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Abstract
It is known that the generating function of a sequence of Toeplitz matrices
may not describe the asymptotic distribution of the eigenvalues of the consid-
ered matrix sequence in the non-Hermitian setting. In a recent work, under the
assumption that the eigenvalues are real, admitting an asymptotic expansion
whose first term is the distribution function, fast algorithms computing all the
spectra were proposed in different settings. In the current work, we extend this
idea to non-Hermitian Toeplitz matrices with complex eigenvalues, in the case
where the range of the generating function does not disconnect the complex
field or the limiting set of the spectra, as the matrix-size tends to infinity, has one
nonclosed analytic arc. For a generating function having a power singularity, we
prove the existence of an asymptotic expansion, that can be used as a theoretical
base for the respective numerical algorithm. Different generating functions are
explored, highlighting different numerical and theoretical aspects; for example,
non-Hermitian and complex symmetric matrix sequences, the reconstruction
of the generating function, a consistent eigenvalue ordering, the requirements
of high-precision data types. Several numerical experiments are reported and
critically discussed, and avenues of possible future research are presented.
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1 INTRODUCTION

Given a function f ∈ Lp([−𝜋, 𝜋]) with p ⩾ 1, their Fourier coefficients ̂f k are defined as

̂f k ≡
1

2𝜋∫

𝜋

−𝜋
f (𝜃)e−ik𝜃d𝜃, i2 = −1, k ∈ Z.
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In the particular case f ∈ L2([−𝜋, 𝜋]) it is well-known that f (𝜃) coincides with its Fourier series
∑∞

k=−∞
̂f k eki𝜃 , but for any

p ⩾ 1 the n × n Toeplitz matrix Tn(f ) is given by

Tn(f ) =
[
̂f i−j

]n

i,j=1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̂f 0
̂f −1 · · · ̂f 2−n

̂f 1−n

̂f 1 ⋱ ⋱ ̂f 2−n

⋮ ⋱ ⋱ ⋱ ⋮

̂f n−2 ⋱ ⋱ ̂f −1

̂f n−1
̂f n−2 · · · ̂f 1

̂f 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In this setting the function f is called the generating function of Tn(f ). There are two standard ways of working with
generating functions, the first one (mostly used by the numerical community) is to consider a function over a real interval
of the kind [0, 2𝜋] or [−𝜋, 𝜋], and the second one (mostly used by the operator theory community) is to consider a function
over the complex unit circumference T = 𝜕D where D is the complex unit disk. Noticing that a real variable 𝜃 in one of
those intervals can be transformed into the complex variable t = ei𝜃 , the two alternatives become equivalent.

Since the beginning of the 20th century, Toeplitz matrices had enjoyed plenty of applicability including engineer-
ing, stochastic processes, time series analysis, signal processing, image processing, quantum, and statistical mechanics.
Moreover, the discretization of a differential operator on a uniform spatial grid, using Finite Differences (FD), Finite Ele-
ments (FE), Discontinuous Galerkin (DG), or even Isogeometrical Analysis (IgA), leads to a generally large linear system
governed by a Toeplitz or Toeplitz-like matrix.

If one has, for example, the task of calculating the eigenvectors of Tn(f ) for designing an iterative algorithm to solve
the linear system Tn(f )x = b, the distribution of the set spTn(a) is of little or no help, because in such a case the indi-
vidual eigenvalues are necessary. Then, the easiest option seems to be the usage of any standard eigensolver (such as
Eigenvalues in Mathematica, eig in Matlab, or eigvals in Julia) but they can fail and produce fundamentally
incorrect results. In general terms, those difficulties are related to the condition number (e.g., of the eigenvector matrix),
limited precision, the proximity between eigenvalues, and the sparse nature of the matrix.

For instance, the condition number of a Hermitian positive definite matrix arising from the discretization of a coercive
self-adjoint partial differential operator is known to be proportional to the ratio between the largest eigenvalue and the
smallest eigenvalue, hence they are ill-conditioned polynomially in the matrix size, with exponent depending on
the highest involved derivatives. The size of this kind of matrices is the number of considered grid points, typically in the
range of 105–108, therefore the numerical calculation of its eigenvalues leads to large memory consumption. In addition,
standard eigensolvers are non-parallel and have time complexities approaching the order O(n3)where n is the matrix size.
As a consequence, it is desirable to have a more efficient alternative, such as an individual eigenvalue expansion.

A further notion which is of crucial relevance to our study is that of spectral symbol which we report below for general
matrix sequences. In fact, it is important to keep the concepts of generating function and spectral symbol distinct, the
one of generating function f for a Toeplitz matrix sequence {Tn(f )}n and that of spectral symbol 𝔣 for a general matrix
sequence, because they are often confused (for these concepts, related notions, and applications see the books1–4) and the
exposition for Engineers.5

Definition 1. Let 𝔣 ∶ [a, b] → C be a measurable function in the Lebesgue sense. Assume that {An}n is a
sequence of matrices with eigenvalues 𝜆j(An) (j = 1, … , dn) and such that dim(An) = dn → ∞ as n →∞. We
say that {An}n is distributed as 𝔣 over [a, b] in the sense of the eigenvalues, or that 𝔣 is the spectral symbol of
{An}n, and we write {An}n ∼𝜆 (𝔣, [a, b]) if

lim
n→∞

1
dn

dn∑

j=1
F(𝜆j(An)) =

1
b − a∫

b

a
F(𝔣(t))dt, (1)

for every continuous function F with compact support.

The eigenvalue ordering plays an important role in the individual expansions treated in this work, but in the previous
definition it is not necessary and therefore, it is not assumed. Throughout the paper, when the domain can be easily
inferred from the context, we will replace the notation {An}n ∼𝜆 (𝔣, [a, b]) with {An}n ∼𝜆 𝔣.
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Remark 1. When 𝔣 is smooth enough, an informal interpretation of the limit relation (1) is the following: if n
is sufficiently large, then up to a negligible—at most o(dn)—possible outliers, the eigenvalues of An can be
approximated by a sampling of 𝔣 on a uniform grid of the domain [a, b]. We notice that here the adjective
“negligible” has a specific meaning in a theoretical sense, since the related number of outliers divided by dn
tends to zero as n tends to infinity. From a practical viewpoint, for example, in the estimate of convergence
of (preconditioned) Krylov methods, we are interested in a more precise quantification with the number of
outliers growing mildly with n and possibly bounded by a constant independent of n.

In the Toeplitz setting, when the notions of f and 𝔣 coincide, that is when {Tn(f )}n ∼𝜆 (f , [−𝜋, 𝜋]), it is customary
to say that the eigenvalues of Tn(f ) have canonical distribution. The Szegő classical results6 show that this is the case
for a real-valued function in L∞([−𝜋, 𝜋]). Under this approach, in 1990 Widom7 was able to prove that the canonical
distribution also holds if f is a continuous complex-valued function having a power singularity over T, and he raised the
following clever conjecture:

Exceptions from canonical distribution of the eigenvalues of Tn(f ) can only occur when f extends analytically
to an annulus r < |z| < 1 or 1 < |z| < R,

which has being verified in a number of particular cases but remains unsolved.
Let   be the collection of all f ∈ L∞([−𝜋, 𝜋]) such that its essential range (f ) does not disconnect the com-

plex plane and has empty interior. Later on, in 1998 Tilli8,9 proved that if f belongs to  , then we will have canonical
distribution as well, and this is why we called   the Tilli class.

Theorem 1. Let f ∈  , then {Tn(f )}n ∼𝜆 (f , [−𝜋, 𝜋]) that is f = 𝔣. If the function 𝜔f is real-valued almost
everywhere (a.e.) for some complex unitary constant 𝜔, then f belongs automatically to the Tilli class  ,
and therefore f = 𝔣. This is also true in the more general case of a real-valued 𝜔f ∈ L1([−𝜋, 𝜋]). Furthermore,
when f is non constant and real-valued a.e., all the eigenvalues of Tn(f ) belong to the open interval (m,M),
where m and M are the essential infimum and the essential supremum of f , respectively. In the case where f
is constant a.e., that is f = m = M a.e., the result is trivial since Tn(f ) ≡ mIn with In being the identity matrix
of order n.

Theorem 1 turns out to be a compilation of the research carried out in the last 100 years, the distribution results can be
found in References 8 and 9 and the localization results are in References 10 and 11. Moreover, in the Toeplitz setting and
in connection with Remark 1, the assumption that f is real-valued a.e. implies that there are no outliers. See the books1–4

and the references therein.
Considering f as a function of t ∈ T, in 1960 Schmidt and Spitzer12 introduced the limiting set Λ(f ) of the spectra

spTn(f ), as

Λ(f ) ≡ lim sup
n→∞

sp Tn(f ), (2)

consisting in all the complex points 𝜆 for which there exists a sequence n1 < n2 < · · · and 𝜆nk∈
T
nk
(f ) such that 𝜆nk → 𝜆

as k → ∞. As a consequence, as n →∞ the set spTn(f ) converges to Λ(f ) in the Hausdorff metric. When f is a Laurent
polynomial (equivalently Tn(f ) is banded) they proved that Λ(f ) is related to the range(f ) in a nontrivial way, forming
a connected set encircled by (a) which is the union of finite analytic arcs together with their end points. Moreover, in
1967 Hirschman13 proved that the spectra spTn(f ) are distributed over Λ(f ), and in 1975 Day14 extended the results of
Schmidt–Spitzer and Hirschman to an arbitrary rational function without poles on T.

Hence, if f (considered as a function of t ∈ T) is a Laurent polynomial or a rational function without poles on T

then, in general, the eigenvalues of Tn(f ) are not canonically distributed (equivalently {Tn(f )}n ≁𝜆 f ). The determina-
tion of canonical distribution can be done with an individual eigenvalue expansion, but in general it has proved to be
difficult and is still an open problem. There is no literature (theoretical or numerical) regarding the individual eigen-
value expansion in the noncanonical case, even though, in the present work we study cases with and without canonical
distribution.

The precise calculation ofΛ(f ) is, in general, a challenging task. Recently, Böttcher et al.15 proposed a novel numerical
algorithm to approximateΛ(a)with high accuracy and moderate computational cost. Nevertheless, in this article, we will
rely on the algorithm proposed by Ekström and Vassalos,16 because it produces an expression for 𝔣 instead of its range.
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With this connection we introduce the class  as the collection of all generating functions f ∈ L1([−𝜋, 𝜋]) satisfying one
of the following conditions,

(i) f belongs to the Tilli class   and the essential range (f ) is connected,
(ii) the limiting set Λ(f ) has one nonclosed analytic arc only.

According to Theorem 1, in case (i) we have canonical distribution and Λ(f ) = (f ) = (𝔣). In case (ii), f does not
necessarily coincide with 𝔣 but since the eigenvalues of Tn(f ) approach Λ(f ) in the Hausdorff metric and {Tn(f )}n ∼𝜆 𝔣,
we obtain Λ(f ) = (𝔣). Therefore, in both cases (𝔣) is a nonclosed connected curve having only two endpoints, and
then we propose a general ordering strategy, to enumerate the eigenvalues from one end to the other.

