems to decrease correspond-
ing to the maximum eigenvalue. Actually, this behavior is expected from the theory of the
asymptotic expansion. Indeed, it is a consequence of the fact that the involved symbols are
not trigonometric polynomials, and in particular they become non-smooth when periodically
extended on the real line.

Following the analogous procedure, we consider the case where ` = 5 and ` = n, which
are associated with ∆α = 1

5 and ∆α = 1
n , respectively. In Figures 3.3 and 3.5 we plot

the approximations of the eigenvalues given by the three presented strategies for ` = 5 and
` = n. Again, we obtain numerical confirmation that the combination of the notions of GLT
momentary symbols and asymptotic expansion provides accurate results even for moderate
sizes, as confirmed by the error plots in Figures 3.4 and 3.6, for n = 100, 500, 1000.
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FIG. 3.1. Approximation of the eigenvalues of h
α`

∆α
Tn, ` = 2, by sampling the GLT and GLT momentary

symbols and making use of the momentary asymptotic expansion (MAE) with ν = 4, for n = 100, 500, 1000, with
an initial grid of n1 = 10 points.
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FIG. 3.2. Absolute errors of the approximation of the eigenvalues of h
α`

∆α
Tn, ` = 2, by sampling the GLT

and GLT momentary symbols and making use of the momentary asymptotic expansion (MAE) with ν = 4, for
n = 100, 500, 1000, with an initial grid of n1 = 10 points.
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FIG. 3.3. Approximation of the eigenvalues of h
α`

∆α
Tn, ` = 5, by sampling the GLT and GLT momentary

symbols and making use of the momentary asymptotic expansion (MAE) with ν = 4, for n = 100, 500, 1000, with
an initial grid of n1 = 10 points.

The good outcome of the presented numerical tests gives ground to a finer analysis of
the spectral features of the matrices considered in the case left open in [26]: indeed the
analysis in [26] concerns the case where the integral partition width is given by a fixed value
`, independent of the space discretization step h = b−a

n+1 , while in the present setting we
consider the more difficult case in which the integral partition width is asymptotic to the
adopted discretization step, that is, when in formula (3.2) we take αk = 1 + (k − 1

2 )∆α,
k = 1, 2, . . . , l.

Moreover, efficient and fast algorithms which exploit the concept of momentary symbols
can be studied for computing the singular values and eigenvalues of Tn(f) with its possible
block and variable coefficients generalizations, and this will be investigated in the future.

4. Concluding remarks. The main focus of this paper has been the characterization of
the spectrum and the singular values of the coefficient matrix stemming from the approximation
with space-time grids for a parabolic diffusion problem and from the approximation of
distributed-order fractional equations. For this purpose we employed the classical GLT theory
and the new concept of GLT momentary symbols. The first has permitted us to describe
the singular value or eigenvalue asymptotic distribution of the sequence of the coefficient
matrices. The latter has permitted us to derive a function able to describe the singular value or
eigenvalue distribution of the matrix of the sequence, even for small matrix sizes, but under
given assumptions. In particular, we exploited the notion of GLT momentary symbols, and we
used it in combination with the interpolation-extrapolation algorithms based on the spectral
asymptotic expansion of the involved matrices.
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FIG. 3.4. Absolute errors of the approximation of the eigenvalues of h
α`

∆α
Tn, ` = 5, by sampling the GLT

and GLT momentary symbols and making use of the momentary asymptotic expansion (MAE) with ν = 4, for
n = 100, 500, 1000, with an initial grid of n1 = 10 points.
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FIG. 3.5. Approximation of the eigenvalues of h
α`

∆α
Tn, ` = n, by sampling the GLT and GLT momentary

symbols and making use of the momentary asymptotic expansion (MAE) with ν = 4, for n = 100, 500, 1000, with
an initial grid of n1 = 10 points.
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FIG. 3.6. Absolute errors of the approximation of the eigenvalues of h
α`

∆α
Tn, ` = n, by sampling the GLT

and GLT momentary symbols and making use of the momentary asymptotic expansion (MAE) with ν = 4, for
n = 100, 500, 1000, with an initial grid of n1 = 10 points.

Many questions remain, and below we list some open problems to be considered in future
research.

• More examples of the use of GLT momentary symbols in non-Toeplitz settings.
• The application of GLT momentary symbol in a pure Toeplitz setting but of very

involved nature, like that expressed in relation (3.2). The use of GLT momentary
symbol for the analysis of efficient iterative solvers, also of multigrid type, of linear
systems, as those appearing in (2.1) also with the inclusion of variable coefficients.

Acknowledgment. This work was partially supported by INdAM-GNCS. Moreover, the
work of Isabella Furci was also supported by the Young Investigator Training Program 2020
(YITP 2019) promoted by ACRI.

REFERENCES

[1] M. ABBASZADEH, Error estimate of second-order finite difference scheme for solving the Riesz space
distributed-order diffusion equation, Appl. Math. Lett., 88 (2019), pp. 179–185.

