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Abstract
Sequences of structured matrices of increasing size, such as generalized locally
Toeplitz sequences, arise in many scientific applications and especially in the numer-
ical discretization of linear differential problems. We assume that the eigenvalues of
a matrix Xn , belonging to a sequence of such kind, are given by a regular expansion.
Under this working hypothesis, we propose a method for computing approximations
of the eigenvalues of Xn for large n and we provide a theoretical analysis of its conver-
gence.Themethod is calledmatrix-less because it does not operate on thematrix Xn but
on a few similar matrices of smaller size combined with an interpolation-extrapolation
strategy. The working hypothesis and the performance of the proposed eigenvalue
approximationmethod are benchmarked on several numerical examples, with a special
attention to matrices arising from the discretization of variable-coefficient differential
problems.
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1 Introduction

Consider the discretization of a linear differential problem using a structured mesh
characterized by a fineness parameter n. In this case, the computation of the numerical
solution reduces to solving a linear discrete problem identified by amatrix Xn . The size
of Xn grows as n increases, i.e., as the mesh is progressively refined, and ultimately
we are left with a sequence of matrices Xn such that size(Xn) → ∞ as n → ∞. What
is often observed in practice is the following:

– The sequence {Xn}n possesses a sort of (possibly hidden) structure and, in par-
ticular, it falls in the class of generalized locally Toeplitz (GLT) sequences; see
Section 2.2.

– The eigenvalues of Xn , up to a small number of outliers, are asymptotically dis-
tributed as equispaced samples of a function f , the so-called spectral symbol; see
Section 2.1.

The spectral symbol f allows us to extract accurate information about the spectrum of
both Xn and the operatorX underlying the considered differential problem; different
ways have been proposed in recent works [1, 16, 17, 38]. A special role in all these
papers is played by the monotone rearrangement of f , which is denoted by f † and
is used in [38] to formulate analytical predictions for the eigenvalues of both Xn and
X . We refer the reader to Section 2.1 for the precise definition of f †.

Here, we assume as a working hypothesis that the eigenvalues of Xn are not only
distributed as a spectral symbol f but also given by the regular expansion (3.1).
The first expansion function c0 necessarily coincides with f † (see Theorem 3.1),
while the other functions c1, . . . , cα can be interpreted as “higher-order symbols”.
Under this working hypothesis, we propose a method for computing approximations
of the eigenvalues of Xn when n is large and we provide a theoretical analysis of
its convergence. The method is called matrix-less because it does not operate on the
matrix Xn but on a few similarmatrices of smaller size combinedwith an interpolation-
extrapolation strategy. It is a flexible version of an algorithm originally appeared in
[34] for Hermitian Toeplitz matrices and tested since then on several other structured
matrices, including block Toeplitz matrices [32], preconditioned Toeplitz matrices [2,
33], and matrices arising from the isogeometric analysis discretization of constant-
coefficient differential equations [31]. The main novelties of this paper compared to
[2, 31–34] are the following:

– The function c0 = f † is numerically computed by our eigenvalue approxima-
tion method along with c1, . . . , cα . This makes the method flexible as it becomes
applicable even in the case where f † is not known, which is usually the case in
real-world applications.

– The theoretical convergence analysis of our eigenvalue approximation method
is an extension of a similar analysis found in previous works to the case where
c0 = f † is computed along with c1, . . . , cα . Moreover, the proof of Theorem 4.1
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is considerably simplified compared to its analogue in [33], and Theorem 3.1 is
completely new.

– An extensive numerical experimentation is presented, with the purpose of high-
lighting strengths and weaknesses of the proposed method. Its performance is
benchmarked on several sequences of matrices Xn belonging to the class of GLT
sequences, with a special attention to matrices arising from the discretization of
variable-coefficient differential problems. To our knowledge, the latter matrices
have not been considered in the matrix-less literature heretofore. It turns out that
the proposed method yields better approximations of the eigenvalues of Xn com-
pared to the analytical predictions considered in [38], which is no surprise as the
latter only rely on the first expansion function c0 = f †, while the former also
exploit the “higher-order symbols” c1, . . . , cα .

– The overall presentation of the matrix-less paradigm is carried out for the first time
in a systematic way and in full generality for arbitrary sequences of structured
matrices, including (but not limited to) GLT sequences.

The present work can hence be considered as a review and a generalization of [2,
31–34].

It is worth noting that the working hypothesis is numerically illustrated to be often
plausible but is not true in general. The efficiency of the proposed method in the
numerical experimentation confirms that reasoning as if the working hypothesis were
true leads to accurate eigenvalue approximations. In a sense, this is a testimony of
the fact that the matrices Xn forming a GLT sequence—such as those arising from
the discretization of differential problems—are much more structured than one might
expect and in particular their spectra follow a “regular pattern”.

Finally, we remark that neither the mainstream numerical methods for the approx-
imation of the eigenvalues of large structured matrices [3, 41] nor the special
eigensolvers for Toeplitz and Toeplitz-like matrices proposed by several authors—
see, e.g., Arbenz [4], Badía and Vidal [6, 7], Bini and Di Benedetto [18], Bini and
Pan [19], Di Benedetto [28, 29], Handy and Barlow [39], Ng and Trench [40], and
Trench [43–47]—follow a matrix-less approach like the one considered herein. Even
the matrix-free methods such as the power method [41, Chapter 4] or the Lanczos
algorithm [41, Chapter 6] need to perform matrix-vector multiplications, which are
not necessary in our case.

The paper is organized as follows. In Section 2, we collect some background mate-
rial. In Section 3, we formulate the working hypothesis. In Section 4, we describe our
eigenvalue approximation method and provide a theoretical convergence analysis. In
Section 5, we present a number of numerical experiments both to support the plausibil-
ity of the working hypothesis and to show the performance of the method for various
GLT sequences {Xn}n , with a special attention to those arising from the discretization
of variable-coefficient differential problems. In Section 6, we collect some concluding
remarks and suggest possible future extensions. For a smoother reading of the paper,
the proofs of the theorems are postponed to Appendix A.
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2 Background

Amatrix-sequence is a sequence of the form {Xn}n , where Xn is an n×nmatrix. Letμk

be the Lebesgue measure inRk . Throughout this paper, all terminology from measure
theory (such as “measurable function”, “a.e.”, etc.) always refers to the Lebesgue
measure.We denote byCc(C) the space of continuous functions with bounded support
defined onC. If X is an n×n matrix, we denote by λ1(X), . . . , λn(X) its eigenvalues,
by ‖X‖2 its induced 2-norm, and by X† its Moore–Penrose pseudoinverse.

2.1 Spectral distribution of amatrix-sequence

Definition 2.1 Let {Xn}n be a matrix-sequence and let f : D ⊂ R
k → C be measur-

able with 0 < μk(D) < ∞. We say that {Xn}n has a spectral distribution described
by f , or equivalently that f is the spectral symbol of {Xn}n , if

lim
n→∞

1

n

n∑

i=1

F(λi (Xn)) = 1

μk(D)

∫

D
F( f (x))dx, ∀ F ∈ Cc(C). (2.1)

In this case, we write {Xn}n ∼λ f .

The informal meaning behind the spectral distribution (2.1) is the following [36,
p. 46]: Assuming that f is continuous a.e., the eigenvalues of Xn , except possibly for
o(n) outliers, are approximately equal to the samples of f over a uniform grid in the
domain D (for n large enough).

The spectral symbol of a matrix-sequence is not unique. In particular, if we have
{Xn}n ∼λ f for some real measurable function f : D ⊂ R

k → Rwith 0 < μk(D) <

∞, then we also have {Xn}n ∼λ f †, where

f † : (0, 1) → R, f †(t) = inf

{
u ∈ R : μk{x ∈ D : f (x) ≤ u}

μk(D)
≥ t

}
.

This result follows from the fact that

∫ 1

0
F( f †(t))dt = 1

μk(D)

∫

D
F( f (x))dx, ∀ F ∈ Cc(C); (2.2)

see [8, Section 2]. The function f † is monotone non-decreasing on (0, 1) and is
referred to as the monotone rearrangement of f . In the next lemma, we recall from [8]
a simple procedure for constructing the monotone rearrangement of an a.e. continuous
function.

Lemma 2.1 Let f : D ⊂ R
k → R be continuous a.e. on D, where D is a bounded

set with positive measure contained in [a1, b1] × · · · × [ak, bk] whose boundary ∂D
satisfies μk(∂D) = 0. For each r ∈ N = {1, 2, 3, . . .}, consider the uniform samples

f (x(r)
i1,...,ik

), x(r)
i1,...,ik

=
(
a1 + i1

b1 − a1
r

, . . . , ak + ik
bk − ak

r

)
,
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with

(i1, . . . , ik) ∈ Ir (D) =
{
(i1, . . . , ik) ∈ N

k : 1 ≤ i1, . . . , ik ≤ r , x(r)
i1,...,ik

∈ D
}
,

sort them in ascending order, and put them into a vector (s0, s1, . . . , sω(r)), where
ω(r) = #Ir (D) − 1. Let f †r : [0, 1] → R be the piecewise linear func-
tion that interpolates the samples (s0, s1, . . . , sω(r)) over the equally spaced nodes
(0, 1

ω(r) ,
2

ω(r) , . . . , 1) in [0, 1]. Then f †r → f † a.e. on (0, 1) as r → ∞.

2.2 GLT sequences

In this section, we collect some basics on the theory of GLT sequences. For a com-
prehensive treatment of the topic, we refer the reader to [11, 12, 36, 37]. For a more
concise introduction to the subject, we recommend [24].