In a recent work16 the cases of interest were those in which {Tn(f )}n ≁𝜆 f and the eigenvalues of Tn(f ) are real for
all n. In such a setting, often the matrix sequence {Tn(f )}n is such that there exists a real-valued function 𝔣 satisfying
{Tn(f )}n ∼𝜆 𝔣, with the eigenvalues of Tn(f ) admitting an asymptotic expansion of the same type as considered in previ-
ous theoretical17,18 and numerical19–21 works. We call methods that numerically approximate this asymptotic expansion
matrix-less if, after the respective precomputing phase, the eigenvalue computation does not need to work in any way
with the related matrix. Recent literature had studied the real-valued ,16,19 preconditioned ,20 banded block ,21 parallel ,22

and B-spline IgA23 settings. Böttcher et al. ,15 besides the rich and crystal clear theoretical study, presented an algorithm
in the spirit of that of Beam and Warming.24

We remark that when f ≠ 𝔣, that is, when the eigenvalues of Tn(f ) are not canonically distributed, there is no theoretical
nor numerical results involving an individual asymptotic expansion. In this paper we extend this notion to the case where
the eigenvalues of Tn(f ) are complex-valued for each n. We write f (𝜃) = f ℜ(𝜃) + ifℑ(𝜃) and assume that there exists a
function 𝔣(𝜃) = 𝔣 ℜ(𝜃) + i𝔣ℑ(𝜃) that describes the eigenvalue distribution of Tn(f ).

The paper is organized as follows. In Section 2 we prove the existence of an asymptotic eigenvalue expansion which
we use to formulate a general Working Hypothesis (WH). In Section 3 we present representative examples for testing
WH. In Section 4 we describe in Algorithm 1 the numerical approach for approximating the coefficients in the expan-
sion. In Section 5 we present numerical results for the previously defined examples. Finally, in Section 6 we present our
conclusions, discuss the presented results, and possible future research avenues.

2 MAIN RESULTS

In this section, in a particular case, we prove the existence of an asymptotic eigenvalue expansion, which is used later on
to formulate a general WH.

In the late sixties, Fisher and Hartwig25 studied a collection of generating functions which, according to them, were
the most needed by the scientific community. They described them as having the structure

a(t) = b(t)
m∏

k=1

(
1 − tk

t

)𝜇k
(

1 − t
tk

)
𝜈k

,

where b is a nonvanishing and sufficiently smooth function over T, having winding number zero about the origin,
t1, … , tm, are pairwise distinct points on T, and 𝜇k, 𝜈k (k = 1, … ,m) are complex numbers selected in such a way that
a belongs to L1(T). Since then, this collection is known as the Fisher–Hartwig class and has attracted a large amount of
related studies. The book26 is a nice reference for the many associated details. As a consequence, we opted to work with
a generating function in the Fisher–Hartwig class.

Let H∞ be the Hardy space of (boundary values of) bounded analytic functions in D. For a continuous generating
function a ∶ T → C, we denote by

wind𝜆(a) ≡
1

2𝜋i ∮
(a)

d𝜁
𝜁 − 𝜆

,

the winding number of a in connection with a point 𝜆 ∈ C∖(a). Intuitively, wind𝜆(a) is the number of times that the
range (a) travels around the point 𝜆 in counterclockwise sense. We also denote by (a) the set of all 𝜆 ∈ C for which
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wind𝜆(a) ≠ 0. In plain words(a) is the collection of all points trapped by(a). In previous works17,27,28 it was considered
the generating function a(t) = t−1(1 − t)𝛼g(t) satisfying the following properties:

(i) The constant 𝛼 belongs to (0,∞)∖N and g ∈ C∞(T) ∩H∞.
(ii) g(z) ≠ 0 for z ∈ D, and has an analytic extension to an open neighborhood W of T∖{1} not containing the point 1.

(iii) The range of a is a Jordan curve in C which is the boundary of a connected region in the complex plane.

When 𝛼 is an integer number, a becomes a rational function and in such a case, the work of Day14 assures us non-
canonical distribution, property (i) prevents that situation. Let 𝜆j(Tn(a)) (j = 1, … ,n) be an ordering of the eigenvalues
of Tn(a). For a sufficiently small 𝜀 > 0, the eigenvalues 𝜆j(Tn(a)) having magnitude larger than 𝜀, are named inner while
the eigenvalues with magnitude less than or equal to 𝜀 are named extreme. The authors obtained the following asymptotic
inner-eigenvalue expansion,

𝜆j(Tn(a)) = p0

(
𝜔

j
n

)
+ p1

(
𝜔

j
n

)
log(n)h + p2

(
𝜔

j
n

)
h + R

(
𝜔

j
n

)
,

where h = 1∕n, 𝜔n = exp(−2i𝜋h), the coefficients p0, p1, and p2 are continuous functions that can be obtained explicitly,
and R, being relatively small, plays the role of a remainder term and satisfies the inequality |R(𝜔j

n)| ⩽ c(h𝛼0+1 + log2(n)h2),
with 𝛼0 = min{𝛼, 1} and some constant c > 0 depending only on 𝛼. It is important to note that an expansion involving
only the term p0, will produce approximations with errors of order O(h) which coincides with the order that the dis-
tance between consecutive eigenvalues have, making the approximation acceptable only for distribution purposes. Hence,
in order to obtain acceptable eigenvalue approximations we need an expansion involving at least, the terms p0 and p1.
A rather complicated but similar result was obtained29 for a generating function f having several power singularities,
that is,

f (t) = 1
t

K∏

k=1

(

1 − t
tk

)
𝛼k

, (3)

where t1, … , tK , are distinct points in T and 𝛼k are positive noninteger constants satisfying
∑K

k=1𝛼k < 2.
Note that a generating function a satisfying the properties (i)–(iii), can be written as

a(t) = 1
t
(1 − t)𝛼g(t) = −

(
1 − 1

t

)
(1 − t)𝛼−1g(t),

and therefore, belongs to the Fisher–Hartwig class (as well as the generating function in (3)). Moreover, it generates a class
of Hessenberg Toeplitz matrices stemming from the numerical approximation of certain fractional diffusion equations
(FDEs)30–32 where the parameter 𝛼 belongs to the open interval (0, 2). The quoted FDEs with noninteger parameter 𝛼 have
gained a tremendous attention in real world applications ,32 because they model anomalous diffusion processes arising
in biology, physics, etc.

When a has power singularities over T, according to Widom ,7 the spectrum of Tn(a) has canonical distribution, and
therefore the respective limiting set Λ(a) coincides with the range (a). Hence, a belongs to the class  because Λ(a)
have one nonclosed analytic arc only. In the mentioned cases, we can verify the canonical distribution by noticing that
p0(z) = a(z).

In asymptotic analysis33 it is customary to say that a function f admits the asymptotic expansion
∑∞

k=0ak(x − x0)k at
x0, denoted as

f (x) ∼
∞∑

k=0
ak(x − x0)k,

if we can write f (x) =
∑m−1

k=0 ak(x − x0)k + O(|x − x0|m) for every m ∈ Z+. Unfortunately, we have not been able to obtain an
asymptotic expansion for an arbitrary non integer 𝛼, but since we are mainly interested in the structure of the expansion,
we opted to work with a particular value. From this point, fixed a sufficiently small 𝜀 > 0 and let B(0, 𝜀) be the open disk
in C centered at 0 with radius 𝜀. The following is our main result.
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6 of 30 BOGOYA et al.

Theorem 2. Let a be a generating function satisfying the properties (i)–(iii) and take 𝛼 = 3∕4. Then, for every
j such that |𝜆j(Tn(a))| > 𝜀, there exists a unique number tj,n satisfying a(tj,n) = 𝜆j(Tn(a)) and admitting the
following asymptotic expansion

tj,n ∼ 𝜔
j
n

{

1 +
∞∑

k=1

Nk∑

𝓁=1
qk(𝜔j

n)log𝓁(n)h
1
4
𝛿k

}

,

where

• 𝛿1 = 4, 𝛿2 = 7, 𝛿3 = 8, 𝛿k = 6 + k for k ⩾ 4;
• Nk is an integer with 0 ⩽ Nk ⩽ 𝛿k

4
;

• h = 1∕n and 𝜔n ≡ exp(−2𝜋ih);
• the coefficients qk are functions in C(T) depending only on the generating function a.

Our assumptions imply that Tn(a) is a Hessenberg matrix, that is, it can be reached from a lower triangular matrix by
adding the diagonal joining the positions (1, 2) with (n − 1,n).

To prove Theorem 2, we will use some results from Böttcher et al. ,27 which we present here without a proof.

Theorem 3 (Böttcher et al.). Let a be a generating function satisfying the properties (i)–(iii) and take 𝜆 ∈
(a)∖B(0, 𝜀).

1. There exists a unique point t𝜆 in W∖D such that a(t𝜆) = 𝜆.
2. The determinant of Tn(a − 𝜆), denoted as Dn(a − 𝜆), can be written as

Dn(a − 𝜆) = (−1)n ̂b
n+1
0 �̂�n(𝜆),

where ̂b0 is the zeroth Fourier coefficient of b(t) ≡ ta(t) = (1 − t)𝛼g(t) and �̂�n(𝜆) is the nth Fourier coefficient
of the function 𝜂(t, 𝜆) ≡ 1∕{t(a(t) − 𝜆)} with respect to t.

3. We can write

𝜂(t, 𝜆) = 1
t𝜆a′(t𝜆)(t − t𝜆)

+ 𝜓(t, 𝜆),

where 𝜓(⋅, 𝜆) is analytic in W and uniformly bounded in a(W)∖B(0, 𝜀), and therefore

�̂�n(𝜆) =
−1

tn+2
𝜆

a′(t𝜆)
+ �̂�n(𝜆),

where �̂�n(𝜆) is the nth Fourier coefficient of 𝜓(⋅, 𝜆).
4. As n →∞, �̂�n(𝜆) admits the expansion

�̂�n(𝜆) ∼
−1
𝜋

∞∑

r=0

1
𝜆

r+1∫

𝛿

−𝛿

br(ei𝜃)𝜙(𝜃)
ei𝜃(n+r+1) 𝜃,

where 𝛿 > 0 is a small constant with 0 < 𝜀 < 𝛿, 𝜙 ∶ R → [0, 1] a C∞ function with support in [−𝛿, 𝛿], and
𝜙|[−𝜀,𝜀] ≡ 1.

5. Let 𝛽 > 0, 𝛿 > 0, v ∈ C∞[0, 𝛿], v(s)(𝛿) = 0 for all s ⩾ 0. Then, as n → ∞,

∫

𝛿

0
𝜃
𝛽−1v(𝜃)ein𝜃

𝜃 ∼
∞∑

s=0

cs

ns+𝛽 ,

where

cs =
v(s)(0)

s!
Γ(s + 𝛽)ei 𝜋

2
(s+𝛽)

,

and Γ is the usual gamma function.
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BOGOYA et al. 7 of 30

6. There exists a family of pairwise disjoint sets {Ej}j in C such that 𝜔j
n ∈ 𝜕Ej and the eigenvalue relation

Dn(a − 𝜆) = Dn(a − a(t𝜆)) = 0 has exactly one solution in each Ej.

We will proceed in three steps:
Step 1: For 𝜆 ∈ C we seek an asymptotic expansion for Dn(a − 𝜆).
Step 2: We find an implicit equation for the relation Dn(a − 𝜆) = 0.
Step 3: We use an iterative process to solve the previous relation for 𝜆.

Take 𝛼 = 3∕4 and b(t) ≡ ta(t). After a simple calculation we can write

b(ei𝜃) = (1 − ei𝜃)
3
4 g(ei𝜃) = e−

3i
8
𝜋

𝜃

3
4 g0(𝜃)g(ei𝜃),

where g0 is a function belonging to the class C∞[−𝛿, 𝛿]. It is clear that b has a zero of order 3∕4 at 𝜃 = 0. For each r ∈ Z+
consider the auxiliary function

ur(𝜃) ≡ gr
0(−𝜃)g

r(e−i𝜃)𝜙(𝜃)ei𝜃(r+1)
, (4)

where 𝜙 is given in part 4 of Theorem 3. The following result gives us an asymptotic expansion for the determinant of
Tn(a − 𝜆).