[2] F. AVRAM, On bilinear forms in Gaussian random variables and Toeplitz matrices, Probab. Theory Related
Fields, 79 (1988), pp. 37–45.

[3] G. BARBARINO, C. GARONI, AND S. SERRA-CAPIZZANO, Block generalized locally Toeplitz sequences:
theory and applications in the unidimensional case, Electron. Trans. Numer. Anal., 53 (2020), pp. 28–
112. https://etna.ricam.oeaw.ac.at/vol.53.2020/pp28-112.dir/pp28-112.pdf

[4] G. BARBARINO, C. GARONI, AND S. SERRA-CAPIZZANO, Block generalized locally Toeplitz sequences:
theory and applications in the multidimensional case, Electron. Trans. Numer. Anal., 53 (2020), pp. 113–
216. https://etna.ricam.oeaw.ac.at/vol.53.2020/pp113-216.dir/pp113-216.pdf

[5] G. BARBARINO AND S. SERRA-CAPIZZANO, Non-Hermitian perturbations of Hermitian matrix-sequences
and applications to the spectral analysis of the numerical approximation of partial differential equations,
Numer. Linear Algebra Appl., 27 (2020), Art. e2286, 31 pages.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://etna.ricam.oeaw.ac.at/vol.53.2020/pp28-112.dir/pp28-112.pdf
https://etna.ricam.oeaw.ac.at/vol.53.2020/pp113-216.dir/pp113-216.pdf


ETNA
Kent State University and

Johann Radon Institute (RICAM)

SPECTRAL ANALYSIS OF MATRIX SEQUENCES VIA GLT MOMENTARY SYMBOLS 163

[6] R. BHATIA, Matrix Analysis, Springer, New York, 1997.
[7] M. BOLTEN, S-E. EKSTRÖM, I. FURCI, AND S. SERRA-CAPIZZANO, Toeplitz momentary symbols:

definition, results, and limitations in the spectral analysis of structured matrices, Linear Algebra Appl.,
651 (2022), pp. 51–82.

[8] E. BOZZO AND C. DI FIORE, On the use of certain matrix algebras associated with discrete trigonometric
transforms in matrix displacement decomposition, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 312–326.

[9] H. BREZIS, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York,
2011.

[10] R. CHAN AND X. JIN, An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelphia, 2007.
[11] G. CALCAGNI, Towards multifractional calculus Front. Phys., 6 (2018), 6 pages.
[12] M. CAPUTO, Diffusion with space memory modelled with distributed order space fractional differential

equations, Ann. Geophys., 46 (2003), pp. 223–234.
[13] M. CAPUTO AND M. FABRIZIO, The kernel of the distributed order fractional derivatives with an application

to complex materials, Fractal Fract., 1 (2017), 11 pages.
[14] T. CECCHERINI-SILBERSTEIN, F. SCARABOTTI, AND F. TOLLI, Harmonic Analysis on Finite Groups,

Cambridge University Press, Cambridge, 2008.
[15] W. DENG, B. LI, W. TIAN, AND P. ZHANG, Boundary problems for the fractional and tempered fractional

operators, Multiscale Model. Simul., 16 (2018), pp. 125–149.
[16] W. DING, S. PATNAIK, S. SIDHARDH, AND F. SEMPERLOTTI, Applications of distributed-order fractional

operators: a review, Entropy, 23 (2021), Article 110, 42 pages.
[17] M. DONATELLI, M. MAZZA, AND S. SERRA-CAPIZZANO, Spectral analysis and structure preserving

preconditioners for fractional diffusion equations, J. Comput. Phys., 307 (2016), pp. 262–279.
[18] , Spectral analysis and multigrid methods for finite volume approximations of space-fractional

diffusion equations, SIAM J. Sci. Comput. 40 (2018), pp. A4007–A4039.
[19] S.-E. EKSTRÖM, I. FURCI, AND S. SERRA-CAPIZZANO, Exact formulae and matrix-less eigensolvers for

block banded symmetric Toeplitz matrices, BIT, 58 (2018), pp. 937–968.
[20] S.-E. EKSTRÖM, AND C. GARONI, A matrix-less and parallel interpolation–extrapolation algorithm for

computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices, Numer. Algorithms,
80 (2019), pp. 819–848.

[21] S.-E. EKSTRÖM, C. GARONI, A. JOZEFIAK, AND J. PERLA, Eigenvalues and eigenvectors of tau matrices
with applications to Markov processes and economics. Linear Algebra Appl., 627 (2021), pp. 41–71.

[22] C. ESTATICO AND S. SERRA-CAPIZZANO, Superoptimal approximation for unbounded symbols, Linear
Algebra Appl., 428 (2008), pp. 564–585.

[23] C. GARONI AND S. SERRA-CAPIZZANO, Generalized Locally Toeplitz Sequences: Theory and Applications.
Vol 1, Springer, Cham, 2017.

[24] , Generalized Locally Toeplitz Sequences: Theory and Applications. Vol 2, Springer, Cham, 2018.
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