A GLT sequence {Xn}n is a special matrix-sequence equipped with a measurable
function f : [0, 1] × [−π, π ] → C, the so-called GLT symbol. We use the notation
{Xn}n ∼GLT f to indicate that {Xn}n is a GLT sequence with GLT symbol f . The
three fundamental examples of GLT sequences are listed below.

– A matrix-sequence {Zn}n such that Zn = Rn + Nn with n−1rank(Rn) → 0 and
‖Nn‖2 → 0 is referred to as a zero-distributed sequence. Amatrix-sequence {Zn}n
is zero-distributed if and only if {Zn}n ∼GLT f (x, θ) = 0.

– Let n ∈ N and a : [0, 1] → C. The nth diagonal sampling matrix generated by a
is the n × n diagonal matrix given by Dn(a) = diagi=1,...,na( in ). Whenever a is
continuous a.e. on [0, 1], we have {Dn(a)}n ∼GLT f (x, θ) = a(x).

– Let n ∈ N and g ∈ L1([−π, π ]). The nth Toeplitz matrix generated by g is
the n × n matrix Tn(g) = [gi− j ]ni, j=1, where for k ∈ Z the number gk =
1
2π

∫ π

−π
g(θ)e−ikθdθ is the kth Fourier coefficient of g. For all g ∈ L1([−π, π ])

we have {Tn(g)}n ∼GLT f (x, θ) = g(θ).

The set of GLT sequences is a *-algebra closed under pseudoinversion. In practice, if
{Xn}n ∼GLT f and {Yn}n ∼GLT g, then we have {X∗

n}n ∼GLT f , {αXn +βYn}n ∼GLT

α f + βg for all α, β ∈ C, {XnYn}n ∼GLT f g, and {X†
n}n ∼GLT f −1 whenever

f �= 0 a.e. on [0, 1] × [−π, π ]. Any GLT sequence {Xn}n ∼GLT f usually enjoys a
spectral distribution. This happens, for instance, when the matrices Xn are Hermitian
or “almost” Hermitian, in which case the spectral symbol coincides with the GLT
symbol f . GLT sequences can be formally defined as follows.

Definition 2.2 Let {Xn}n be a matrix-sequence and let f : [0, 1] × [−π, π ] → C be
measurable. We say that {Xn}n is a GLT sequence with GLT symbol f , and we write
{Xn}n ∼GLT f , if there exist functions ai,m , gi,m , i = 1, . . . , Nm , such that:

– ai,m : [0, 1] → C is continuous a.e. on [0, 1] and gi,m ∈ L1([−π, π ]).
– fm(x, θ) = ∑Nm

i=1 ai,m(x)gi,m(θ) tends to f (x, θ) a.e. on [0, 1] × [−π, π ] as
m → ∞.
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– {Xn,m}n = {∑Nm
i=1 Dn(ai,m)Tn(gi,m)}n tends to {Xn}n asm → ∞, in the following

sense: For every m there exists nm such that, for n ≥ nm ,

Xn = Xn,m + Rn,m + Nn,m, rank(Rn,m) ≤ c(m)n, ‖Nn,m‖2 ≤ ω(m),

where nm , c(m), ω(m) depend only on m, and lim
m→∞ c(m) = lim

m→∞ ω(m) = 0.

We remark that many matrix-sequences {Xn}n arising from the discretization of
differential problems fall in the class of GLT sequences. This is precisely the reason
behind the interest in GLT sequences.

3 Working hypothesis

A matrix-sequence {Xn}n such that Xn has only real eigenvalues for all n is referred
to as a spectrally real matrix-sequence. In this paper, we assume as a working hypoth-
esis that the eigenvalues of such Xn are not only distributed as a spectral symbol f
according to Definition 2.1, but are also given by the regular expansion (3.1). The first
expansion function c0 must necessarily coincide with f † (see Theorem 3.1), while the
other functions c1, . . . , cα can be interpreted as “higher-order symbols”. The formal
statement of our working hypothesis is the following.

Working hypothesis Let {Xn}n be a spectrally real matrix-sequence. We say that
{Xn}n satisfies the working hypothesis if there exists a sequence of functions ck :
(0, 1) → R, k = 0, 1, . . . , with c0 continuous a.e. on (0, 1), such that, for every
integer α ≥ 0, every n and every j = 1, . . . , n, the following asymptotic expansion
holds:

λ j (Xn) =
α∑

k=0

ck(t j,n)h
k + E j,n,α, (3.1)

where

– the eigenvalues of Xn are arranged in ascending order, λ1(Xn) ≤ · · · ≤ λn(Xn);
– h = 1

n+1 and t j,n = j
n+1 = jh;

– |E j,n,α| ≤ Cαhα+1 for some constant Cα depending only on α.

At least in the case where the strong condition “for every integer α ≥ 0” is replaced
by “for some integer α ≥ 0” (say, 0 ≤ α ≤ 3), the working hypothesis is satisfied if
Xn = Tn( f ) and f is a real function with certain properties. This happens, e.g., for
α = 0, 1, 2 if f enjoys the so-called simple-loop property, i.e., f is a real function in
L1([−π, π ]) such that: (a) f (−π) = f (π); (b)

∑
k∈Z k4| fk | < ∞,where the numbers

fk = 1
2π

∫ π

−π
f (θ)e−ikθdθ are the Fourier coefficients of f ; (c) f ([−π, π ]) = [0, M]

with M > 0; (d) f (0) = 0 and f ′′(0) > 0; (e) if, with abuse of notation, we denote
again by f the 2π -periodic extension of f to R, then there exists θ0 ∈ (0, 2π) such
that f (θ0) = M , f ′(θ) > 0 for 0 < θ < θ0, f ′(θ) < 0 for θ0 < θ < 2π , and
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f ′′(θ0) < 0; see [21, Theorem 2.3]. We refer the reader to [13, 14, 21, 23, 25] for
further details on Toeplitz matrices generated by simple-loop symbols.

In general, we may expect that the working hypothesis is satisfied (for some integer
α ≥ 0) if {Xn}n is spectrally real and {Xn}n ∼λ f with f being a real smooth function.
On the other hand, if f is not smooth, it is unlikely that the working hypothesis is
met. Nevertheless, as we are going to see in Section 5, reasoning as if the working
hypothesis were true allows us to formulate an eigenvalue approximation method that
is efficient for largematrices belonging to structured (spectrally real)matrix-sequences
such as GLT sequences.

Theorem 3.1 Let {Xn}n be a spectrally real matrix-sequence satisfying the working
hypothesis. Then, the following properties hold:

1. {Xn}n ∼λ c0.
2. c0 : (0, 1) → R coincides a.e. with a non-decreasing function on (0, 1).
3. If {Xn}n ∼λ f then c0 = f † a.e. on (0, 1).

Proof See Appendix A. ��

4 Eigenvalue approximationmethod

Following the same notation as [33], we associate with each positive integer n the
stepsize h = 1

n+1 and the grid {t1,n, . . . , tn,n} with t j,n = jh for j = 1, . . . , n. We
will always denote a positive integer and the associated stepsize in the same way, in
the sense that if the positive integer is denoted by n, the associated stepsize is denoted
by h; if the positive integer is denoted by n j , the associated stepsize is denoted by h j ;
and so on. Throughout this section, we make the following assumptions:

– {Xn}n is a spectrally real matrix-sequence satisfying the working hypothesis.
– α ≥ 0 and n, n0 ≥ 1 are fixed integers.
– nk = 2k(n0 + 1) − 1 for k = 0, . . . , α. Note that nk = nk(n0) depends not only
on k but also on n0; we hide the dependence on n0 for notational simplicity.

– jk = 2k j0 for j0 = 1, . . . , n0 and k = 0, . . . , α. Note that jk = jk( j0) depends not
only on k but also on j0; we hide the dependence on j0 for notational simplicity.
Note also that jk is the index in {1, . . . , nk} such that t jk ,nk = t j0,n0 .

A graphical representation of the grids {t1,nk , . . . , tnk ,nk }, k = 0, . . . , α, is depicted
in Fig. 1 for n0 = 5 and α = 3. For each “level” k, the corresponding red circles
highlight the subgrid {t jk ,nk : j0 = 1, . . . , n0} which coincides with the coarsest grid
{t j0,n0 : j0 = 1, . . . , n0}.

4.1 Description of the eigenvalue approximationmethod

The method we are going to describe is designed for computing approximations of
the eigenvalues of Xn in the case where n is large compared to n0, . . . , nα , so that
the computation of the eigenvalues of Xn is expensive from a computational point of
view (if performed by a standard eigensolver), but the computation of the eigenvalues
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Fig. 1 Representation of the grids {t1,nk , . . . , tnk ,nk }, k = 0, . . . , α, for n0 = 5 and α = 3

of Xn0 , . . . , Xnα—which is required by our method—can be efficiently performed by
a standard eigensolver; see also Remark 4.1 below. Our method is composed of two
phases: a first phase where we invoke extrapolation procedures, and a second phase
where local interpolation techniques are employed.

4.1.1 Extrapolation

For each fixed j0 = 1, . . . , n0, we apply α + 1 times the expansion (3.1) with n =
n0, n1, . . . , nα and j = j0, j1, . . . , jα . Since t j0,n0 = t j1,n1 = . . . = t jα,nα (by
definition of j1, . . . , jα), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ j0,n0(Xn0) = ∑α
k=0 ck(t j0,n0)h

k
0 + E j0,n0,α

λ j1,n1(Xn1) = ∑α
k=0 ck(t j0,n0)h

k
1 + E j1,n1,α

...

λ jα,nα (Xnα ) = ∑α
k=0 ck(t j0,n0)h

k
α + E jα,nα,α

i.e.,

⎡

⎢⎢⎢⎢⎣

1 h0 h20 · · · hα
0

1 h1 h21 · · · hα
1

...
...