Theorem 4. Let a be a generating function satisfying the properties (i)–(iii) and take 𝛼 = 3∕4. Then we have

Dn(a − 𝜆) ∼ (−1)n+1 ̂b
n+1
0

{
1

tn+2
𝜆

a′(t𝜆)
+ 1

𝜋

∞∑

r,m=1

v(r,m)
𝜆

r+1 h
1
4
(3r+4m)

}

,

where h = 1∕n,

v(r,m) ≡
Γ
(

1
4
(3r + 4m)

)

(m − 1)!
ℜ
{

u(m−1)
r (0)e

i
4
𝜋(3r+2m)

}
,

̂b0 ≠ 0 is the zeroth Fourier coefficient of b, and ur is given by (4).

Proof. Recall that (a) is the set of all complex points trapped by the range of a. By part 4 of Theorem 3 we
know that for any 𝜆 ∈ (a)∖B(0, 𝜀), we have

Dn(a − 𝜆) ∼ (−1)n+1 ̂b
n+1
0

{
1

tn+2
𝜆

a′(t𝜆)
+ 1

𝜋

∞∑

r=1

𝜉n(r)
𝜆

r+1

}

, (5)

where ̂b0 ≠ 0 is the zeroth Fourier coefficient of b and

𝜉n(r) ≡
∫

𝛿

−𝛿

br(ei𝜃)𝜙(𝜃)
ei𝜃(n+r+1) 𝜃.

Now, the expansion

𝜉n(r) ∼
∞∑

m=1

Γ
(

1
4
(3r + 4m)

)

(m − 1)!
ℜ
{

u(m−1)
r (0)e

i
4
𝜋(3r+2m)

}
h

1
4
(3r+4m)

,

where ur is given by (4), is a consequence of part 5 in Theorem 3. Combining the previous result with (5), we
attain

Dn(a − 𝜆) ∼ (−1)n+1 ̂b
n+1
0

{
1

tn+2
𝜆

a′(t𝜆)
+ 1

𝜋

∞∑

r,m=1

v(r,m)
𝜆

r+1 h
1
4
(3r+4m)

}

,
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8 of 30 BOGOYA et al.

where

v(r,m) ≡
Γ
(

1
4
(3r + 4m)

)

(m − 1)!
ℜ
{

u(m−1)
r (0)e

i
4
𝜋(3r+2m)

}
,

which proves the assertion of the theorem. ▪

We now proceed with the step 2. Solving Dn(a − 𝜆) = 0 for tn
𝜆

in Theorem 4, we attain

tn
𝜆
∼

{

−
t2
𝜆
a′(t𝜆)
𝜋

∞∑

r,m=1

v(r,m)
ar+1(t𝜆)

h
1
4
(3r+4m)

}−1

,

and taking the nth root, for any j = 0, … ,n − 1, we reach

t𝜆 ∼ 𝜔
j
n

{

−
t2
𝜆
a′(t𝜆)
𝜋

∞∑

r,m=1

v(r,m)
ar+1(t𝜆)

h
1
4
(3r+4m)

}−h

, (6)

where 𝜔n = exp(−2𝜋ih). To identify the leading term in the previous expression, note that

v(1, 1) = Γ
(7

4

)
ℜ
{

u1(0)e
5
4

i𝜋
}
= −

g(1)
√

2
Γ
(7

4

)
≠ 0,

and rewrite (6) as

t𝜆 ∼ 𝜔
j
n

{

−
v(1, 1)t2

𝜆
a′(t𝜆)

𝜋a2(t𝜆)
h

7
4

}−h{

1 + 1
v(1, 1)

∞∑

r,m=1
(r,m)≠(1,1)

v(r,m)
ar−1(t𝜆)

h
1
4
(3r+4m−7)

}−h

= 𝜔
j
nh−

7
4

h

{
−𝜋a2(t𝜆)

v(1, 1)t2
𝜆
a′(t𝜆)

}h{

1 + 1
v(1, 1)

∞∑

r,m=1
(r,m)≠(1,1)

v(r,m)
ar−1(t𝜆)

h
1
4
(3r+4m−7)

}−h

. (7)

At this point we have reached an asymptotic expression for t𝜆 involving h with powers (3r + 4m)∕4, r,m ⩾ 1. To sort
those powers we need to calculate first the integer set S ≡ {3r + 4m ∶ r,m ∈ Z and r,m ⩾ 1}.

The set S is related to the Frobenius coin problem, that is, given positive integers a1, a2, … , a𝓁 , such that
gcd(a1, a2, … , a𝓁) = 1, find the largest integer that cannot be expressed as an integer conical combination of these num-
bers, that is, as a sum k1a1 + k2a2 + · · · + k𝓁a𝓁 , where k1, k2, … , k𝓁 , are non-negative integers. The solution for the case
𝓁 = 2 is known to be a1a2 − a1 − a2. But in our case r,m ⩾ 1 while in the Frobenius problem it is r,m ⩾ 0. Nevertheless,
we can easily adapt the Frobenius result obtaining

S = {7, 10, 11} ∪ {s ∈ N ∶ s ⩾ 13}.

Let us order S with the sequence (𝛾k)∞k=0, that is, 𝛾0 = 7, 𝛾1 = 10, 𝛾2 = 11, and 𝛾k = 10 + k for k ⩾ 3. We want to emphasize
here that each 𝛾k can be attained by different combinations of r and m, for instance 𝛾9 = 19 = 3 ⋅ 1 + 4 ⋅ 4 = 3 ⋅ 5 + 1 ⋅ 4.

Therefore, we can rewrite (7) as

t𝜆 ∼ 𝜔
j
nn

1
4
𝛾0hph

0(t𝜆)

{

1 +
∞∑

k=1
pk(t𝜆)h

1
4
(𝛾k−7)

}−h

, (8)

where

p0(t𝜆) ≡
−𝜋a2(t𝜆)

v(1, 1)t2
𝜆
a′(t𝜆)

and pk(t𝜆) ≡
1

v(1, 1)

Nk∑

𝓁=1

v(rk(𝓁),mk(𝓁))
ark(𝓁)−1(t𝜆)

(k ⩾ 1),
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BOGOYA et al. 9 of 30

and the pairs of numbers (rk(1),mk(1)), … , (rk(Nk),mk(Nk)) are the different combinations appearing in S satisfying
3rk(𝓁) + 4mk(𝓁) = 𝛾k.

By elementary analysis, we reach

ph
0(t𝜆) = exp{h log(p0(t𝜆))} = 1 + log(p0(t𝜆))h +

1
2

log2(p0(t𝜆))h2 + · · · ,

and
{

1 +
∞∑

k=1
pk(t𝜆)h

1
4
(𝛾k−7)

}−h

= 1 − h
∞∑

k=1
pk(t𝜆)h

1
4
(𝛾k−7) + h(h + 1)

2

( ∞∑

k=1
pk(t𝜆)h

1
4
(𝛾k−7)

)2

+ · · · .

Hence, after expanding, multiplying, and ordering in (8), we obtain

t𝜆 ∼ 𝜔
j
nn

7
4

h

{

1 +
∞∑

k=1
p̂k(t𝜆)h

1
4
𝛿k

}

(9)

where

𝛿1 = 4, 𝛿2 = 7, 𝛿3 = 8, 𝛿k = 6 + k (k ⩾ 4),

each p̂k is a linear combination of some pk’s, which are functions in C∞(W∖D), that can be determined explicitly.
We are left with the step 3. By part 6 of Theorem 3, we know that there exists a collection of mutually disjoint

neighborhoods of each 𝜔
j
n, j = 0, … ,n − 1, containing exactly one solution of (9). We are now ready to prove our main

result.

Proof of Theorem 2. Let t𝜆 be a solution of (9). Since a(t𝜆) = 𝜆 is an eigenvalue of Tn(a), we conclude that there
are exactly n solutions and we denote them as tj,n ≡ t𝜆j(Tn(a)), j = 1, … ,n. Now we follow an iterative process
over (9). For simplicity, take u ≡ h1∕4. Using the expansion

n
7
4

h = 1 + 7
4

log(n)h + 49
32

log2(n)h2 + · · · ,

and multiplying, we reach

t(1)
𝜆
≡ 𝜔

j
n{1 + O(log(n)u4)}{1 + O(u4)} = 𝜔

j
n + O(log(n)u4),

which is our first iteration. We need to iterate once more to understand the general shape. For the second
iteration notice that p̂j(t

(1)
𝜆
) = p̂j(𝜔

j
n) + O(log(n)u4) and write

t(2)
𝜆
≡ 𝜔

j
n

{
1 + 7

4
log(n)u4 + O(log2(n)u8)

}

×
{

1 + p̂1(𝜔
j
n)u4 + O(log(n)u8) + p̂2(𝜔

j
n)u7 + O(log(n)u11)

}

= 𝜔
j
n

{
1 + 7

4
log(n)u4 + p̂1(𝜔

j
n)u4 + p̂2(𝜔

j
n)u7 + O(log2(n)u8)

}
.

By continuing this process we finish the theorem. ▪

The previous theoretical calculation serves now as an inspiration for the computational part and in particular,
with the aid of Theorem 2, we can visualize and formulate the following hypothesis. The argument 𝜔

j
n = exp(𝜋ijh)

can be changed to 𝜃j,n = 𝜋jh, and the numerical experiments reveal that the terms involving logarithms can be omit-
ted. Notice also that the asymptotic expansion involves powers of h𝛽 with some 𝛽 ∈ (0, 1] instead of h as appeared in
previous works.
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10 of 30 BOGOYA et al.

2.1 Working hypothesis

Suppose that Tn(f ) are non-Hermitian for for every sufficiently large n and f ∈  . Then, for some integer 𝜌 ⩾ 0, some
𝛽 ∈ (0, 1], every n, and every j = 1, … ,n, the following asymptotic expansion holds

𝜆j(Tn(f )) = 𝔣(𝜃j,n) +
𝜌∑

k=1
ck(𝜃j,n)h𝛽k + Ej,n,𝜌

= 𝔣 ℜ(𝜃j,n) +
𝜌∑

k=1
c ℜk (𝜃j,n)h𝛽k + E ℜj,n,𝜌

+ i

{

𝔣ℑ(𝜃j,n) +
𝜌∑

k=1
cℑk (𝜃j,n)h𝛽k + Eℑj,n,𝜌

}

,

=
𝜌∑

k=0

{
c ℜk (𝜃j,n) + icℑk (𝜃j,n)

}
h𝛽k + Ej,n,𝜌, (10)

where:

• the eigenvalues 𝜆j(Tn(f )) are arranged from one end of(𝔣) to the other;
• the sequences {c ℜ0 , c ℜ1 , c ℜ2 , …} and {cℑ0 , cℑ1 , cℑ2 , …} are functions from (0, 𝜋) to R depending only on f , and 𝔣 ℜ ≡

c ℜ0 , 𝔣ℑ ≡ cℑ0 ;
• h ≡ 1∕(n + 1) and 𝜃j,n ≡ j𝜋h;
• Ej,n,𝜌 = E ℜj,n,𝜌 + iEℑj,n,𝜌 = O(h𝛽(𝜌+1)) is the remainder (the error) function, which satisfies the inequality |Ej,n,𝜌| ⩽ 𝜅h𝛽(𝜌+1)

for some constant 𝜅 depending only on 𝜌.

It is worth to mention that we used h = 1∕(n + 1) instead of h = 1∕n for defining the grid 𝜃j,n. This is not a surprise,
because for specific classes of matrices it is advantageous to define a different equispaced grid, for example, by choosing
h = 1∕(n + 1) or even h = 1∕(n + 2): to give a basic example, if we consider real symmetric Toeplitz matrices, then the
best grid is obtained by choosing h = 1∕(n + 1) and the related grid is exact, a “perfect grid,” when the real symmetric
Toeplitz matrix is also tridiagonal; see for example, Reference 19 and references therein.

