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Abstract: Let {Λn = {𝜆1,n,… , 𝜆dn,n}}n be a sequence of finite multisets of real numbers such that dn →∞ as

n→∞, and let f :Ω ⊂ ℝd → ℝ be a Lebesguemeasurable function defined on a domainΩwith 0 < 𝜇d(Ω) < ∞,

where 𝜇d is the Lebesgue measure in ℝd. We say that {Λn}n has an asymptotic distribution described by f ,

and we write {Λn}n ∼ f , if (∗) limn→∞
1

dn

∑dn
i=1F(𝜆i,n ) =

1

𝜇d(Ω)
∫ΩF( f (x))dx for every continuous function F with

bounded support. If Λn is the spectrum of a matrix An, we say that {An}n has an asymptotic spectral distribu-
tion described by f and we write {An}n ∼𝜆 f . In the case where d = 1, Ω is a bounded interval, Λn ⊆ f (Ω) for
all n, and f satisfies suitable conditions, Bogoya, Böttcher, Grudsky, and Maximenko proved that the asymp-

totic distribution (∗) implies the uniform convergence to 0 of the difference between the properly sorted vector

[𝜆1,n,… , 𝜆dn,n] and the vector of samples [ f (x1,n ),… , f (xdn,n )], i.e., (
∗∗) limn→∞ maxi=1,…,dn

| f (xi,n )− 𝜆𝜏n(i),n| = 0,

where x1,n,… , xdn,n is a uniform grid in Ω and 𝜏n is the sorting permutation. We extend this result to the case

where d ⩾ 1 andΩ is a Peano–Jordan measurable set (i.e., a bounded set with 𝜇d(𝜕Ω) = 0). We also formulate

and prove a uniform convergence result analogous to (∗∗) in the more general case where the function f takes

values in the space of k × k matrices. Our derivations are based on the concept of monotone rearrangement

(quantile function) as well as on matrix analysis arguments stemming from the theory of generalized locally

Toeplitz sequences and the observation that any finite multiset of numbersΛn = {𝜆1,n,… , 𝜆dn,n} can always be
interpreted as the spectrum of a matrix An = diag(𝜆1,n,… , 𝜆dn,n ). The theoretical results are illustrated through

numerical experiments, and a reinterpretation of them in terms of vague convergence of probability measures

is hinted.
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1 Introduction

Throughout this paper, a matrix-sequence is a sequence of the form {An}n, where An is a squarematrix such that
size(An) = dn →∞ asn→∞. Matrix-sequences arise in several contexts. For example,when a linear differential

equation is discretized by a linear numerical method, such as the finite difference method, the finite element

method, the isogeometric analysis, etc., the actual computation of the numerical solution reduces to solving

a linear system Anun = fn. The size dn of this system diverges to ∞ as the mesh-fineness parameter n tends

to ∞, and we are therefore in the presence of a matrix-sequence {An}n. It is often observed in practice that

{An}n belongs to the class of generalized locally Toeplitz (GLT) sequences and it therefore enjoys an asymptotic
singular value and/or eigenvalue distribution. We refer the reader to the books [1], [2] and the papers [3]–[6]

for a comprehensive treatment of GLT sequences and to ref. [7] for a more concise introduction to the subject.

Another noteworthy example of matrix-sequences concerns the finite sections of an infinite Toeplitz matrix. An

infinite (block) Toeplitz matrix is a matrix of the form

[ fi− j]
∞
i, j=1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0 f−1 f−2 … … …
f1 f0 f−1 f−2 … …
f2 f1 f0 f−1 f−2 …
... f2 f1 ⋱ ⋱ ⋱

...
... f2 ⋱ ⋱ ⋱

...
...

... ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.1)

where the entries … , f−2, f−1, f0, f1, f2,… are k × k matrices (blocks) for some k ⩾ 1. If k = 1, then (1.1) is a

classical (scalar) Toeplitz matrix. The nth section of (1.1) is the matrix defined by

An = [ fi− j]
n
i, j=1. (1.2)

A case of special interest arises when the entries fk are the Fourier coefficients of a function f : [−𝜋, 𝜋]→ ℂk×k

with components fij ∈ L1([−𝜋, 𝜋]), i.e.,

fk =
1

2𝜋

𝜋

∫
−𝜋

f (𝜃 )e−ik𝜃d𝜃, k ∈ ℤ,

where the integrals are computed componentwise. In this case, the matrix An in (1.2) is denoted by Tn( f ) and

is referred to as the nth (block) Toeplitz matrix generated by f . The asymptotic singular value and eigenvalue

distributions of the Toeplitz sequence {Tn(f )}n have been deeply investigated over time, starting from Szegő’s

first limit theorem [8] and the Avram–Parter theorem [9], [10], up to the works by Tyrtyshnikov–Zamarashkin

[11]–[13] and Tilli [14], [15]. For more on this subject, see [1, Ch. 6] and [16, Ch. 5].