...
...

1 hα h2α · · · hα
α

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

c0(t j0,n0)

c1(t j0,n0)
...

cα(t j0,n0)

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

λ j0,n0(Xn0)

λ j1,n1(Xn1)

...

λ jα,nα (Xnα )

⎤

⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎢⎣

E j0,n0,α

E j1,n1,α

...

E jα,nα,α

⎤

⎥⎥⎥⎥⎦
, (4.1)

where

|E jk ,nk ,α| ≤ Cαh
α+1
k , k = 0, . . . , α. (4.2)

Let c̃0(t j0,n0), . . . , c̃α(t j0,n0) be the approximations of c0(t j0,n0), . . . , cα(t j0,n0)
computed by removing the errors E j0,n0,α, . . . , E jα,nα,α in (4.1) and by solving the
resulting linear system:
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⎡

⎢⎢⎢⎢⎣

1 h0 h20 · · · hα
0

1 h1 h21 · · · hα
1

...
...

...
...

1 hα h2α · · · hα
α

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

c̃0(t j0,n0)

c̃1(t j0,n0)
...

c̃α(t j0,n0)

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

λ j0,n0(Xn0)

λ j1,n1(Xn1)

...

λ jα,nα (Xnα )

⎤

⎥⎥⎥⎥⎦
. (4.3)

Note that this way of computing approximations for c0(t j0,n0), . . . , cα(t j0,n0) is com-
pletely analogous to the Richardson extrapolation procedure that is employed in the
context of Romberg integration to accelerate the convergence of the trapezoidal rule
[42, Section 3.4]. In this regard, the asymptotic expansion (3.1) plays here the same
role as the Euler–Maclaurin summation formula [42, Section 3.3]. For more advanced
studies on extrapolation methods, we refer the reader to [26]. The next theorem gives
a bound for the approximation error |ck(t j0,n0) − c̃k(t j0,n0)|.
Theorem 4.1 There exists a constant Aα depending only on α such that, for j0 =
1, . . . , n0 and k = 0, . . . , α,

|ck(t j0,n0) − c̃k(t j0,n0)| ≤ Aαh
α−k+1
0 . (4.4)

Proof See Appendix A. ��

4.1.2 Interpolation

Fix an index j ∈ {1, . . . , n}. To compute an approximation of λ j (Xn) through the
expansion (3.1) we would need the value ck(t j,n) for each k = 0, . . . , α. Of course,
ck(t j,n) is not available in practice, but we can approximate it by interpolating in some
way the values c̃k(t j0,n0), j0 = 1, . . . , n0. As shown in Theorem 4.2, a local approxi-
mation strategy that preserves the accuracy (4.4), at least if ck(t) is sufficiently smooth,
is the following: Let t (1), . . . , t (βk ), βk ≥ α − k + 1, be distinct points from the grid
{t1,n0 , . . . , tn0,n0} which are closest to the point t j,n ,1 and let c̃k, j (t) be the interpola-
tion polynomial of the data (t (1), c̃k(t (1))), . . . , (t (βk ), c̃k(t (βk))); then, we approximate
ck(t j,n) by c̃k, j (t j,n). Note that, by selecting βk points from {t1,n0 , . . . , tn0,n0}, we are
implicitly assuming that n0 ≥ βk .

Theorem 4.2 Let 0 ≤ k ≤ α, let βk ≥ α − k + 1 be a positive integer depending
only on k, α, suppose that ck ∈ Cβk ([0, 1]), and fix 1 ≤ j ≤ n. If t (1), . . . , t (βk ) are
βk distinct points from {t1,n0 , . . . , tn0,n0} which are closest to t j,n, and if c̃k, j (t) is the
interpolation polynomial of the data (t (1), c̃k(t (1))), . . . , (t (βk ), c̃k(t (βk))), then

|ck(t j,n) − c̃k, j (t j,n)| ≤ Bαh
α−k+1
0 (4.5)

for some constant Bα depending only on α.

Proof See Appendix A. ��
1 These βk points are uniquely determined by t j ,n except possibly in the case where t j,n coincides with
either a grid point t j0,n0 or the midpoint between two consecutive grid points t j0,n0 and t j0+1,n0 .
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4.2 Formulation of the algorithm

We are now ready to translate our method into an algorithm for computing approxi-
mations of the eigenvalues of Xn . A plain Matlab implementation of this algorithm
is reported in [9, Appendix C].

Algorithm 4.1 The inputs are the following:

– Three integers α, n, n0 with α ≥ 0 and n, n0 ≥ 1.
– The matrices Xn0 , . . . , Xnα , where nk = 2k(n0 + 1) − 1 for all k = 0, . . . , α and

{Xn}n is a spectrally real matrix-sequence which is assumed to satisfy the working
hypothesis.

– A vector (β0, . . . , βα) consisting of α + 1 positive integers βk ∈ {1, . . . , n0}.
– A set S ⊆ {1, . . . , n}.

The algorithm computes an approximation of the eigenvalues {λ j (Xn) : j ∈ S} as
follows:

1. Compute the eigenvalues of the small matrices Xn0 , . . . , Xnα .
2. For j0 = 1, . . . , n0 compute the vector [c̃0(t j0,n0), c̃1(t j0,n0), . . . , c̃α(t j0,n0)]T by

solving (4.3).
3. For j ∈ S

– For k = 0, . . . , α
– Find βk points t (1), . . . , t (βk ) ∈ {t1,n0 , . . . , tn0,n0}which are closest to t j,n .
– Compute c̃k, j (t j,n), where c̃k, j (t) is the interpolation polynomial of the

data (t (1), c̃k(t (1))), . . . , (t (βk ) , c̃k(t (βk))).

– Compute λ̃ j (Xn) = ∑α
k=0 c̃k, j (t j,n)h

k .

4. Return {λ̃ j (Xn) : j ∈ S} as an approximation of {λ j (Xn) : j ∈ S}.

Remark 4.1 Algorithm 4.1 is specifically designed for computing approximations of
the eigenvalues of Xn in the case where the matrix size n is large. When applying this
algorithm, it is implicitly assumed that n0 and α are small (much smaller than n), so
that each nk = 2k(n0+1)−1 is small as well and the computation of the eigenvalues of
Xnk—which is required in the first step—can be efficiently performed by any standard
eigensolver.

Remark 4.2 An elegant choice for the number βk of interpolation points is βk =
α − k + 1, which is the minimal value satisfying the assumptions of Theorem 4.2.
Another valid choice is βk = β(α) for all k = 0, . . . , α with β(α) ≥ α + 1.

Remark 4.3 In practice, the dominant term in the computational cost of Algorithm 4.1
is Ceig(nα), i.e., the cost for computing the eigenvalues of Xnα . As we shall see in
the numerical experiments, this cost, as well as the overall cost of Algorithm 4.1, is
usually much less than the cost Ceig(n) for computing the eigenvalues of Xn .
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Remark 4.4 The (α + 1) × n0 matrix

C̃α,n0 =

⎡

⎢⎢⎢⎣

c̃0(t1,n0) c̃0(t2,n0) · · · c̃0(tn0,n0)
c̃1(t1,n0) c̃1(t2,n0) · · · c̃1(tn0,n0)

...
...

...

c̃α(t1,n0) c̃α(t2,n0) · · · c̃α(tn0,n0)

⎤

⎥⎥⎥⎦

is implicitly computed in the second step of Algorithm 4.1. If n0 is large enough then,
by Theorem 4.1,

C̃α,n0 ≈

⎡

⎢⎢⎢⎣

c0(t1,n0) c0(t2,n0) · · · c0(tn0,n0)
c1(t1,n0) c1(t2,n0) · · · c1(tn0,n0)

...
...

...

cα(t1,n0) cα(t2,n0) · · · cα(tn0,n0)

⎤

⎥⎥⎥⎦ ,

and so a plot of the kth row of C̃α,n0 versus the grid points (t1,n0 , t2,n0 , . . . , tn0,n0)
produces the (approximate) graph of the kth function ck in the expansion (3.1).

Remark 4.5 The matrix-less approach has already been proposed in the recent liter-
ature for the computation of the eigenvalues of matrices belonging to special GLT
sequences. However, contrary to its earlier versions appeared in [2, 31–34], Algo-
rithm 4.1 computes not only the rows 1, . . . , α of the matrix C̃α,n0 in Remark 4.4, but
also the 0th row, i.e., an approximation of the function c0 in (3.1). This strategy was
suggested by the method proposed in [22, 35] to compute the so-called “spectral func-
tion” andmakes thematrix-less paradigmflexible, becauseAlgorithm 4.1 is applicable
even in the case where c0 is not known. In the case where c0 is known, the eigenvalue
approximations λ̃ j (Xn) = c̃0(t j,n) +∑α

k=1 c̃k(t j,n)h
k returned by Algorithm 4.1 can

be updated by considering the generally more accurate eigenvalue approximations
λ̃ j (Xn) = c0(t j,n) + ∑α

k=1 c̃k(t j,n)h
k obtained from the expansion (3.1) by using

c0 instead of c̃0. Alternatively, in the case where c0 is known, we could reformulate
Algorithm 4.1 in analogy with [33, Algorithm 1] to avoid the computation of c̃0. We
point out, however, that c0 is usually not known in real-world applications such as,
e.g., the case of GLT sequences arising from the discretization of variable-coefficient
differential problems, which is the case of interest in this paper.