Expansions of the type considered in WH have been formally proven in a number of works. For example, for a
real-valued Laurent polynomial satisfying the so-called simple-loop condition, the expansion (10) with 𝜌 = 2 and 𝛽 = 1
was obtained.34 For real-valued generating functions belonging to the weighted Wiener algebra W 𝛾 with 𝛾 ⩾ 4, and satis-
fying the so-called simple-loop condition, the same was proved with 𝜌 = 4 and 𝛽 = 1.17 With some additional hypothesis,
the same expansion was obtained for 𝛾 ⩾ 2 with 𝜌 = ⌊𝛾⌋ and 𝛽 = 1.28 For complex-valued symbols having a power sin-
gularity, an expansion similar to (10) was obtained with 𝜌 = 2 and 𝛽 = 1∕4.27 Böttcher et al.29 extended these results
to generating functions having a finite number of power singularities. Recent investigations ,35,36 also obtained similar
expansions.

In fact, it was conjectured19 that the simple-loop assumptions can be relaxed and reduced only to the monotonicity of
the generating function.

Ekström and Vassalos16 considered the real-valued case using a similar WH with the sole difference that 𝜌 could be
taken arbitrarily large. Barrera et al.35 proved that this is true only for 𝛽 = 1 and 𝜌 ⩽ 3 and false in general. But inter-
estingly, the asymptotic expansion with three terms is good enough to compute the eigenvalues until machine-precision
(double precision) even for moderately “small” matrices. Hence we adjusted WH to agree with the existing theory.

For notational purposes, since we typically have two different expansions for 𝔣 ℜ and 𝔣ℑ, we introduce 𝜉
ℜ

j,n and 𝜉
ℑ
j,n

denoting two “perfect grids,” that is, two grids satisfying

𝜆j(Tn(f )) = 𝔣 ℜ
(
𝜉
ℜ

j,n

)
+ i𝔣ℑ

(
𝜉
ℑ
j,n

)
for j = 1, … ,n.

Typically, they are not equispaced and known only in very few situations, that is, tridiagonal or circulant Toeplitz
matrices.
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BOGOYA et al. 11 of 30

Asymptotic expansions of such nonregular grids were discussed for matrix sequences {Tn(f )}n with real eigenvalues.37

We want to emphasize that finding an asymptotic expansion for 𝜉 ℜj,n or 𝜉ℑj,n is equivalent to working with the expansion

𝜆j(Tn(f )) = 𝔣

(

𝜃j,n +
𝜌∑

k=1
rk(𝜃j,n)h𝛽k + Ej,n,𝜌

)

.

This approach is included formally in the simple-loop method (see e.g., References 17 and 34 and the recent numerical
version 38). In the current paper the grids 𝜉 ℜj,n and 𝜉

ℑ
j,n are numerically approximated, and are only used for visualization.

3 MOTIVATION AND ILLUSTRATIVE EXAMPLES

In this section we present four examples supporting WH, but how can an example support WH? Well, we need to present
generating functions f in the class  such that the eigenvalues of Tn(f ) satisfy the expansion (10). For that purpose, let

𝜆
NA(𝜌)
j (Tn(f )) ≡

𝜌−1∑

k=0
ck(𝜃j,n)h𝛽k

,

be the approximation of the eigenvalue 𝜆j(Tn(f )) through the 𝜌 terms expansion proposed in WH which is defined later
in detail in Algorithm 1 of Section 4. For testing the accuracy of our results we introduce the following notation for the
individual and maximum errors:

ENA(𝜌)
j,n (f ) ≡ |𝜆j(Tn(f )) − 𝜆

NA(𝜌)
j (Tn(f ))|,

ENA(𝜌)
n (f ) ≡ max

{
ENA(𝜌)

j,n (f ) ∶ j = 1, … ,n
}
. (11)

To test WH, the key point is that, for each generating function f , (10) implies that ENA(𝜌)
n (f ) = O(h𝛽𝜌) for some constants

𝜌 and 𝛽, that is, the normalized maximum errors (n + 1)𝛽𝜌ENA(𝜌)
n (f ) must remain bounded as n increases.

In the following examples, in Section 5, we will provide error tables where this behavior can be noted. The precise
calculation of those errors, obviously involves the precise calculation of the respective eigenvalues. Hence we briefly recall
the fact that standard double precision eigenvalue solvers (such as, Eigenvalues in Mathematica, eig in Matlab,
andeigvals in Julia 39) fail to give accurate eigenvalues of certain matrices Tn(f ); see, for example, References 16,24,40,
and 41. High precision computations, using packages such as GenericLinearAlgebra.jl in Julia, can approximate the
eigenvalues, but they are very expensive from the computational point of view. Therefore, approximating 𝔣, and c1, c2, … ,
on the grid 𝜃j,n, and using matrix-less methods to approximate the spectrum of Tn(f ), for large n, can be computationally
advantageous.

In the present article we used the software Julia with data types Float64 (standard double precision) and
BigFloat (128, 256, 512, and 1024 bit). Float64 corresponds approximately to 53 bit BigFloat, so when stating 53
bit, we mean standard double precision. Machine epsilon for the different data types are of the order 10−16 (Float64)
and 10−38, 10−77, 10−154, 10−308 (BigFloat), respectively. Numerical experiments were conducted on a computer with
an AMD Ryzen Threadripper 3970X CPU (256 GB RAM) and with Julia version 1.7.2.

Recall that (f ) stands for the essential range of f . The following is a short summary of the considered examples:

• Example 1: Tn(f ) is a nonsymmetric complex tridiagonal matrix, 𝔣 ≠ f , and 𝔣 is known. The eigenvalues 𝜆j(Tn(f )) are
known explicitly. C∖(f ) is formed by two connected components (i.e., (f ) disconnects the complex plane) and
the limiting set Λ(f ) has one nonclosed analytic arc;

• Example 2: Tn(f ) is a complex symmetric pentadiagonal matrix, and 𝔣 = f . The eigenvalues 𝜆j(Tn(f )) are not known
explicitly. C∖(f ) is connected (i.e., (f ) does not disconnect the complex plane) and the limiting set Λ(f ) has one
nonclosed analytic arc;

• Example 3: Tn(f ) is a complex symmetric heptadiagonal matrix, and 𝔣 = f . The eigenvalues 𝜆j(Tn(f )) are not known
explicitly. C∖(f ) is connected (i.e., (f ) does not disconnect the complex plane) and the limiting set Λ(f ) has one
nonclosed analytic arc.
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12 of 30 BOGOYA et al.

F I G U R E 1 [Example 1: generating function f (𝜃) = (−2 + i)e−i𝜃 + 2 − ei𝜃] Left: generating function f (red line), symbol 𝔣 (black dashed
line), and eigenvalues 𝜆j(Tn(f )) = 𝜆j(Tn(𝔣)) for n = 10 (green dots). Right: Convex hull of the generating function f (light red), the numerically
computed eigenvalues Ψj(Tn(f )), Ψj(T⊤

n (f )) (using double precision), and 𝜆j(Tn(f )) = 𝜆j(Tn(𝔣)) = 𝔣(𝜃j,n) (using, respectively, 128 bit
BigFloat, double precision, or (14) with (12)), for n = 1000.

T A B L E 1 [Example 1: generating function f (𝜃) = (−2 + i)e−i𝜃 + 2 − ei𝜃] Errors 𝜖p,n(f ), see (15), for the eigenvalues 𝜆j(Tn(f )) computed
with precision Pp, where P = (53,128, 256,512) and p = 1, … , 4.

n 53 128 256 512

101 10−7 10−35 10−74 10−150

203 10−1 10−34 10−73 10−150

407 10−1 10−34 10−73 10−149

815 10−1 10−34 10−72 10−149

1631 10−1 10−32 10−71 10−149

• Example 4: Tn(f ) is a nonsymmetric complex tetradiagonal matrix, 𝔣 ≠ f , and 𝔣 is unknown. The eigenvalues 𝜆j(Tn(f ))
are not known explicitly. C∖(f ) is formed by two connected components (i.e. (f ) disconnects the complex plane)
and the limiting set Λ(f ) has one nonclosed analytic arc.

In Section 5 we perform numerical experiments in relation with Examples 5–8 (extending the corresponding
Examples 1–4).

Example 1. Ekström and Vassalos 16 studied the spectrum for the generating function f (𝜃) = −2e−i𝜃 + 2 −
ei𝜃 , which produces a tridiagonal Toeplitz matrix Tn(f ) that has a real spectrum described by the symbol
𝔣(𝜃) = 2 − 2

√
2 cos(𝜃). The exact eigenvalues of Tn(f ) are given by 𝜆j(Tn(f )) = 𝜆j(Tn(𝔣)) = 𝔣(𝜃j,n), where the

sampling grid is

𝜃j,n =
𝜋j

n + 1
= 𝜋jh, j = 1, … ,n. (12)

Now, consider instead the generating function

f (𝜃) = (−2 + i)e−i𝜃 + 2 − ei𝜃 = f ℜ(𝜃) + ifℑ(𝜃), (13)

where

f ℜ(𝜃) = 2 + sin(𝜃) − 3 cos(𝜃) and fℑ(𝜃) = sin(𝜃) + cos(𝜃).
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BOGOYA et al. 13 of 30

F I G U R E 2 [Example 1: generating function f (𝜃) = (−2 + i)e−i𝜃 + 2 − ei𝜃] Left: The real part of the generating function f (red line), the
symbol 𝔣 ℜ (black dashed line), the real part of the eigenvalues of T10(f ) (green dots), and the sampling of 𝔣 ℜ on the grid (12) (white
diamonds). Right: The corresponding imaginary counterparts of the left panel.

In this case Tn(f ), is a tridiagonal Toeplitz matrix and its eigenvalues can be exactly calculated (see Reference
2 Ch. 2). The corresponding symbol 𝔣 that describes the complex-valued spectrum of Tn(f ) (see Reference 16
Eq. 4) is

𝔣(𝜃) = ̂f 0 +
√

̂f 1

√
̂f −1 cos(𝜃)

= 2 + 2i
√
−2 + i cos(𝜃)

= ̂𝔣0 + 2̂𝔣±1 cos(𝜃)

= ̂𝔣0 + 2̂𝔣
ℜ
±1 cos(𝜃) + 2î𝔣

ℑ
±1 cos(𝜃), (14)

where ̂𝔣0 = 2 and

̂𝔣±1 =
4
√

5
{
− cos

(1
2

arctan
(1

2

))
+ i sin

(1
2

arctan
(1

2

))}
= ̂𝔣
ℜ
±1 + î𝔣

ℑ
±1.

The eigenvalues of Tn(f ) (and Tn(𝔣)) are given by (14) using the grid (12). Moreover, we have

Tn(f ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −2 + i
− 1 2 −2 + i

⋱ ⋱ ⋱

−1 2 −2 + i
−1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

Tn(𝔣) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2̂𝔣-1
̂𝔣12 ̂𝔣-1
⋱ ⋱⋱

̂𝔣12 ̂𝔣-1
̂𝔣1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 ̂𝔣
ℜ

-1

̂𝔣
ℜ

1 2 ̂𝔣
ℜ

-1

⋱ ⋱ ⋱
̂𝔣
ℜ

1 2 ̂𝔣
ℜ

-1

̂𝔣
ℜ

1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ i

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ̂𝔣
ℑ
-1

̂𝔣
ℑ
1 0 ̂𝔣

ℑ
-1

⋱ ⋱ ⋱
̂𝔣
ℑ
1 0 ̂𝔣

ℑ
-1

̂𝔣
ℑ
1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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14 of 30 BOGOYA et al.