4.3 Error estimate

Theorem 4.3 Suppose that ck ∈ Cβk ([0, 1]) and βk ≥ α − k + 1 for k = 0, . . . , α,
with βk depending only on k and α. Let n ≥ n0 and let (λ̃1(Xn), . . . , λ̃n(Xn)) be
the approximation of (λ1(Xn), . . . , λn(Xn)) computed by Algorithm 4.1. Then, there
exists a constant Dα depending only on α such that

max
j=1,...,n

|λ j (Xn) − λ̃ j (Xn)| ≤ Dαh
α+1
0 .
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Proof See Appendix A. ��
Remark 4.6 Theorem 4.3 shows that, for any fixed α ≥ 0, the numerical eigenvalues
computed by Algorithm 4.1 are affected by an error of the order of hα+1

0 . In practice,
to improve the eigenvalue approximations, it is advisable to fix α and increase n0 up
to a maximum allowed value such that nα = 2α(n0 + 1) − 1 < n. The other way (fix
n0 and increase α) is less advisable; see Example 5.1 below.

5 Numerical experiments

In this section,we illustrate through numerical examples the plausibility of theworking
hypothesis and the performance of our eigenvalue approximation method for various
spectrally real GLT sequences {Xn}n ∼λ f with f being a real function. A special
attention is devoted to GLT sequences arising from the discretization of variable-
coefficient differential problems. In each example, we proceed as follows.

(a) We support the plausibility of the working hypothesis for the considered matrix-
sequence {Xn}n by exploiting Theorem 3.1 and Remark 4.4. If we fix α ≥ 0 and
0 ≤ k ≤ α, and we plot the kth row (c̃k(t1,n0), . . . , c̃k(tn0,n0)) of C̃α,n0 versus the
grid points (t1,n0 , . . . , tn0,n0) for different (large) values of n0, then

– the resulting plots should overlap and reproduce the graph of a function ck ;
– in the case k = 0, the resulting plots should also overlap with the graph of f †,
the monotone rearrangement of the spectral symbol f of {Xn}n .

We will see that both the above expectations are usually met, at least for small
values of α.

(b) We illustrate the performance of our method for computing approximations of all
the eigenvalues of Xn for a large value of n. This is done by fixing α and n0, and
by

– comparing the CPU time taken by Algorithm 4.1 for computing approxima-
tions of the eigenvalues of Xn with the CPU time taken by Matlab’s eig
function for computing the eigenvalues of Xn ;

– showing, for j = 1, . . . , n, both the absolute and the relative eigenvalue errors

ε
(α,n0)
A, j,n = ∣∣λ̃(α,n0)

j (Xn) − λ j (Xn)
∣∣, ε

(α,n0)
R, j,n =

∣∣∣∣∣
λ̃

(α,n0)
j (Xn) − λ j (Xn)

λ j (Xn)

∣∣∣∣∣ ,

with (λ1(Xn), . . . , λn(Xn)) and (λ̃
(α,n0)
1 (Xn), . . . , λ̃

(α,n0)
n (Xn)) being, respec-

tively, the vector of the eigenvalues of Xn (sorted as usual in ascending order)
and its approximation obtained by Algorithm 4.1.

In some of the examples, besides the programs described in (a) and (b), we also
consider the following program.

(c) We illustrate the performance of our method for computing approximations of a
specific subset of the eigenvalues of Xn for a large value of n. This is done by
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Fig. 2 Example 5.1— (c̃k (t1,n0 ), . . . , c̃k (tn0,n0 )) versus (t1,n0 , . . . , tn0,n0 ) for k = 0, . . . , α and different
values of n0 in the case α = 3

fixing S ⊆ {1, . . . , n}, α and n0, and by comparing the CPU time taken by Algo-
rithm 4.1 for computing approximations of the eigenvalues of Xn corresponding
to the indices in S with the CPU time taken by Matlab’s eigs function for
computing the eigenvalues of Xn corresponding to the indices in S.

Algorithm 4.1 is always applied with βk = α+2 for k = 0, . . . , α. The CPU times are
always measured in seconds. The CPU times for Algorithm 4.1 refer to the Matlab
implementation reported in [9, Appendix C] and do not account for the time spent in
the construction of thematrices Xn0 , . . . , Xnα . Similarly, theCPU times forMatlab’s
eig and eigs functions do not account for the time spent in the construction of the
matrix Xn . Note that if the times spent in the construction of the matrices were taken
into consideration, the matrix-less Algorithm 4.1 would gain over Matlab’s eig
and eigs functions, because the construction of the large matrix Xn is more time-
consuming than the construction of the small matrices Xn0 , . . . , Xnα . The numerical
experiments have been performed with Matlab R2021a (64 bit) on a platform with
16GB RAM and an Intel® CoreTM i5-9400H Processor (Quad-Core, 8MB Intel®

Smart Cache, 2.50GHz, 4.30GHz Turbo).

Example 5.1 (banded Toeplitz matrix) Let Xn = Tn( f ) with f (θ) = 7 − 4 cos θ +
cos(2θ). The matrix-sequence {Xn}n is spectrally real and {Xn}n ∼GLT, λ f .

– In Fig. 2, we collect the results related to item (a) for α = 3. It is clear that,
for each fixed k = 0, . . . , α, the plots obtained for different values of n0 overlap
and reproduce the graph of a function ck . Moreover, for k = 0, the plots also
overlap with the graph of f †, the monotone rearrangement of the spectral symbol
f obtained through the procedure described in Lemma 2.1.

– In Table 1 and Fig. 3, we collect the results related to item (b) for n = 20000. We
consider two strategies for improving the eigenvalue approximations returned by
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Table 1 Example 5.1 — CPU
times for computing all the
eigenvalues of Xn in the case
n = 20000. The corresponding
eigenvalue errors are shown in
Fig. 3

Method CPU time

Algor. 4.1 (α = 3, n0 = 100) 1.15

Algor. 4.1 (α = 3, n0 = 200) 1.18

Algor. 4.1 (α = 3, n0 = 400) 1.34

Algor. 4.1 (α = 4, n0 = 100) 1.53

Algor. 4.1 (α = 5, n0 = 100) 1.97

Matlab’s eig function 5.54

Fig. 3 Example 5.1 — (ε
(α,n0)
A,1,n , . . . , ε

(α,n0)
A,n,n ) and (ε

(α,n0)
R,1,n , . . . , ε

(α,n0)
R,n,n ) versus (t1,n , . . . , tn,n) in the case

n = 20000. First row: α = 3 and n0 = 100, 200, 400. Second row: α = 3, 4, 5 and n0 = 100

Algorithm 4.1: First, we fix α = 3 and increase n0 from 100 to 400; second, we
fix n0 = 100 and increase α from 3 to 5. Table 1 shows that the first strategy is
slightly faster, and Fig. 3 that it yields overall better eigenvalue errors. We remark
that, for n = 20000 and α = 3, we have to keep n0 < 2500, because otherwise
nα = 2α(n0 + 1) − 1 would be larger than n. We also remark that in this case the
CPU times of Algorithm 4.1 are comparable to the CPU time of Matlab’s eig
function because Xn is a real sparse symmetric matrix, a kind of matrix for which
Matlab’seig function is extremely efficient. However, in general, theCPU times
of Algorithm 4.1 are lower than that of Matlab’s eig (see the examples below).

Remark 5.1 Example 5.1 shows that, in order to achieve higher accuracy in the eigen-
value approximations returned by Algorithm 4.1, it is better to fix α and increase n0
rather than fix n0 and increase α. This was already observed in [33, Section 3] and
can be explained in two ways: First, assuming the working hypothesis is satisfied,
the constant Dα in Theorem 4.3 seems to grow very quickly with α [33, Example 1];
second, the working hypothesis is usually not satisfied and in particular the expansion
(3.1) is hardly met for large values of α. The latter consideration also hints that choos-
ing small values of α is preferable. In practice, we suggest taking α = 2, 3, 4 but not
more. In all the other examples of this paper, we will focus on the “winning strategy”
of keeping α fixed (to a small value) and increasing n0.
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Remark 5.2 Example 5.1 deals with a banded Toeplitz matrix. For an example with
a full Toeplitz matrix, we refer the reader to [9, Example 5.2], which has not been
included here for conciseness purposes.

Example 5.2 (preconditioned Toeplitz matrix) Let Xn = Tn(u)−1Tn(v) with u(θ) =
2+ cos(3θ) and v(θ) = 8− 3 cos θ − 9

2 cos(2θ) + 4 cos(3θ) − 1
2 cos(4θ) − cos(5θ).

Thematrix-sequence {Xn}n is spectrally real and {Xn}n ∼GLT, λ f (θ) = v(θ)/u(θ) =
4 − cos θ − 2 cos(2θ); see [36, Exercise 8.4].

– In Fig. 4, we collect the results related to item (a) for α = 2 and we also show the
graph of the spectral symbol f over [0, π ]. For each fixed k = 0, . . . , α, the plots
obtained for different values of n0 seem to overlap, but for k = 1, 2 they are not
reproducing the graph of a function ck outside the interval (0, t̂), with t̂ = θ̂/π and
θ̂ = 0.722734 . . .We remark that the spectral symbol f is not monotone on [0, π ]
and in particular it does not satisfy the simple-loop property. Nevertheless, f is
monotone on the interval (0, θ̂ ) and f −1( f ((0, θ̂ ))) = (0, θ̂ ). This suggests that
we may still say that the working hypothesis is “satisfied on (0, t̂)”, in the sense
that the expansion (3.1) holds for the indices j = 1, . . . , n such that t j,n ∈ (0, t̂);
see also [33, Examples 9 and 10].

– In Table 2 and Fig. 5, we collect the results related to item (b) for n = 10000.
We see from Table 2 that the CPU times of Algorithm 4.1 are lower than that of
Matlab’s eig function. Concerning the eigenvalue errors shown in Fig. 5, as
expected, we observe a difficulty in the approximation of the eigenvalues λ j (Xn)

corresponding to points t j,n /∈ (0, t̂) for which the expansion (3.1) fails, but for
the others the algorithm works well.

– In Table 3, we collect the results related to item (c) for n = 10000 and
S = {1, . . . , 2300}. The choice of S is inspired by the fact that, as illustrated
in Fig. 5, Algorithm 4.1 works well for the smallest t̂n ≈ 2300.53 eigenvalues.
To improve its efficiency, Matlab’s eigs function has been applied to the gen-
eralized eigenvalue problem Tn(v)x = λ Tn(u)x with Tn(v) and Tn(u) allocated
as sparse matrices through Matlab’s sparse command. We see from Table 3
that the CPU times of Algorithm 4.1 are lower than that of Matlab’s eigs
function.

Example 5.3 (finite difference matrices) Consider the following second-order differ-
ential problem:

{
−(a(x)u′(x))′ = f (x), x ∈ (0, 1),

u(0) = 0, u(1) = 0.

In the classical finite difference method based on second-order central differences
over the uniform grid xi = i

n+1 , i = 0, . . . , n + 1, the computation of the numerical
solution reduces to solving a linear system whose coefficient matrix is the symmetric
tridiagonal matrix given by
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Fig. 4 Example 5.2—Top left–right and bottom left: (c̃k (t1,n0 ), . . . , c̃k (tn0,n0 )) versus (t1,n0 , . . . , tn0,n0 )
for k = 0, . . . , α and different values of n0 in the case α = 2. Bottom right: graph of f over [0, π ]

Table 2 Example 5.2 — CPU
times for computing all the
eigenvalues of Xn in the case
n = 10000. The corresponding
eigenvalue errors are shown in
Fig. 5

Method CPU time

Algor. 4.1 (α = 1, n0 = 400) 0.56

Algor. 4.1 (α = 1, n0 = 800) 2.22

Algor. 4.1 (α = 1, n0 = 1600) 17.42

Algor. 4.1 (α = 2, n0 = 200) 0.71

Algor. 4.1 (α = 2, n0 = 400) 2.39

Algor. 4.1 (α = 2, n0 = 800) 17.74

Matlab’s eig function 462.16

Table 3 Example 5.2 — CPU
times for computing the smallest
eigenvalues of Xn corresponding
to the indices {1, . . . , 2300} in
the case n = 10000

Method CPU time

Algor. 4.1 (α = 1, n0 = 400) 0.34

Algor. 4.1 (α = 1, n0 = 800) 2.06

Algor. 4.1 (α = 1, n0 = 1600) 17.10

Algor. 4.1 (α = 2, n0 = 200) 0.41

Algor. 4.1 (α = 2, n0 = 400) 2.15

Algor. 4.1 (α = 2, n0 = 800) 17.37

Matlab’s eigs function 104.09
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Fig. 5 Example 5.2 — (ε
(α,n0)
A,1,n , . . . , ε

(α,n0)
A,n,n ) and (ε

(α,n0)
R,1,n , . . . , ε

(α,n0)
R,n,n ) versus (t1,n , . . . , tn,n) in the case

n = 10000. First row: α = 1 and n0 = 400, 800, 1600. Second row: α = 2 and n0 = 200, 400, 800

Xn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a 1
2

+ a 3
2

−a 3
2

−a 3
2

a 3
2

+ a 5
2

−a 5
2

−a 5
2

. . .
. . .

. . .
. . . −an− 1

2

−an− 1
2

an− 1
2

+ an+ 1
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ai = a(xi ) for all i in the real interval [0, n + 1]; see [36, Section 10.5.1] for
more details. The matrix-sequence {Xn}n is spectrally real and we have {Xn}n ∼GLT, λ

f (x, θ) = a(x)(2 − 2 cos θ) whenever a is continuous a.e. on (0, 1); see [10].

– In Fig. 6, we collect the results related to item (a) for α = 3 and for two choices of
the coefficient a(x), namely a(x) = x+1 (left column) and a(x) = e−x sin(π

2 x)+
ex cos(π

2 x) (right column). In both cases, for each fixed k = 0, . . . , α, the plots
obtained for different values ofn0 seem tooverlap, but the reproductionof the graph
of a function ck is not clearly visible for k ≥ 2. In particular, there are “problems”
around t = 0.64, 1 for a(x) = x + 1, and around t = 0.38, 0.72 for a(x) =
e−x sin(π

2 x) + ex cos(π
2 x). Therefore, we expect that our method will encounter

difficulties in the approximation of the eigenvalues λ j (Xn) corresponding to the
“critical” points t j,n , i.e., the points t j,n ≈ 0.64, 1 for a(x) = x +1 and the points
t j,n ≈ 0.38, 0.72 for a(x) = e−x sin(π

2 x) + ex cos(π
2 x).

– In Table 4 and Fig. 7, we collect the results related to item (b) for n = 20000.
We see from Table 4 that the CPU times of Algorithm 4.1 are comparable to the
CPU time of Matlab’s eig function, the latter being extremely efficient for real
sparse symmetric matrices. Concerning the eigenvalue errors shown in Fig. 7, we
may say that Algorithm 4.1 works well for all eigenvalues, except for
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Fig. 6 Example 5.3— (c̃k (t1,n0 ), . . . , c̃k (tn0,n0 )) versus (t1,n0 , . . . , tn0,n0 ) for k = 0, . . . , α and different
values of n0 in the caseα = 3. Left column:a(x) = x+1.Right column:a(x) = e−x sin( π

2 x)+ex cos( π
2 x)

– the smallest eigenvalues (this is due to the fact that the minimal eigenvalue of
Xn is very small and converges to 0 as n → ∞);

– the eigenvalues λ j (Xn) corresponding to the critical points t j,n .

– In Table 5, we collect the results related to item (c) for n = 20000 and S =
{18000, . . . , 20000}. We see from Table 5 that the CPU times of Algorithm 4.1
are lower than that of Matlab’s eigs function.
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Fig. 7 Example 5.3 — (ε
(α,n0)
A,1,n , . . . , ε

(α,n0)
A,n,n ) and (ε

(α,n0)
R,1,n , . . . , ε

(α,n0)
R,n,n ) versus (t1,n , . . . , tn,n) in the case

n = 20000. First row: a(x) = x + 1, α = 3 and n0 = 200, 400, 800. Second row: a(x) = e−x sin( π
2 x) +

ex cos( π
2 x), α = 3 and n0 = 200, 400, 800

Table 4 Example 5.3 — CPU times for computing all the eigenvalues of Xn in the case n = 20000. The
corresponding eigenvalue errors are shown in Fig. 7

CPU time for CPU time for
Method a(x) = x + 1 a(x) = e−x sin( π

2
x) + ex cos( π

2
x)

Algor. 4.1 (α = 3, n0 = 200) 1.22 1.23

Algor. 4.1 (α = 3, n0 = 400) 1.30 1.34

Algor. 4.1 (α = 3, n0 = 800) 1.77 1.69

Matlab’s eig function 4.19 3.92

Table 5 Example 5.3 — CPU times for computing the largest eigenvalues of Xn corresponding to the
indices {18000, . . . , 20000} in the case n = 20000

CPU time for CPU time for
Method a(x) = x + 1 a(x) = e−x sin( π

2
x) + ex cos( π

2
x)

Algor. 4.1 (α = 3, n0 = 200) 0.16 0.16

Algor. 4.1 (α = 3, n0 = 400) 0.28 0.27

Algor. 4.1 (α = 3, n0 = 800) 0.75 0.71

Matlab’s eigs function 567.48 675.51

Example 5.4 (finite element matrices) Consider the following system of differential
equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− (a(x)u′(x))′ + v′(x) = f (x), x ∈ (0, 1),

− u′(x) − ρv(x) = g(x), x ∈ (0, 1),

u(0) = 0, u(1) = 0,

v(0) = 0, v(1) = 0,
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whereρ ∈ R is a constant. In the classical finite elementmethod based on the piecewise
linear hat functions ϕ1, . . . , ϕn defined on the uniform grid xi = i

n+1
, i = 0, . . . ,

n + 1, the computation of the numerical solution reduces to solving a linear system
whose coefficient matrix is given by

A2n =
[
Kn Hn

HT
n −ρMn

]
,

where

Kn =
[∫ 1

0
a(x)ϕ′

j (x)ϕ
′
i (x)dx

]n

i, j=1
,

Hn =
[∫ 1

0
ϕ′
j (x)ϕi (x)dx

]n

i, j=1
= −i Tn(sin θ),

Mn =
[∫ 1

0
ϕ j (x)ϕi (x)dx

]n

i, j=1
= 1

3(n + 1)
Tn(2 + cos θ);

see [36, Section 10.6.2] for more details. Since A2n enjoys a so-called saddle-point
structure [15, p. 3], a key tool for the numerical solution of a linear system with matrix
A2n is the Schur complement of A2n , i.e.,

Sn = ρMn + HT
n K−1

n Hn = ρ

3(n + 1)
Tn(2 + cos θ) + Tn(sin θ)K−1

n Tn(sin θ);

see [15, Section 5]. Let Xn = (n + 1)Sn be the normalized Schur complement. The
matrix-sequence {Xn}n is spectrally real and we have

{Xn}n ∼GLT, λ f (x, θ) = ρ

3
(2 + cos θ) + 1 + cos θ

2 a(x)

whenever a ∈ L1((0, 1)) and a �= 0 a.e. on (0, 1); see [36, Theorem 10.13].