F I G U R E 3 [Example 2: generating function f (𝜃) = 2 cos(𝜃) − 2 cos(2𝜃) + i(2 − 2 cos(𝜃))2] Left: generating function f = 𝔣 (red line and
black dashed line) and 𝜆j(T10(f )) (green dots). Right: The generating function f (red line), its convex hull (light red), and the eigenvalues
𝜆j(T1000(f )) (green dots).

In the left panel of Figure 1 we show the functions f (red line) and 𝔣 (black dashed line), and the eigenvalues
𝜆j(Tn(f )) = 𝜆j(Tn(𝔣)) (green dots) for n = 10. In the right panel of Figure 1 we show the function f (red line) and
its convex hull (light red shaded region). The numerically (double precision) computed eigenvaluesΨj(Tn(f ))
(pink dots) and Ψj(T⊤

n (f )) (blue dots), for n = 1000, are shown. These numerically computed eigenvalues Ψj
are related to the pseudo-spectrum, discussed for example in References 1,24,40, and 41. Furthermore, the true
eigenvalues 𝜆j(Tn(f )) = 𝜆j(Tn(𝔣)) = 𝔣(𝜃j,n) (green dots) are shown. The numerical computation of the eigenval-
ues 𝜆j(Tn(f )) required a high precision computation (for example, 128 bit BigFloat), whereas for 𝜆j(Tn(𝔣))
standard double precision was enough. Also, the exact expression for the eigenvalues is given by sampling (14)
with the grid (12).

In order to determine the numerical precision needed to calculate the “exact” eigenvalues, we introduce
the errors

𝜖p,n(f ) ≡ max{|𝜆j,p+1(Tn(f )) − 𝜆j,p(Tn(f ))| ∶ j = 1, … ,n}, (15)

where 𝜆j,p(Tn(f )) stands for the jth eigenvalue of the matrix Tn(f ) calculated with a precision of Pp bits and
where P is the sequence P = (53,128, 256,512, 1024). Table 1 shows the data and, for a given precision Pp, the
errors are of approximately the same order regardless of n, and then 128 bit computations are enough for
O(10−16) accuracy (double precision).

In Figure 2 we present the real (left panel) and imaginary (right panel) parts of the spectrum of Tn(f ). For
n = 10 we see that the eigenvalues are equispaced samplings of 𝔣 ℜ and 𝔣ℑ. We present the eigenvalues on the
grid (12) since both 𝔣 ℜ and 𝔣ℑ are even functions (whereas neither the real nor the imaginary parts of f are
even).

Example 2. In this example we construct a function that generates complex-valued pentadiagonal matrices.
The function is chosen to be

f (𝜃) = (i − 1)e−2i𝜃 + (1 − 4i)e−i𝜃 + 6i + (1 − 4i)ei𝜃 + (i − 1)e2i𝜃

= 𝔣 ℜ(𝜃) + i𝔣ℑ(𝜃) = 𝔣(𝜃). (16)

where

𝔣 ℜ(𝜃) = 2 cos(𝜃) − 2 cos(2𝜃),
𝔣ℑ(𝜃) = 6 − 8 cos(𝜃) + 2 cos(2𝜃) = (2 − 2 cos(𝜃))2.
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BOGOYA et al. 15 of 30

F I G U R E 4 [Example 2: generating function f (𝜃) = 2 cos(𝜃) − 2 cos(2𝜃) + i(2 − 2 cos(𝜃))2] Left: real part of the generating function f
(red line) and 𝔣 ℜ = ℜ{f } (black dashed line). Eigenvalues 𝜆j(T10(f )), and sampling grids 𝜃j,n (top), 𝜉 ℜj,n (middle), and 𝜉

ℑ
j,n (bottom). Right:

Imaginary counterparts of the left panels.

Thus, we have Tn(f ) = Tn(𝔣 ℜ) + i Tn(𝔣ℑ), where

Tn(𝔣 ℜ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 −1
1 0 1 −1
− 1 1 0 1 −1

⋱ ⋱ ⋱ ⋱ ⋱

−1 1 0 1 −1
−1 1 0 1

−1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Tn(𝔣ℑ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6 −4 1
− 4 6 −4 1
1 −4 6 −4 1

⋱ ⋱ ⋱ ⋱ ⋱

1 −4 6 −4 1
1 −4 6 −4

1 −4 6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The spectra of the generated Toeplitz matrices Tn(f ) are complex-valued.
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16 of 30 BOGOYA et al.

In this example we have f = 𝔣. As it can be observed in Figure 3, there are no numerical issues in computing
the spectrum of Tn(f )using double precision, and as expected the spectrum converges, in the Hausdorff metric,
to the range(f ) as n increases.

In Figure 4 we present the spectrum of Tn(f ), for n = 10, with different sampling grids 𝜃j,n (top), 𝜉 ℜj,n (mid-
dle), and 𝜉

ℑ
j,n (bottom). The left panels concern the real part of the spectrum of Tn(f ) and the right panels the

imaginary part.
The top panels of Figure 4 show that there exists an error in the eigenvalue approximations, when sampling

the function 𝔣 using the grid 𝜃j,10, defined in (12), both in the real (left panel) and the imaginary (right panel)
parts of the spectrum. In the middle panels of Figure 4 we use the perfect grid 𝜉

ℜ
j,10 for sampling 𝔣, that is, we

obtain an exact representation of the real part of the spectrum. However, the imaginary part of the spectrum
is not exact. The bottom panels of Figure 4 show the results when sampling 𝔣 with the perfect grid 𝜉

ℑ
j,10. The

left panel shows the erroneous approximated real part and the right panel shows the exact imaginary part of
the spectrum of T10(f ).

Example 3. In this example we construct the following complex-valued function,

f (𝜃) = −i e−3i𝜃 + (i − 1)e−2i𝜃 + e−i𝜃 + ei𝜃 + (i − 1)e2i𝜃 − i e3i𝜃

= 2 cos(𝜃) − 2 cos(2𝜃)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝔣 ℜ(𝜃)

+ i(2 cos(2𝜃) − 2 cos(3𝜃))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝔣ℑ(𝜃)

= 𝔣(𝜃), (17)

which generates matrices with complex spectra.
We have Tn(f ) = Tn(𝔣 ℜ) + iTn(𝔣ℑ), where

Tn(𝔣 ℜ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

01 −1
10 1 − 1

− 11 01 −1
− 1 10 1 − 1

⋱⋱ ⋱⋱ ⋱

− 1 10 1 − 1
−11 01 −1

− 1 10 1
−11 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Tn(𝔣ℑ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 −1
0 0 0 1 −1
1 0 0 0 1 −1
− 1 1 0 0 0 1 −1

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

−1 1 0 0 0 1 −1
−1 1 0 0 0 1

−1 1 0 0 0
−1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In Figures 5 and 6 we present the same information as in Figures 3 and 4 in Example 2, but for (17).
Inspecting the distribution of the eigenvalues in Figure 6, for the “perfect grids” (middle left and bottom

right panels), we note that there are “distinct grids” between the points where the derivative of the symbols
are zero. See a similar behavior in the middle left panel of Figure 4 of Example 2. This observation leads to
the conjecture that for real-valued nonmonotone symbols an avenue of research is to use matrix-less methods
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BOGOYA et al. 17 of 30

F I G U R E 5 [Example 3: generating function f (𝜃) = 2 cos(𝜃) − 2 cos(2𝜃) + i(2 cos(2𝜃) − 2 cos(3𝜃))] Left: generating function f (red line),
symbol 𝔣 = f (black dashed line), and 𝜆j(T10(f )) (green dots). Right: generating function f (red line), with its convex hull (light red), and
𝜆j(T1000(f )) (green dots).

F I G U R E 6 [Example 3: generating function f (𝜃) = 2 cos(𝜃) − 2 cos(2𝜃) + i(2 cos(2𝜃) − 2 cos(3𝜃))] Left: Real part of the generating
function f (red line) and 𝔣 ℜ = ℜ{f } (black dashed line). Eigenvalues 𝜆j(T10(f )), and sampling grids 𝜃j,n (top), 𝜉 ℜj,n (middle), and 𝜉

ℑ
j,n (bottom).

Right: imaginary counterparts of the left panels.
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18 of 30 BOGOYA et al.

locally between all the points in [−𝜋, 𝜋]where the derivative of the symbols is zero. In this way we could theo-
retically obtain a finite number of different grids (or sub-generating functions with their separate asymptotic
expansions), and then reconstruct the full spectrum.

Example 4. In this example we consider the generating function

f (𝜃) = e2i𝜃 + cei𝜃 + ce−i𝜃
, (18)

where c is a complex constant. In this case the symbol 𝔣 is unknown exactly but we can approxi-
mate it numerically with the Algorithm 2, which we will explain in Section 4.2. Let ̃𝔣 be its numerical
approximation.

This generating function was studied by Böttcher et al. ,15 where an asymptotic eigenvalue expansion was
obtained. The authors gave a nice description of the respective limiting set depending on the parameter c,
which can have 1, 2, or 3 analytic arcs. We here selected two values of c that will produce a limiting set with
one arc only. The respective Toeplitz matrix Tn(f ) is a tetra-diagonal matrix given by

Tn(f ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 c
c 0 c
1 c 0 c

⋱ ⋱ ⋱ ⋱

1 c 0 c
1 c 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let 𝛾 be the piece of the curve {z ∈ C ∶ |1 + z| = 2|z|2} lying in the closed disk {z ∈ C ∶ |1 + z| ⩽ 1}, and let
Ω be the bounded region in the complex plane with boundary

{

±2 (1 + z + z2)
3
2

z(1 + z)
∶ z ∈ 𝛾

}

.

Then if c ∉ Ω we know 15 that the limiting set consists of two (smoothly connected) analytic arcs. In this
example we studied the cases c = 6 and c = 3 + i. See Figures 7–10. When c = 6 the limiting set Λ(f ) is a real
segment and hence 𝔣 is real valued.

F I G U R E 7 [Example 4: generating function f (𝜃) = e2i𝜃 + c ei𝜃 + c e−i𝜃 with c = 6] Left: generating function f (red line), symbol 𝔣 = f
(black dashed line), and 𝜆j(T10(f )) (green dots). Right: Convex hull of the generating function f (light red), the numerically computed
eigenvalues Ψj(Tn(f )), Ψj(T⊤

n (f )) (using double precision), and 𝜆j(Tn(f )) = 𝜆j(Tn(𝔣)) = 𝔣(𝜃j,n) (using respectively 1024 bit BigFloat, double
precision, or (18) with (12)), for n = 1000.
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BOGOYA et al. 19 of 30

F I G U R E 8 [Example 4: generating function f (𝜃) = e2i𝜃 + c ei𝜃 + c e−i𝜃] The same as Figure 7 with c = 3 + i.

F I G U R E 9 [Example 4: generating function f (𝜃) = e2i𝜃 + c ei𝜃 + c e−i𝜃] The same as Figure 10 with c = 3 + i.
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20 of 30 BOGOYA et al.

F I G U R E 10 [Example 4: generating function f (𝜃) = e2i𝜃 + c ei𝜃 + c e−i𝜃 with c = 6] Left: Real part of the generating function f (red
line) and 𝔣 ℜ = ℜ{f } (black dashed line). Eigenvalues 𝜆j(T10(f )), and sampling grids 𝜃j,n (top) and 𝜉

ℜ
j,n (bottom). Since 𝔣ℑ = 0 we do not

approximate a 𝜉
ℑ
j,n. Right: imaginary counterparts of the left panels.