– In Fig. 8, we collect the results related to item (a) for α = 3 and for two choices of
a(x), ρ, namely a(x) = 1+√

x , ρ = 3.7 (left column) and a(x) = 2χ(0,1/2](x)+
χ(1/2,1)(x), ρ = 1 (right column), where χE denotes the characteristic (indicator)
function of the set E . In both cases, for each fixed k = 0, . . . , α, the plots obtained
for different values of n0 seem to overlap, but it is clear that we cannot assume
the validity of the working hypothesis, especially for the second choice of a(x),
which is a discontinuous function.

– In Table 6 and Fig. 9, we collect the results related to item (b) for n = 10000.
We see from Table 6 that the CPU times of Algorithm 4.1 are lower than that of
Matlab’s eig function. Concerning the eigenvalue errors shown in Fig. 9, we
can say that Algorithm 4.1 works reasonably well for most eigenvalues and for
both choices of a(x), ρ. Once again, we observe that the difficulties are in the
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Fig. 8 Example 5.4— (c̃k (t1,n0 ), . . . , c̃k (tn0,n0 )) versus (t1,n0 , . . . , tn0,n0 ) for k = 0, . . . , α and different
values of n0 in the caseα = 3. Left column: a(x) = 1+√

x , ρ = 3.7. Right column: a(x) = 2χ(0,1/2](x)+
χ(1/2,1)(x), ρ = 1

approximation of the eigenvalues λ j (Xn) corresponding to the critical points t j,n
where c̃1, c̃2, c̃3 have problems.

In the last two examples (Examples 5.5–5.6), we focus on the numerical solution
of variable-coefficient eigenvalue problems. Note that eigenvalue problems can be
considered as an important application where all the eigenvalues of the resulting dis-
cretization matrix have to be computed as they represent the numerical solution of the
problem, i.e., the computed approximations for the exact eigenvalues; see [20, 38].
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Table 6 Example 5.4 — CPU times for computing all the eigenvalues of Xn in the case n = 10000. The
corresponding eigenvalue errors are shown in Fig. 9

CPU time for CPU time for

Method

{
a(x) = 1 + √

x

ρ = 3.7

{
a(x) = 2χ(0,1/2](x) + χ(1/2,1)(x)

ρ = 1

Algor. 4.1 (α = 3, n0 = 100) 0.90 0.86

Algor. 4.1 (α = 3, n0 = 200) 2.22 2.14

Algor. 4.1 (α = 3, n0 = 400) 13.53 13.22

Matlab’s eig function 307.34 302.79

Example 5.5 (B-splineGalerkinmatrices)Consider the following eigenvalue problem:

{ − (a(x)u′
j (x))

′ = λ j b(x)u j (x), x ∈ (0, 1),

u j (0) = 0, u j (1) = 0.

If we apply the Galerkin method based on the B-splines B1,p, . . . , Bn,p of degree p
defined over the uniform grid xi = i

n−p+2
, i = 0, . . . , n− p+2, and vanishing on the

boundary of [0, 1], then the computation of the numerical solution reduces to solving a
classical discrete eigenvalue problem whose matrix is given by Ln = M−1

n Kn , where

Kn =
[∫ 1

0
a(x)B′

j,p(x)B
′
i,p(x)dx

]n

i, j=1

, Mn =
[∫ 1

0
b(x)B j,p(x)Bi,p(x)dx

]n

i, j=1

;

Fig. 9 Example 5.4 — (ε
(α,n0)
A,1,n , . . . , ε

(α,n0)
A,n,n ) and (ε

(α,n0)
R,1,n , . . . , ε

(α,n0)
R,n,n ) versus (t1,n , . . . , tn,n) in the case

n = 10000. First row: a(x) = 1 + √
x , ρ = 3.7, α = 3 and n0 = 100, 200, 400. Second row: a(x) =

2χ(0,1/2](x) + χ(1/2,1)(x), ρ = 1, α = 3 and n0 = 100, 200, 400
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Fig. 10 Example 5.5 — (c̃k (t1,n0 ), . . . , c̃k (tn0,n0 )) versus (t1,n0 , . . . , tn0,n0 ) for k = 0, . . . , α and differ-

ent values of n0 in the case α = 3. Left column: p = 2, a(x) = 1 + x2, b(x) = 1 − 0.5 x . Right column:
p = 3, a(x) = 2.1 + 1.05 x , b(x) = 80 + 40 x

see [36, Sections 10.7.2–10.7.3] formore details. Let Xn = (n−p+2)−2Ln .Assuming
that a, b ∈ L1((0, 1)) and a, b > 0 a.e. on (0, 1), the matrix-sequence {Xn}n is
spectrally real and we have

{Xn}n ∼GLT, λ f (x, θ) = a(x)

b(x)

f p(θ)

h p(θ)
,

where f p and h p are suitable functions; see [36, Theorem 10.16].
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Table 7 Example 5.5 — CPU times for computing all the eigenvalues of Xn in the case n = 10000. The
corresponding eigenvalue errors are shown in Fig. 11

CPU time for CPU time for

Method

⎧
⎪⎨

⎪⎩

p = 2

a(x) = 1 + x2

b(x) = 1 − 0.5 x

⎧
⎪⎨

⎪⎩

p = 3

a(x) = 2.1 + 1.05 x

b(x) = 80 + 40 x

Algor. 4.1 (α = 3, n0 = 100) 0.78 0.81

Algor. 4.1 (α = 3, n0 = 200) 2.16 2.17

Algor. 4.1 (α = 3, n0 = 400) 13.48 14.17

Matlab’s eig function 303.29 307.51

Fig. 11 Example 5.5— (ε
(α,n0)
A,1,n , . . . , ε

(α,n0)
A,n,n ) and (ε

(α,n0)
R,1,n , . . . , ε

(α,n0)
R,n,n ) versus (t1,n , . . . , tn,n) in the case

n = 10000. First row: p = 2, a(x) = 1 + x2, b(x) = 1 − 0.5 x , α = 3 and n0 = 100, 200, 400. Second
row: p = 3, a(x) = 2.1 + 1.05 x , b(x) = 80 + 40 x , α = 3 and n0 = 100, 200, 400

– In Fig. 10, we collect the results related to item (a) for α = 3 and for two choices
of p, a(x), b(x) inspired by [38, Section 3.3.1], namely p = 2, a(x) = 1 + x2,
b(x) = 1−0.5 x (left column) and p = 3, a(x) = 2.1+1.05 x , b(x) = 80+40 x
(right column). In both cases, for each fixed k = 0, . . . , α, the plots obtained
for different values of n0 overlap. The second choice highlights an aspect that
did not appear before: the presence of a few large outlier eigenvalues, which are
responsible for the slight mismatch between c̃0 and f † at the end of the interval
(0, 1).

– In Table 7 and Fig. 11, we collect the results related to item (b) for n = 10000.
We see from Table 7 that the CPU times of Algorithm 4.1 are lower than that of
Matlab’s eig function. Concerning the eigenvalue errors shown in Fig. 11, we
may say that Algorithm 4.1 works well for most eigenvalues and for both choices
of p, a(x), b(x). However, serious difficulties are observed in the approximation
of the eigenvalues λ j (Xn) corresponding to the critical points t j,n where c̃1, c̃2, c̃3
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have problems. These critical points include in particular those corresponding to
the outliers for the second choice of p, a(x), b(x), i.e., the points t j,n ≈ 1, for
which the approximation is not satisfactory.

Remark 5.3 Example 5.5 highlights an aspect that is worth to be emphasized. Suppose
that we interpret Algorithm 4.1 as an eigenpredictor, i.e., as an algorithm whose pur-
pose is to give a (fast) prediction of the eigenvalues of Xn . Then, already for α = 3
and n0 = 200, such eigenpredictor involving not only c0 but also the “higher-order
symbols” c1, c2, c3 is more accurate (especially for small eigenvalues) than the ana-
lytical prediction in [38] based on the sole rearranged symbol c0 = f †. In this regard,
the present paper provides a positive answer to the question raised in [38, Section 4.2].

Example 5.6 (B-spline collocationmatrices) Consider again the eigenvalue problem of
Example 5.5. Ifwe apply the collocationmethodbasedon theB-splines B1,p, . . . , Bn,p

of degree p defined on the uniform grid xi = i
n−p+2

, i = 0, . . . , n − p + 2, and van-
ishing on the boundary of [0, 1], and if we use as collocation points the related Greville
abscissae ξ1,p, . . . , ξn,p, a common choice in the literature [5], then the computation
of the numerical solution reduces to solving a classical discrete eigenvalue problem
whose matrix is given by Ln = M−1

n Kn , where

Kn =
[

− a(ξi,p)B
′′
j,p(ξi,p)

]n
i, j=1

, Mn =
[
b(ξi,p)Bj,p(ξi,p)

]n
i, j=1

;

see [36, Sections 10.7.1 and 10.7.3] formore details. Let Xn = (n− p+2)−2Ln . Based
on the theory of GLT sequences and [36, Section 10.7.1], we may expect that, under
suitable assumptions on the coefficients a, b—e.g., a, b ∈ C([0, 1]) and a, b > 0 a.e.
on [0, 1]—the matrix-sequence {Xn}n is spectrally real and

{Xn}n ∼GLT, λ f (x, θ) = a(x)

b(x)

f p(θ)

h p(θ)
,

where f p and h p are the functions in [36, eqs. (10.147) and (10.149)]. This time,
however, contrary to all the previous examples, a formal proof of the fact that {Xn}n
is spectrally real and {Xn}n ∼GLT, λ f (x, θ) is not available. A numerical evidence of
the fact that {Xn}n is spectrally real will be obtained by computing the eigenvalues of
Xn for different small values of n and observing that they are real. Note that this com-
putation is anyhow necessary for applying Algorithm 4.1. Moreover, when plotting
(c̃0(t1,n0), . . . , c̃0(tn0,n0)) versus (t1,n0 , . . . , tn0,n0) as in all the previous examples,
the resulting graph (up to a few outliers as in Example 5.5) will provide us with the
monotone rearrangement of the spectral symbol of {Xn}n , and we will check that it
coincides with the monotone rearrangement of f (x, θ), thus confirming numerically
that f (x, θ) is indeed the spectral symbol of {Xn}n as expected. This shows in par-
ticular that the numerical computation of the monotone rearrangement of the spectral
symbol can be achieved through the matrix-less approach described in this paper even
when the spectral symbol is not known; see also [35, Section 4].