4 THE ALGORITHM

We introduce a new matrix-less method to accurately approximate the expansion functions c ℜk , cℑk , for k = 0, … , 𝜌, where
we recall that c ℜ0 ≡ 𝔣

ℜ and cℑ0 ≡ 𝔣
ℑ. We note that Algorithm 1 is a further modified and extended version of Alg. 1 in

Reference ,16 which differs from just treating the real and imaginary parts separately. Here we introduce an “eigenvalue
function,” eig_fun, as a “black box” argument, to accommodate customized ordering for more general spectra. The
use of the proposed idea can be applied to more complicated symbols and matrices; for example, preconditioning, block
matrices generated by matrix-valued symbols, boundary conditions, inclusion of small-norm matrices, and matrices from
problems with variable coefficients. Subsequently, in Section 4.2 we present the procedure (same as Alg. 2 in Reference 16)
to obtain the symbol 𝔣 by approximating its Fourier series.

4.1 Approximating the expansion functions c 𝕽
k

and c𝕴
k

We refer the reader to the following papers, and the references therein, for the details on the matrix-less methods, and
the asymptotic expansion of eigenvalues using the spectral symbol; Böttcher et al. 15 on the limiting set, Böttcher et al. ,34

Bogoya et al. ,17,28 and Batalshchikov et al. 18 on sequences generated by simple-loop symbols, Barrera et al. 35 and Ekström
et al. 19 on the asymptotic expansion of eigenvalues for Hermitian sequences (preconditioned ,20 block-banded ,21 paral-
lel ,22 and IgA 23). Ekström and Vassalos 16 extended these methods so that it is no longer required to have the spectral
symbol as an input argument in the algorithms.
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BOGOYA et al. 21 of 30

Algorithm 1. Approximate the expansion functions cℜk and cℑk for k = 0, … , 𝜌, on the grid 𝜃j,n0

using LinearAlgebra, GenericLinearAlgebra
setprecision(BigFloat,128)
function compute_c(n0:: Integer, alpha:: Integer, eig_fun:: Function, T:: DataType)
"""
Return C (alpha+1 \times n0) with approximated samplings of c_k(theta_{j, n0})
for k=0, ..., alpha, theta_{j, n0}=j\pi/(n0+1), and j=1, ..., n0.
eig_fun returns ordered eigenval-

ues for the matrix sequence, for a given size and data type.
T is the data type, e.g., Complex{Float64} or Complex{BigFloat}.

# Example
C = compute_c(100, 3, eig_fun_example_1_and_5, Complex{BigFloat})
"""

j0 = 1:n0
E = zeros(T, alpha+1, n0)
hs = zeros(real(T), alpha+1)
for kk = 0:alpha
nk = (2^kk)*(n0+1)-1
jk = (2^kk)*j0
hs[kk+1] = convert(real(T),1)/(nk+1)
E[kk+1,:] = eig_fun(nk,T)[jk]
end
V = zeros(T, alpha+1, alpha+1)
for ii = 0:alpha, jj = 0:alpha
V[ii+1, jj+1] = hs[ii+1]^jj
end
return C=V\E

end

Assuming that the complex eigenvalues of the matrices Tn(f ) admit an asymptotic expansion in terms of an unknown
(or known) function 𝔣 = 𝔣 ℜ + i𝔣ℑ instead of f (or f = 𝔣), as in WH (10), we can use Algorithm 1 in order to find
approximations of both 𝔣 and the functions c ℜk , cℑk with the following formula,

𝜆j(Tn0(f )) ≈
𝜌∑

k=0

{
c̃ ℜk (𝜃j,n0)h

k
0 + ic̃ℑk (𝜃j,n0)h

k
0
}

= ̃𝔣 ℜ(𝜃j,n0) + ĩ𝔣ℑ(𝜃j,n0)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=̃𝔣(𝜃j,n0 )

+
𝜌∑

k=1

{
c̃ ℜk (𝜃j,n0)h

k
0 + ic̃ℑk (𝜃j,n0)h

k
0
}
, (19)

where the approximations c̃ ℜk and c̃ℑk (where ̃𝔣 ℜ ≡ c̃ ℜ0 and ̃𝔣ℑ ≡ c̃ℑ0 ) are obtained from 𝜌 + 1 small matrices
Tn0(f ), … ,Tn

𝜌

(f ). The approximation of the eigenvalues of Tn(f ), for arbitrary n ≫ n0, can be derived by using (19) and
the interpolation-extrapolation technique previously used by Ekström and Garoni ,22 once for the real and once for the
imaginary part of the eigenvalues. In the following Algorithm 1 we show an implementation in Julia of the algorithm
that computes c̃ ℜk (𝜃j,n0) and c̃ℑk (𝜃j,n0) for k = 0, … , 𝜌. The input arguments are n0, 𝜌, eig_fun, and the data type of
computation T; the algorithm is written for clarity and not for performance.

4.2 Approximating the function 𝖋 from c̃ 𝕽0 and c̃𝕴0

We here assume, for the sake of simplicity, that the sought functions 𝔣 ℜ and 𝔣ℑ are real-valued and even, so that we have
cosine Fourier series of the form

𝔣 ℜ(𝜃) = ̂𝔣
ℜ

0 + 2
∞∑

k=1

̂𝔣
ℜ

k cos(k𝜃), ̂𝔣
ℜ

k ∈ R,

𝔣ℑ(𝜃) = ̂𝔣
ℑ
0 + 2

∞∑

k=1

̂𝔣
ℑ
k cos(k𝜃), ̂𝔣

ℑ
k ∈ R.
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22 of 30 BOGOYA et al.

As we shall see in Examples 5–7, if 𝔣 ℜ and 𝔣ℑ are real cosine trigonometric polynomials, then we are able to recover
the exact expression of 𝔣 up to machine precision; otherwise, as in Example 8, we will get a truncated representation of
the Fourier series of 𝔣. More specifically, what we do is the following: for each j = 1, … ,n0, we consider the approxima-
tions c̃ ℜ0

(
𝜃j,n0

)
and c̃ℑ0

(
𝜃j,n0

)
provided by Algorithm 1 and approximate the first n0 Fourier coefficients ̂𝔣

ℜ
0 , … ,

̂𝔣
ℜ

n0−1 and
̂𝔣
ℑ
0 , … ,

̂𝔣
ℑ
n0−1 with the numbers ̃̂𝔣

ℜ
0 , … ,

̃
̂𝔣
ℜ

n0−1 and ̃
̂𝔣
ℑ
0 , … ,

̃
̂𝔣
ℑ
n0−1, respectively, obtained by solving the following two linear

systems

̃
̂𝔣
ℜ

0 + 2
n0−1∑

k=1

̃
̂𝔣
ℜ

k cos
(

k𝜃j,n0

)
= c̃ ℜ0

(
𝜃j,n0

)
,

̃
̂𝔣
ℑ
0 + 2

n0−1∑

k=1

̃
̂𝔣
ℑ
k cos

(
k𝜃j,n0

)
= c̃ℑ0

(
𝜃j,n0

)
.

The approximated Fourier coefficients and Fourier series of 𝔣 = 𝔣 ℜ + i𝔣ℑ can then, for example, be used to approximate
samplings of the function 𝔣; as for computing the perfect grids 𝜉 ℜj,n and 𝜉

ℑ
j,n used for visualization. For code, see Alg. 2 in

Reference ,16 and apply it on the real and imaginary parts separately.

5 NUMERICAL EXAMPLES

To highlight the applicability of the approach and the validity of WH (10), we now employ the proposed Algorithms 1
and 2 (together with Reference 16, Alg 2) on the matrix sequences {Tn(f )}n related to the generating functions discussed
in Examples 1–4. To avoid notation crossover, we rename them as Examples 5–8, respectively.

• Example 5: f ≠ 𝔣. Since 𝔣(𝜃j,n) gives exactly the eigenvalues of Tn(f ), only 𝔣 = c̃0 is nonzero. The function 𝔣 is constructed
to machine precision;

• Example 6: f = 𝔣 = c ℜ0 + icℑ0 . The approximations c̃ ℜk and c̃ℑk , for k = 0, … , 4, are computed accurately. The function 𝔣
is constructed to machine precision;

• Example 7: f = 𝔣 = c ℜ0 + icℑ0 . The approximations c̃ ℜk and c̃ℑk , for k = 0, … , 3, are computed accurately. The function 𝔣
is constructed to machine precision.

• Example 8: f ≠ 𝔣. The approximations c̃ ℜk and c̃ℑk , for k = 0, 1, are computed accurately. The function 𝔣 is constructed
to machine precision.

Example 5. We consider again the generating function (13) in Example 1, and use the proposed Algorithm 1.
First we define the eigenvalue function eig_fun named eig_fun_example_1_and_5, which is used as
the third argument in Algorithm 1.

Algorithm 2. Compute approximations ̃̂𝔣k of the Fourier coefficients ̂𝔣k of 𝔣, for k = 0, … ,n0 − 1

# Example:
function compute_fourier_coefficients(c0:: Array{T,1}) where T is the data type
"""
Return fourier_coefficients with approximattions of the Fourier coefficients

\mathfrak{f}_k, k=0, ..., n0-1

# Example
fourier_coefficients_Re = compute_fourier_coefficients(real.(C[1,:]))
"""
n0 = length(c0)
t = LinRange(convert(T,pi)/(n0+1), n0*convert(T,pi)/(n0+1), n0)
F = zeros(T, n0, n0)
F[:,1] = ones(T, n0)
for jj = 2:n0
F[:,jj] = 2*cos.((jj-1)*t)
end
return fourier_coefficients = F

end
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BOGOYA et al. 23 of 30

F I G U R E 11 [Example 5: generating function f (𝜃) = (−2 + i)e−i𝜃 + 2 − ei𝜃] Left: The computed c̃ ℜk (𝜃j,n0
), k = 0, … 𝜌, with

(n0, 𝜌) = (101, 4) (128 bit) using Algorithm 1. Only c̃ ℜ0 (𝜃j,n0
) is nonzero, and matches 𝔣 ℜ(𝜃j,n0

) defined in (14). Right: The corresponding
c̃ℑk (𝜃j,n0

).

The two arguments are the size n and the data type of the generated matrix, of which the eigenvalues
are computed. We here assume that we do not know the symbol 𝔣. A floating point precision of 128 bit is
required, as seen in Table 1; here we use Complex{BigFloat}, in order to obtain the correct eigenvalue
approximation for the matrices Tnk (f ) (assuming a desired accuracy to be at least roughly machine epsilon
of double precision, i.e., 10−16). The eigenvalues are arranged in increasing order of the real part using the
following Julia code,

function eig_fun_example_1_and_5(n:: Integer, T:: DataType)
vc = convert.(T,[2+0im, -1+0im])
vr = convert.(T,[2+0im, -2+1im])
Tn = toeplitz(n, vc, vr)
eTn = eigvals(Tn)
p = sortperm(real.(eTn))
return eTn[p]

end

In Figure 11 we present the approximations c̃ ℜk (left panel) and c̃ℑk (right panel), k = 0, … , 𝜌, (n0, 𝜌) =
(101, 4) (128 bit). According to the data, the only non-zero c̃ ℜk and c̃ℑk are the first functions c̃ ℜ0 and c̃ℑ0 , which
is expected since the exact eigenvalues of Tn(f ) are given by 𝔣(𝜃j,n) = c ℜ0 (𝜃j,n) + icℑ0 (𝜃j,n).

Example 6. We here return to the generating function (16) in Example 2. The eigenvalues are arranged in
increasing order of the imaginary part. Double precision is enough for this example. In Figure 12 we show
in the left panel the approximated expansion functions c̃ ℜk (𝜃j,n0) for k = 0, … , 𝜌, computed using (n0, 𝜌) =
(100, 4). We see that c̃ ℜ0 (𝜃j,n0) (blue line) and 𝔣 ℜ(𝜃) = f ℜ(𝜃) (black dashed line) overlap. In the right panel we
present the corresponding functions c̃ℑk (𝜃j,n0). The terms c̃ℑk for k > 0 do not exactly match the expansion func-
tions c̃k if only computing the expansion for the matrix sequence {Tn(6 − 8 cos(𝜃) + 2 cos(2𝜃))}n; for example,
shown in Reference 42. Fig 2.1.3 and 16. Fig 10. We recover, to machine precision, the nonzero Fourier
coefficients ̂𝔣

ℜ
±1 = 1, ̂𝔣

ℜ
±2 = −1, ̂𝔣

ℑ
0 = 6, ̂𝔣

ℑ
±1 = −4, and ̂𝔣

ℑ
±2 = 1.