– In Fig. 12, we collect the results related to item (a) for α = 3 and for two choices
of p, a(x), b(x), namely p = 4, a(x) = 1− x + x2, b(x) = ex (left column) and
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Table 8 Example 5.6 — CPU times for computing all the eigenvalues of Xn in the case n = 10000. The
corresponding eigenvalue errors are shown in Fig. 13

CPU time for CPU time for

Method

⎧
⎪⎨

⎪⎩

p = 4

a(x) = 1 − x + x2

b(x) = ex

⎧
⎪⎨

⎪⎩

p = 5

a(x) = 1 + cos( π
2 x)

b(x) = 3 + sin( π
2 x)

Algor. 4.1 (α = 3, n0 = 100) 0.84 0.80

Algor. 4.1 (α = 3, n0 = 200) 2.35 2.48

Algor. 4.1 (α = 3, n0 = 400) 14.30 19.84

Matlab’s eig function 306.75 573.91

p = 5, a(x) = 1 + cos(π
2 x), b(x) = 3 + sin(π

2 x) (right column). In both cases,
for each fixed k = 0, . . . , α, the plots obtained for different values of n0 overlap.
For the second choice, we also note the presence of a few large outlier eigenvalues,
which are responsible for the slight mismatch between c̃0 and f † at the end of the
interval (0, 1).

– In Table 8 and Fig. 13, we collect the results related to item (b) for n = 10000.
We see from Table 8 that the CPU times of Algorithm 4.1 are lower than that of
Matlab’s eig function. Concerning the eigenvalue errors shown in Fig. 13, we
can say that Algorithm 4.1 works well for most eigenvalues and for both choices
of p, a(x), b(x). However, serious difficulties are observed in the approximation
of the eigenvalues λ j (Xn) corresponding to the critical points t j,n where c̃1, c̃2, c̃3
have problems. These critical points include in particular those corresponding to
the outliers for the second choice of p, a(x), b(x), i.e., the points t j,n ≈ 1, for
which the approximation is bad.

6 Conclusions and perspectives

We have assumed as a working hypothesis that the eigenvalues of the matrices Xn ,
forming a spectrally real GLT sequence {Xn}n , are given by a regular expansion. Based
on the working hypothesis, we have proposed a method for computing approxima-
tions of the eigenvalues of Xn for large n and we have provided a theoretical analysis
of its convergence. Our method does not require the knowledge of the spectral sym-
bol, in contrast to earlier works on the matrix-less approach. The plausibility of the
working hypothesis as well as the performance of the method have been illustrated
through numerical experiments. The experiments testify that reasoning as if the work-
ing hypothesis were true leads to quite satisfactory results in terms of CPU times and
eigenvalue approximations, thus showing numerically that the spectra of the matri-
ces Xn forming a GLT sequence are more “regular” than one might expect. Some
concluding remarks on the proposed approach are in order.

– Based on the numerical experiments, we can say that the eigenvalue approx-
imations produced by our method are accurate for the eigenvalues λ j (Xn)
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Fig. 12 Example 5.6 — (c̃k (t1,n0 ), . . . , c̃k (tn0,n0 )) versus (t1,n0 , . . . , tn0,n0 ) for k = 0, . . . , α and differ-

ent values of n0 in the case α = 3. Left column: p = 4, a(x) = 1 − x + x2, b(x) = ex . Right column:
p = 5, a(x) = 1 + cos( π

2 x), b(x) = 3 + sin( π
2 x)

corresponding to the “nice” points t j,n where the expansion “works”, i.e., the func-
tions c̃k exhibit a “smooth” behavior. On the contrary, the approximations might
not be accurate for the eigenvalues λ j (Xn) corresponding to the “critical” points
t j,n where the expansion “fails”, i.e., the functions c̃k exhibit a “wild” behavior.
On the basis of this observation, one can first analyze the expansion functions c̃k ,
and then predict a better approximation of the eigenvalues corresponding to the
“nice” points compared to the eigenvalues corresponding to the “critical” points.

– The proposed eigenvalue approximation method has the following weaknesses:
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Fig. 13 Example 5.6— (ε
(α,n0)
A,1,n , . . . , ε

(α,n0)
A,n,n ) and (ε

(α,n0)
R,1,n , . . . , ε

(α,n0)
R,n,n ) versus (t1,n , . . . , tn,n) in the case

n = 10000. First row: p = 4, a(x) = 1− x + x2, b(x) = ex , α = 3 and n0 = 100, 200, 400. Second row:
p = 5, a(x) = 1 + cos( π

2 x), b(x) = 3 + sin( π
2 x), α = 3 and n0 = 100, 200, 400

– As remarked in Example 5.1, since we cannot increase n0 until some “stopping
criterion” is satisfied, we cannot obtain an approximation of the eigenvalues
within an a priori fixed tolerance.

– We do not have a priori estimates, with explicit constants, on the approximation
accuracy that we can achieve with this matrix-less approach.

– The proposed eigenvalue approximation method has the following strengths:

– It is fast and does not need to construct the matrix Xn . Moreover, if we have to
compute approximations of the eigenvalues of Xn and Xn′ for two large values
n, n′, we can compute the values c̃k(t1,n0), . . . , c̃k(tn0,n0), k = 0, . . . , α, once
(first two steps of Algorithm 4.1), and then use them twice for computing the
approximations of the eigenvalues of Xn and Xn′ , without constructing neither
Xn nor Xn′ . On the contrary, a standard eigensolver should first construct both
Xn and Xn′ , which could be time-consuming.

– As observed in Remark 5.3, our method yields a more accurate analytical
prediction of the eigenvalues of Xn than the approach described in [38]. This
is especially true for the small eigenvalues,which are often the object of interest
in engineering applications.

– The eigenvalue approximations produced by our method can be used as initial
guess for iterative refinement algorithms [30]. In this way, it is possible to get high
precision eigenvalue approximations starting from a reliable initial guess obtained
through our fast matrix-less approach.

We end with a few suggestions for possible future lines of research.

– The rulenk = 2k(n0+1)−1, k = 0, . . . , α, is somehowa limitationof theproposed
approach. Moreover, it has no intrinsic value: it is just a way to simplify the
presentation. For instance, there would be no significant difference if the previous
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rule were replaced with nk = 2kn0, k = 0, . . . , α, or other similar variants. A
future research could take care of removing this limitation and cast the proposed
eigenvalue approximation method into a more general framework.

– Extend the proposed method to multilevel block GLT sequences so as to include
sequences of matrices arising from the discretization of multidimensional partial
differential equations (PDEs) and systems of PDEs.

A Proofs of Theorems 3.1, 4.1, 4.2, 4.3

This appendix contains the proofs of Theorems 3.1, 4.1, 4.2, 4.3. While Theorem 3.1
is completely new, Theorems 4.1–4.3 are generalizations of [33, Theorems 1–3] as
they address the more general case where c0 = f † is computed along with c1, . . . , cα .
Moreover, the proof of Theorem 4.1 is considerably simplified compared to its ana-
logue in [33]. For the proof of Theorem 3.1, we need Lemmas A.1 and A.2; see [8,
Lemma 3.1] for Lemma A.1 and [36, pp. 275–276] for Lemma A.2. In what follows,
the characteristic function of the set E is denoted by χE and the Vandermonde matrix
by V (x1, x2, . . . , xm) = [

x j−1
i

]m
i, j=1.

Lemma A.1 Let f : (0, 1) → R be measurable and let Gn = {xi,n}i=1,...,n ⊂ (0, 1) be
an asymptotically uniform grid in (0, 1), i.e., limn→∞

(
maxi=1,...,n

∣∣xi,n − i
n

∣∣) = 0.
Then, limn→∞

∑n
i=1 f (xi,n)χ[(i−1)/n, i/n)(x) = f (x) for every continuity point x of

f in (0, 1). In particular, if f is continuous a.e. on (0, 1) then the previous limit
relation holds for almost every x ∈ (0, 1). Finally, if f is continuous a.e. and bounded
on (0, 1) then limn→∞ 1

n

∑n
i=1 f (xi,n) = ∫ 1

0 f (x)dx.

Lemma A.2 Let u, v : (0, 1) → R be monotone non-decreasing with
∫ 1
0 F(u(t))dt =∫ 1

0 F(v(t))dt for all F ∈ Cc(C). Then, u = v a.e. on (0, 1).

Proof of Theorem 3.1 We prove the three properties of the theorem separately.
1. We prove the spectral distribution {Xn}n ∼λ c0. By the working hypothesis,

λ j (Xn) = c0(t j,n) + E j,n,0, |E j,n,0| ≤ C0h, j = 1, . . . , n. (A.1)

For every F ∈ Cc(C) and every n,

∣∣∣∣∣∣
1

n

n∑

j=1

F(λ j (Xn)) −
∫ 1

0
F(c0(t))dt

∣∣∣∣∣∣

≤ 1

n

n∑

j=1

|F(λ j (Xn)) − F(c0(t j,n))| +
∣∣∣∣∣∣
1

n

n∑

j=1

F(c0(t j,n)) −
∫ 1

0
F(c0(t))dt

∣∣∣∣∣∣
.