Figure 13 and Table 2 show the individual and maximum errors ENA(𝜌)
j,n (f ) (see (11)). Figure 13 shows, in

particular, how the error decreases when considering additional terms. The constant behavior of the normal-
ized errors (n + 1)𝜌ENA(𝜌)

n (f ) in Table 2 proves the applicability of WH (10) until, at least, the fifth term, in this
case.

Example 7. In this example we continue the investigation of the generating function in (17) from Example 3.
The eigenvalues are ordered as described in Example 3. Double precision is enough for this example. In
Figure 14 we show the approximated expansion functions c̃ ℜk (left panels) and c̃ℑk (right panels) for (n0, 𝜌) =
(100, 4). The two bottom panels show a close-up of the expansion functions, and as expected, Algorithm 1
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24 of 30 BOGOYA et al.

F I G U R E 12 [Example 6: generating function f (𝜃) = 2 cos(𝜃) − 2 cos(2𝜃) + i(6 − 8 cos(𝜃) + 2 cos(2𝜃))] Left: The computed c̃ ℜk (𝜃j,n0
),

k = 0, … 𝜌, with (n0, 𝜌) = (101, 3) (53 bit) using Algorithm 1. Right: The corresponding c̃ℑk (𝜃j,n0
) as in the left panel.

F I G U R E 13 [Example 6: generating function f (𝜃) = 2 cos(𝜃) − 2 cos(2𝜃) + i(6 − 8 cos(𝜃) + 2 cos(2𝜃))] For Algorithm 1, the base 10
logarithm of the individual eigenvalue errors ENA(𝜌)

j,n for the Toeplitz matrix Tn(f ) with n = 4096 and different values of 𝜌: 𝜌 = 2 (blue), 𝜌 = 3
(red), 𝜌 = 4 (green), and 𝜌 = 5 (pink).

T A B L E 2 [Example 6: generating function f (𝜃) = 2 cos(𝜃) − 2 cos(2𝜃) + i(6 − 8 cos(𝜃) + 2 cos(2𝜃))] The maximum eigenvalue errors
ENA(𝜌)

n for the Toeplitz matrix Tn(f ), with different matrix sizes n and number of terms 𝜌 = 1, … , 5.

n 256 512 1024 2048 4096

ENA(1)
n 1.6117 × 10−2 8.0902 × 10−3 4.0531 × 10−3 2.0286 × 10−3 1.0148 × 10−3

(n + 1)ENA(1)
n 4.1420 × 10 0 4.1503 × 10 0 4.1544 × 10 0 4.1565 × 10 0 4.1576 × 10 0

ENA(2)
n 4.0014 × 10−5 1.0041 × 10−5 2.5119 × 10−6 6.2838 × 10−7 1.5712 × 10−7

(n + 1)2ENA(2)
n 2.6429 × 10 0 2.6424 × 10 0 2.6391 × 10 0 2.6382 × 10 0 2.6373 × 10 0

ENA(3)
n 3.1276 × 10−7 3.9203 × 10−8 4.9071 × 10−9 6.1381 × 10−10 7.6753 × 10−11

(n + 1)3ENA(3)
n 5.3090 × 10 0 5.2926 × 10 0 5.2844 × 10 0 5.2804 × 10 0 5.2783 × 10 0

ENA(4)
n 3.6527 × 10−9 2.2864 × 10−10 1.4304 × 10−11 8.9507 × 10−13 5.5954 × 10−14

(n + 1)4ENA(4)
n 1.5935 × 10 1 1.5835 × 10 1 1.5789 × 10 1 1.5777 × 10 1 1.5765 × 10 1

ENA(5)
n 5.2602 × 10−11 1.6569 × 10−12 5.1962 × 10−14 1.6246 × 10−15 5.1318 × 10−17

(n + 1)5ENA(5)
n 5.8975 × 10 1 5.8869 × 10 1 5.8790 × 10 1 5.8675 × 10 1 5.9238 × 10 1
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BOGOYA et al. 25 of 30

F I G U R E 14 [Example 7: generating function f (𝜃) = 2 cos(𝜃) − 2 cos(2𝜃) + i(2 cos(2𝜃) − 2 cos(3𝜃))] Top Left: The computed c̃ ℜk (𝜃j,n0
),

k = 0, … 𝜌, with (n0, 𝜌) = (100, 4) (53 bit) using Algorithm 1. Top Right: The corresponding c̃ℑk (𝜃j,n0
) as in the top left panel. Bottom: Detail of

the top panels, clearly showing the overlap of c̃ ℜ0 (𝜃j,n0
) and 𝔣 ℜ(𝜃) (bottom left) and c̃ℑ0 (𝜃j,n0

) and 𝔣ℑ(𝜃) (bottom right).

F I G U R E 15 [Example 7: generating function f (𝜃) = 2 cos(𝜃) − 2 cos(2𝜃) + i(2 cos(2𝜃) − 2 cos(3𝜃))] For the Algorithm 1, the base 10
logarithm of the individual eigenvalue errors ENA(𝜌)

j,n for the Toeplitz matrix Tn(f ) with n = 4096 and different values of 𝜌: 𝜌 = 1 (blue), 𝜌 = 2
(red), 𝜌 = 3 (green), and 𝜌 = 4 (pink).

approximates the known 𝔣 ℜ (bottom left panel) and 𝔣ℑ (bottom right panel) well. Again we recover, to machine
precision, the nonzero Fourier coefficients of the symbol 𝔣, namely, ̂𝔣

ℜ
±1 = 1, ̂𝔣

ℜ
±2 = −1, ̂𝔣

ℑ
±2 = 1, and ̂𝔣

ℑ
±3 = −1.

Figure 15 and Table 3 show the individual and maximum errors ENA(𝜌)
j,n (f ) (see (11)). Figure 15 shows,

in particular, how the error decreases, when considering additional terms. As in the previous example, the
constant behavior of the normalized errors (n + 1)𝜌ENA(𝜌)

n (f ) in Table 3 proves the applicability of WH (10)
until the fourth term. In this case the fifth term generates errors with the same magnitude of the fourth one,
hence we can say that WH (10) is applicable only with 𝜌 ⩽ 4 in this case.
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26 of 30 BOGOYA et al.

T A B L E 3 [Example 7: generating function f (𝜃) = 2 cos(𝜃) − 2 cos(2𝜃) + i(2 cos(2𝜃) − 2 cos(3𝜃))] The maximum eigenvalue errors ENA(𝜌)
n

for the Toeplitz matrix Tn(f ) with different matrix sizes n and number of terms 𝜌 = 1, … , 4.

n 256 512 1024 2048 4096

ENA(1)
n 4.4620 × 10−2 2.2326 × 10−2 1.1166 × 10−2 5.5839 × 10−3 2.7921 × 10−3

(n + 1)ENA(1)
n 1.1467 × 10 1 1.1453 × 10 1 1.4450 × 10 1 1.1441 × 10 1 1.1439 × 10 1

ENA(2)
n 2.6822 × 10−4 6.7308 × 10−5 1.6857 × 10−5 4.2224 × 10−6 1.0562 × 10−6

(n + 1)2ENA(2)
n 1.7715 × 10 1 1.7713 × 10 1 1.7710 × 10 1 1.7727 × 10 1 1.7728 × 10 1

ENA(3)
n 2.7634 × 10−6 3.4613 × 10−7 4.3311 × 10−8 5.4165 × 10−9 6.7717 × 10−10

(n + 1)3ENA(3)
n 4.6907 × 10 1 4.6729 × 10 1 4.6641 × 10 1 4.6596 × 10 1 4.6569 × 10 1

ENA(4)
n 4.9670 × 10−8 3.1040 × 10−9 1.9371 × 10−10 1.9371 × 10−11 8.1840 × 10−13

(n + 1)4ENA(4)
n 2.1668 × 10 2 2.1498 × 10 2 2.1382 × 10 2 2.1105 × 10 2 2.3058 × 10 2

F I G U R E 16 [Example 8: generating function f (𝜃) = e2i𝜃 + c ei𝜃 + c e−i𝜃 with c = 6] Left: The computed c̃ ℜk (𝜃j,n0
), k = 0, 1, with

n0 = 100 (1024 bit) using Algorithm 1. Right: The corresponding c̃ℑk (𝜃j,n0
) as in the left panel.

F I G U R E 17 [Example 8: generating function f (𝜃) = e2i𝜃 + c ei𝜃 + c e−i𝜃] The same as Figure 16 with c = 3 + i.

Example 8. In this example we continue the investigation of the generating function in (18) from Example 4.
When c = 6, the eigenvalues are real and we ordered them from left to right.BigFloatwith 1024 bit precision
is necessary for this example. In Figures 16 and 17 we show the approximated expansion functions c̃ ℜk (left
panels) and c̃ℑk (right panels) for (n0, 𝜌) = (100, 2). Algorithm 1 approximates the unknown 𝔣 ℜ (left panel)
and 𝔣ℑ (right panel) well.

Figures 18, 19, 20, and Tables 4 and 5 show the individual and maximum errors ENA(𝜌)
j,n (f ) (see (11)). As

in previous examples, the error decreases when considering additional terms but, this time, only through the
second one, that is, WH (10) is applicable only with 𝜌 ⩽ 2.
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BOGOYA et al. 27 of 30

F I G U R E 18 [Example 8: generating function f (𝜃) = e2i𝜃 + c ei𝜃 + c e−i𝜃 with c = 6] For the Algorithm 1, the base 10 logarithm of the
individual eigenvalue errors ENA(𝜌)

j,n for the Toeplitz matrix Tn(f ) with n = 4096 and 𝜌 terms, 𝜌 = 1 (blue) and 𝜌 = 2 (red).

F I G U R E 19 [Example 8: generating function f (𝜃) = e2i𝜃 + c ei𝜃 + c e−i𝜃] The same as Figure 18 with c = 3 + i.

F I G U R E 20 [Example 8: generating function f (𝜃) = e2i𝜃 + c ei𝜃 + c e−i𝜃 with c = 6] For the Algorithm 1, the base 10 logarithm of the
individual eigenvalue errors ENA(𝜌)

j,n for the Toeplitz matrix Tn(f ) with 𝜌 = 2 and different values of n: n = 4096 (green), n = 2048 (red), and
n = 1024 (blue).
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T A B L E 4 [Example 8: generating function f (𝜃) = e2i𝜃 + c ei𝜃 + c e−i𝜃 with c = 6] The maximum eigenvalue errors ENA(𝜌)
n for the Toeplitz

matrix Tn(f ) with different matrix sizes n and number of terms 𝜌 = 1, 2.

n 256 512 1024 2048 4096

ENA(1)
n 5.5613 × 1 0−3 2.7917 × 10−3 1.3986 × 10−3 7.000 × 10−4 3.5021 × 10−4

(n + 1)ENA(1)
n 1.4292 × 10 0 1.4321 × 10 0 1.4336 × 10 0 1.4344 × 10 0 1.4348 × 10 0

ENA(2)
n 3.4011 × 10−6 5.2384 × 10−7 1.4678 × 10−8 5.3469 × 10−8 1.5017 × 10−8

(n + 1)2ENA(2)
n 2.2464 × 10−1 1.3786 × 10−1 1.5421 × 10−2 2.2448 × 10−1 2.5207 × 10−1

T A B L E 5 [Example 8: generating function f (𝜃) = e2i𝜃 + c ei𝜃 + c e−i𝜃] The same as Table 4 with c = 3 + i.

n 256 512 1024 2048 4096

ENA(1)
n 5.1625 × 10−3 2.5873 × 10−3 1.2952 × 10−3 6.4807 × 10−4 3.2421 × 10−4

(n + 1)ENA(1)
n 1.3268 × 1 0 0 1.3273 × 10 0 1.3276 × 10 0 1.3279 × 10 0 1.3283 × 10 0

ENA(2)
n 1.6838 × 10−5 2.5654 × 10−6 7.1433 × 10−8 2.6117 × 10−7 7.3432 × 10−8

(n + 1)2ENA(2)
n 1.1121 × 10 0 6.7514 × 10−1 7.5050 × 10−2 1.0965 × 10 0 1.2326 × 10 0

F I G U R E 21 [Example 8: generating function f (𝜃) = e2i𝜃 + c ei𝜃 + c e−i𝜃] The same as Figure 20 with c = 3 + i.