The first term in the right-hand side is bounded by ωF (C0h), with ωF being the
modulus of continuity of F , and tends to 0 as n → ∞. The second term in the right-
hand side tends to 0 by Lemma A.1 since F(c0(t)) is an a.e. continuous bounded
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function on (0, 1) and the grid {t j,n : j = 1, . . . , n} is asymptotically uniform in
(0, 1). We conclude that {Xn}n ∼λ c0.

2. We prove that c0 coincides a.e. with a non-decreasing function on (0, 1).
Let I j,n = [ j−1

n ,
j
n

)
for j = 1, . . . , n. In view of (A.1), we define λn(t) =∑n

j=1 λ j (Xn)χI j,n (t) = c0,n(t) + E0,n(t), where c0,n(t) = ∑n
j=1 c0(t j,n)χI j,n (t)

and E0,n(t) = ∑n
j=1 E j,n,0χI j,n (t). The function λn : (0, 1) → R is non-decreasing

on (0, 1) as λ1(Xn) ≤ · · · ≤ λn(Xn). Moreover, λn → c0 a.e. on (0, 1) because
c0,n → c0 a.e. on (0, 1) by Lemma A.1 and |En,0(t)| ≤ C0h for all t ∈ (0, 1). As a
consequence, c0 is non-decreasing on a set E ⊆ (0, 1) ofmeasure 1, since it is the limit
a.e. on (0, 1) of a sequence of non-decreasing functions. Now, for every t ∈ (0, 1), both
E−
t = (0, t]∩E and E+

t = [t, 1)∩E are non-empty since E is dense in (0, 1). Thus, by
the monotonicity of c0 on E , we have −∞ < supu∈E−

t
c0(u) ≤ infu∈E+

t
c0(u) < ∞,

and the function ĉ0(t) = infu∈E+
t
c0(u) is well-defined and non-decreasing on (0, 1).

Moreover, if t ∈ E then ĉ0(t) = c0(t). We conclude that c0 coincides a.e. with a
non-decreasing function on (0, 1).

3. Suppose that {Xn}n ∼λ f . By the relation {Xn}n ∼λ c0 and (2.2), for every
F ∈ Cc(C) we have

∫ 1

0
F( f †(t))dt = 1

μk(D)

∫

D
F( f (x))dx = lim

n→∞
1

n

n∑

j=1

F(λ j (Xn))

=
∫ 1

0
F(c0(t))dt =

∫ 1

0
F(ĉ0(t))dt,

where D ⊂ R
k is the domain of f and ĉ0 is a monotone non-decreasing function on

(0, 1) that coincides a.e. with c0 (such a function ĉ0 exists by the previous statement 2).
We conclude that f † = ĉ0 = c0 a.e. on (0, 1) by Lemma A.2. ��

Proof of Theorem 4.1 Equations (4.1) and (4.3) can be rewritten as

V (h0, h1, . . . , hα)c( j0) = Λ( j0) − Eα( j0),

V (h0, h1, . . . , hα)c̃( j0) = Λ( j0),
(A.2)

where c( j0) = [c0(t j0,n0), . . . , cα(t j0,n0)]T, c̃( j0) = [c̃0(t j0,n0), . . . , c̃α(t j0,n0)]T,
Λ( j0) = [λ j0,n0(Xn0), . . . , λ jα,nα (Xnα )]T, and Eα( j0) = [E j0,n0,α, . . . , E jα,nα,α]T .
Taking into account that hk = 2−kh0 for k = 0, . . . , α, we have V (h0, h1, . . . , hα) =
Vαdiag(1, h0, h20 , . . . , h

α
0 ), where Vα = V (1, 2−1, . . . , 2−α). By (A.2),

c̃( j0) − c( j0) = V (h0, h1, . . . , hα)−1Eα( j0)

= diag(1, h−1
0 , h−2

0 , . . . , h−α
0 )V−1

α Eα( j0).

By (4.2), |(Eα( j0))k | = |E jk ,nk ,α| ≤ Cαh
α+1
k ≤ Cαh

α+1
0 for k = 0, . . . , α. Thus, for

every k = 0, . . . , α,
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|c̃k(t j0,n0) − ck(t j0,n0)| = |(c̃( j0) − c( j0))k |
≤ h−k

0 ‖V−1
α Eα( j0)‖∞ ≤ h−k

0 ‖V−1
α ‖∞Cαh

α+1
0 ,

and Theorem 4.1 is proved with Aα = Cα‖V−1
α ‖∞. ��

Remark A.1 The constant Aα = Cα‖V−1
α ‖∞ in Theorem 4.1 can be replaced with

the constant Aα = Cα‖V−1
α diag(1, 2−(α+1), 2−2(α+1), . . . , 2−α(α+1))‖∞, which is

smaller because ‖V−1
α ‖∞ ≥ 2α → ∞ and supα∈N ‖V−1

α diag(1, 2−(α+1), 2−2(α+1),

. . . , 2−α(α+1))‖∞ ∈ (6, 7); see [9, Remark A.3 and Appendix B].

Proof of Theorem 4.2 Let L1, . . . , Lβk be the Lagrange polynomials associated with
t (1), . . . , t (βk ), i.e.,

Lr (t) =
βk∏

s=1
s �=r

t − t (s)

t (r) − t (s)
, r = 1, . . . , βk .

The interpolation polynomials of the twodata sets (t (1), c̃k(t (1))), . . . , (t (βk ), c̃k(t (βk)))
and (t (1), ck(t (1))),. . . , (t (βk ), ck(t (βk ))) are given by, respectively, c̃k, j (t) =∑βk

r=1 c̃k(t
(r))Lr (t) and ck, j (t) = ∑βk

r=1 ck(t
(r))Lr (t). Since t (1), . . . , t (βk ) are βk dis-

tinct points from {t1,n0 , . . . , tn0,n0} which are closest to t j,n , the length of the smallest
interval I containing the nodes t (1), . . . , t (βk ) and the point t j,n is bounded by βkh0.
Hence, by Theorem 4.1, for all t ∈ I we have

|c̃k, j (t) − ck, j (t)| ≤
βk∑

r=1

|c̃k(t (r)) − ck(t
(r))| |Lr (t)|

≤
βk∑

r=1

Aαh
α−k+1
0

βk∏

s=1
s �=r

βkh0
h0

= Aαh
α−k+1
0 β

βk
k . (A.3)

Since ck ∈ Cβk ([0, 1]) by assumption, from standard interpolation theory we know
that for every t ∈ I there exist ξ(t) ∈ I such that

ck(t) − ck, j (t) = c(βk )
k (ξ(t))

βk !
βk∏

r=1

(t − t (r));

see, e.g., [27, Theorem 3.1.1]. Thus, for all t ∈ I we have

|ck(t) − ck, j (t)| ≤ ‖c(βk )
k ‖∞
βk !

βk∏

r=1

|t − t (r)|

≤ ‖c(βk )
k ‖∞
βk !

βk∏

r=1

βkh0 ≤ β
βk
k ‖c(βk )

k ‖∞
βk ! hα−k+1

0 . (A.4)
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From (A.3)–(A.4) we obtain

|ck(t) − c̃k, j (t)| ≤ |ck(t) − ck, j (t)| + |ck, j (t) − c̃k, j (t)|
≤ B(k, α)hα−k+1

0 ≤ Bαh
α−k+1
0 (A.5)

for all t ∈ I , where

B(k, α) = β
βk
k ‖c(βk )

k ‖∞
βk ! + Aαβ

βk
k

and Bα = maxi=0,...,α B(i, α) depends only on α (recall that βk depends only on k, α).
Since t j,n ∈ I , it is clear that (4.5) follows from (A.5). ��
Proof of Theorem 4.3 By (3.1) and Theorem 4.2, for every j = 1, . . . , n,

|λ j (Xn) − λ̃ j (Xn)| =
∣∣∣∣∣

α∑

k=0

ck(t j,n)h
k + E j,n,α −

α∑

k=0

c̃k, j (t j,n)h
k

∣∣∣∣∣

=
∣∣∣∣∣

α∑

k=0

(ck(t j,n) − c̃k, j (t j,n))h
k + E j,n,α

∣∣∣∣∣

≤ Bα

α∑

k=0

hα−k+1
0 hk + Cαh

α+1 ≤ Dαh
α+1
0 ,

where Dα = (α + 1)Bα + Cα . ��

Funding Open access funding provided by Università degli Studi di Roma Tor Vergata within the CRUI-
CARE Agreement.

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adriani, A., Bianchi, D., Serra-Capizzano, S.: Asymptotic spectra of large (grid) graphs with a uniform
local structure (part I): theory. Milan J. Math. 88, 409–454 (2020)

123

http://creativecommons.org/licenses/by/4.0/


BIT Numerical Mathematics             (2025) 65:2 Page 33 of 35     2 

2. Ahmad, F., Al-Aidarous, E.S., Alrehaili, D.A., Ekström, S.-E., Furci, I., Serra-Capizzano, S.: Are the
eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form?
Numer. Algor. 78, 867–893 (2018)

3. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., DuCroz, J., Greenbaum,A.,
Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. SIAM, Philadelphia
(1999)

4. Arbenz, P.: Computing the eigenvalues of banded symmetric Toeplitz matrices. SIAM J. Sci. Stat.
Comput. 12, 743–754 (1991)

5. Auricchio, F., Beirão da Veiga, L., Hughes, T.J.R., Reali, A., Sangalli, G.: Isogeometric collocation
methods. Math. Models Methods Appl. Sci. 20, 2075–2107 (2010)

6. Badía, J.M., Vidal, A.M.: Parallel computation of the eigenstructure of Toeplitz-plus-Hankel matrices
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