6 CONCLUSIONS

The Working Hypothesis in the current article concerns the existence of an asymptotic expansion, involving a func-
tion 𝔣 describing the eigenvalue distribution of the Toeplitz matrices Tn(f ). The assumption is that 𝔣 is complex-valued,
as opposed to 16 where 𝔣 was assumed to be real-valued, and that the generating function f satisfies one of the conditions
below

(i) f belongs to the Tilli class and (f ) is connected,
(ii) the limiting set Λ(f ) defined in (2) shows one nonclosed analytic arc only.

We have shown in a number of numerical examples that we can recover an accurate approximation of the function 𝔣.
This is done by the matrix-less method described in Algorithm 1, where no information of f or 𝔣 is required, as long as
the eigenvalues can be ordered in a consistent way, as n varies. In future investigations, the input argument eig_fun
could for example encompass preconditioned matrices, matrices generated by matrix-valued symbols, and non-Toeplitz
matrices, extracted, for example, from Generalized Locally Toeplitz matrix sequences, stemming from the approximation
of variable coefficient differential operators.
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The necessity of high-precision data types for the numerical approximation of the eigenvalues is highlighted in the
examples, with respectively “constant,” “increasing,” and “quickly increasing” precision requirements.

Splitting the interpolation-extrapolation procedure in Reference 22, into the real and imaginary parts of the spectrum,
we used the approximations of c ℜk and cℑk to efficiently and accurately obtain the eigenvalues of Tn(f ). The respective
error data is shown in Figures 13, 15, 18–21, and Tables 2–5.

We also approximate the Fourier coefficients ̂𝔣
ℜ

k and ̂𝔣
ℑ
k , reconstructing 𝔣 by its Fourier series. In some cases the latter

computation could be done to machine precision. The presented algorithm can be a valuable tool for the exploration of
the spectral behavior of Toeplitz, Toeplitz-like, and other less understood structured matrices.

For future research, we propose the study of matrices beyond the Toeplitz world, and to use the current results to com-
pute asymptotic expansions for nonmonotone real-valued symbols, and finding new explicit expressions for eigenvalue
symbols 𝔣.
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6. Grenander U, Szegő G. Toeplitz forms and their applications. California monographs in mathematical sciences. 2nd ed. New York: Chelsea

Publishing Co; 1984.
7. Widom H. Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonva-

nishing index. Topics in operator theory: Ernst D. Hellinger memorial volume. Operator Theory: Advances and Applications. Volume 48.
Basel: Birkhäuser; 1990. p. 387–421.

8. Tilli P. Some results on complex Toeplitz eigenvalues. J Math Anal Appl. 1999;239(2):390–401.
9. Tilli P. A note on the spectral distribution of Toeplitz matrices. Linear Multilin Algebra. 1998;45(2-3):147–59.

10. Serra-Capizzano S. On the extreme eigenvalues of Hermitian (block) Toeplitz matrices. Linear Algebra Appl. 1998;270:109–29.
11. Böttcher A, Grudsky SM. On the condition numbers of large semi-definite Toeplitz matrices. Linear Algebra Appl. 1998;279(1/3):285–301.
12. Schmidt P, Spitzer F. The Toeplitz matrices of an arbitrary Laurent polynomial. Math Scand. 1960;8:15–38.
13. Hirschman Jr., II. The spectra of certain Toeplitz matrices. Illinois J Math. 1967;11:145–59.
14. Day KM. Measures associated with Toeplitz matrices generated by the Laurent expansion of rational functions. Trans Amer Math Soc.

1975;209:175–83.
15. Böttcher A, Gasca J, Grudsky SM, Kozak AV. Eigenvalue clusters of large tetradiagonal Toeplitz matrices. Integr Equat Oper Th.

2021;93(1):1-27.
16. Ekström SE, Vassalos P. A matrix-less method to approximate the spectrum and the spectral function of Toeplitz matrices with real

eigenvalues. Numer Algorithms. 2022;89:701–20.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2545 by U

ppsala U
niversity K

arin B
oye, W

iley O
nline L

ibrary on [09/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-3551-8152
https://orcid.org/0000-0003-3551-8152
https://orcid.org/0000-0002-7875-7543
https://orcid.org/0000-0002-7875-7543
https://orcid.org/0000-0001-9477-109X
https://orcid.org/0000-0001-9477-109X
https://orcid.org/0000-0002-2131-7643
https://orcid.org/0000-0002-2131-7643


30 of 30 BOGOYA et al.

17. Bogoya M, Böttcher A, Grudsky SM, Maximenko EA. Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols. J Math
Anal Appl. 2015;422:1308–34.

18. Batalshchikov AA, Grudsky SM, Malisheva IS, Mihalkovich SS, Ramirez de Arellano E, Stukopin VA. Asymptotics of eigenvalues of large
symmetric Toeplitz matrices with smooth simple-loop symbols. Linear Algebra Appl. 2019;580:292–335.

19. Ekström SE, Garoni C, Serra-Capizzano S. Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form?
Exper Math. 2018;27(4):478–87.

20. Ahmad F, Al-Aidarous ES, Alrehaili DA, Ekström SE, Furci I, Serra-Capizzano S. Are the eigenvalues of preconditioned banded symmetric
Toeplitz matrices known in almost closed form? Numer Algorithms. 2018;78(3):867–93.

21. Ekström SE, Furci I, Serra-Capizzano S. Exact formulae and matrix-less eigensolvers for block banded Toeplitz-like matrices. BIT Num
Math. 2018;58(4):937–68.

22. Ekström SE, Garoni C. A matrix-less and parallel interpolation-extrapolation algorithm for computing the eigenvalues of preconditioned
banded symmetric Toeplitz matrices. Numer Algorithms. 2019;80:819–48.

23. Ekström SE, Furci I, Garoni C, Manni C, Serra-Capizzano S, Speleers H. Are the eigenvalues of the B-spline isogeometric analysis
approximation of −𝛥u = 𝜆u known in almost closed form? Numer Linear Algebra Appl. 2018;25(5):e2198, 34 pp.

24. Beam R, Warming R. The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices. SIAM J Sci Comput. 1993;14(4):971–1006.
25. Fisher ME, Hartwig RE. Toeplitz determinants some applications, theorems, and conjectures. Adv Chem Phys. 1968;15:333–53.
26. Böttcher A, Silbermann B. Analysis of Toeplitz operators. Springer monographs in mathematics. 2nd ed. Berlin: Springer-Verlag; 2006.
27. Bogoya M, Böttcher A, Grudsky SM. Asymptotics of individual eigenvalues of a class of large Hessenberg Toeplitz matrices. Oper Theory

Adv Appl. 2012;220:77–95.
28. Bogoya M, Grudsky SM, Maximenko EA. Eigenvalues of Hermitian Toeplitz matrices generated by simple-loop symbols with relaxed

smoothness. Oper Theory Adv Appl. 2017;259:179–212.
29. Bogoya M, Böttcher A, Grudsky SM, Maximenko EA. Eigenvalues of Hessenberg Toeplitz matrices generated by symbols with several

singularities. Commun Math Anal. 2011;3:23–41.
30. Bogoya M, Grudsky SM, Mazza M, Serra-Capizzano S. On the extreme eigenvalues and asymptotic conditioning of a class of Toeplitz

matrix-sequences arising from fractional problems. Linear Multilin Algebra. 2022;71(15):2462–73.
31. Bogoya M, Grudsky SM, Serra-Capizzano S, Tablino-Possio C. Fine spectral estimates with applications to the optimally fast solution of

large FDE linear systems. BIT Numer Math. 2022;62:1417–31.
32. Donatelli M, Mazza M, Serra-Capizzano S. Spectral analysis and structure preserving preconditioners for fractional diffusion equations.

J Comput Phys. 2016;307:262–79.
33. Olver F. Asymptotics and special functions. In: Peters AK, ed. AKP classics. Wellesley, MA: A K Peters, Ltd.; 1997.
34. Böttcher A, Grudsky SM, Maximenko EA. Inside the eigenvalues of certain Hermitian Toeplitz band matrices. J Comput Appl Math.

2010;233(9):2245–64.
35. Barrera M, Böttcher A, Grudsky SM, Maximenko EA. Eigenvalues of even very nice Toeplitz matrices can be unexpectedly erratic. Oper

Theory: Adv Appl. 2018;268:51–77.
36. Bogoya M, Serra-Capizzano S. Eigenvalue superposition expansion for Toeplitz matrix-sequences, generated by linear combinations of

matrix-order dependent symbols, and applications to fast eigenvalue computations. arXiv:211211794 2022.
37. Ekström SE. Approximating the perfect sampling grids for computing the eigenvalues of Toeplitz-like matrices using the spectral symbol.

arXiv:190106917 2019.
38. Bogoya M, Ekström SE, Serra-Capizzano S. Fast Toeplitz eigenvalue computations joining interpolation-extrapolation matrix-less algo-

rithms and simple-loop theory. Numer Algorithms. 2022;91:1653–76.
39. Bezanson J, Edelman A, Karpinski S, Shah V. Julia: a fresh approach to numerical computing. SIAM Rev. 2017;59(1):65–98.
40. Trefethen LN, Embree M. Spectra and pseudospectra: the behavior of nonnormal matrices and operators. Princeton, New Jersey: Princeton

University Press; 2005.
41. Reichel L, Trefethen LN. Eigenvalues and pseudo-eigenvalues of Toeplitz matrices. Linear Algebra Appl. 1992;162-164:153–85.
42. Ekström SE. Matrix-less methods for computing eigenvalues of large structured matrices. Uppsala University, PhD Thesis, Uppsala: Acta

Universitatis Upsaliensis 2018. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-346735

How to cite this article: Bogoya M, Ekström S-E, Serra-Capizzano S, Vassalos P. Matrix-less methods for the
spectral approximation of large non-Hermitian Toeplitz matrices: A concise theoretical analysis and a
numerical study. Numer Linear Algebra Appl. 2024;e2545. https://doi.org/10.1002/nla.2545

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2545 by U

ppsala U
niversity K

arin B
oye, W

iley O
nline L

ibrary on [09/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-346735
https://doi.org/10.1002/nla.2545
https://doi.org/10.1002/nla.2545

	Matrix-less methods for the spectral approximation of large non-Hermitian Toeplitz matrices: A concise theoretical analysis and a numerical study 
	1 INTRODUCTION
	2 MAIN RESULTS
	2.1 Working hypothesis

	3 MOTIVATION AND ILLUSTRATIVE EXAMPLES
	4 THE ALGORITHM
	4.1 Approximating the expansion functions [[math]] and [[math]]
	4.2 Approximating the function [[math]] from [[math]] and [[math]]

	5 NUMERICAL EXAMPLES
	6 CONCLUSIONS

	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