An important concept related to matrix-sequences is the notion of asymptotic spectral (or eigenvalue) dis-

tribution. After the publication of Tyrtyshnikov’s paper in 1996 [11], there has been an ever growing interest in

this topic, which led, among others, to the birth of GLT sequences [17]–[19]. The reasons behind this widespread

interest are not purely academic, because the asymptotic spectral distribution has significant practical implica-

tions. For example, suppose that {An}n is a matrix-sequence resulting from the discretization of a differential

equation Au = f through a given numerical method. Then, the asymptotic spectral distribution of {An}n can
be used to measure the accuracy of the method in approximating the spectrum of the differential operator A

[20], to establishwhether themethod preserves the so-called average spectral gap [21], or to formulate analytical

predictions for the eigenvalues of both An and A [22]. Moreover, the asymptotic spectral distribution of {An}n
can be exploited to design efficient iterative solvers for linear systems with matrix An and to analyze/predict

their performance; see [23], [24] for accurate convergence estimates of Krylov methods based on the asymptotic

spectral distribution and [1, p. 3] for more details on this subject.
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Before proceeding further, let us introduce the formal definition of asymptotic singular value and eigen-

value distribution. Let Cc(ℝ) (resp., Cc(ℂ)) be the space of continuous complex-valued functions with bounded
support defined on ℝ (resp., ℂ). If A ∈ ℂm×m, the singular values and eigenvalues of A are denoted by

𝜎1(A),… , 𝜎m(A) and 𝜆1(A),… , 𝜆m(A), respectively. If 𝜆1(A),… , 𝜆m(A) are real, their maximum and minimum

are also denoted by 𝜆max(A) and 𝜆min(A). We denote by 𝜇d the Lebesgue measure in ℝd. Throughout this paper,

unless otherwise specified, “measurable” means “Lebesgue measurable” and “a.e.” means “almost everywhere

(with respect to the Lebesgue measure)”. A matrix-valued function f :Ω ⊆ ℝd → ℂk×k is said to be measur-

able (resp., bounded, continuous, continuous a.e., in Lp(Ω), etc.) if its components fi j:Ω→ ℂ, i, j = 1,… , k, are

measurable (resp., bounded, continuous, continuous a.e., in Lp(Ω), etc.).

Definition 1.1 (asymptotic singular value and eigenvalue distribution of a matrix-sequence). Let {An}n be a

matrix-sequence with An of size dn, and let f :Ω ⊂ ℝd → ℂk×k be measurable with 0 < 𝜇d(Ω) < ∞.

– We say that {An}n has an asymptotic eigenvalue (or spectral) distribution described by f if

lim
n→∞

1

dn

dn∑
i=1

F(𝜆i(An )) =
1

𝜇d(Ω)∫
Ω

k∑
i=1

F(𝜆i( f (x)))

k
dx ∀ F ∈ Cc(ℂ). (1.3)

In this case, f is called the eigenvalue (or spectral) symbol of {An}n and we write {An}n ∼𝜆 f .

– We say that {An}n has an asymptotic singular value distribution described by f if

lim
n→∞

1

dn

dn∑
i=1

F(𝜎i(An )) =
1

𝜇d(Ω)∫
Ω

k∑
i=1

F(𝜎i( f (x)))

k
dx ∀ F ∈ Cc(ℝ). (1.4)

In this case, f is called the singular value symbol of {An}n and we write {An}n ∼𝜎 f .

We remark that Definition 1.1 is well-posed as the functions x ↦
∑k

i=1F(𝜆i( f (x))) and x ↦
∑k

i=1F(𝜎i( f (x)))

appearing in (1.3) and (1.4) are measurable [5, Lem. 2.1]. Throughout this paper, whenever we write a relation

such as {An}n ∼𝜆 f or {An}n ∼𝜎 f , it is understood that {An}n and f are as in Definition 1.1, i.e., {An}n is a matrix-
sequence and f is a measurable function taking values in ℂk×k for some k and defined on a subset Ω of some

ℝd with 0 < 𝜇d(Ω) < ∞. Since any finite multiset of numbers can always be interpreted as the spectrum of a

matrix, a byproduct of Definition 1.1 is the following definition.

Definition 1.2 (asymptotic distribution of a sequence of finite multisets of numbers). Let {Λn = {𝜆1,n,… ,

𝜆dn,n}}n be a sequence of finite multisets of numbers such that dn →∞ as n→∞, and let f be as in

Definition 1.1. We say that {Λn}n has an asymptotic distribution described by f , and we write {Λn}n ∼ f , if

{An}n ∼𝜆 f , where An is any matrix whose spectrum equalsΛn (e.g., An = diag(𝜆1,n,… , 𝜆dn,n )).

In the previous literature, it has often been claimed that the informal meaning behind the asymptotic

spectral distribution (1.3) is the following [5, Rem. 2.9]: assuming that there exist k a.e. continuous functions

𝜆1(f ),… , 𝜆k(f ):Ω→ ℂ such that 𝜆1( f (x)),… , 𝜆k( f (x)) are the eigenvalues of f (x) for every x ∈ Ω, the eigen-
values of An, except possibly for o(dn) outliers, can be subdivided into k different subsets of approximately the

same cardinality, and, for n large enough, the eigenvalues belonging to the ith subset are approximately equal

to the samples of 𝜆i( f ) over a uniform grid in the domainΩ. For instance, if d = 1, dn = nk, andΩ = [a, b], then,

assuming we have no outliers, the eigenvalues of An are approximately equal to

𝜆i

(
f

(
a+ j

b− a

n

))
, j = 1,… , n, i = 1,… , k,
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for n large enough; similarly, if d = 2, dn = n2k, and Ω = [a1, b1] × [a2, b2], then, assuming we have no

outliers, the eigenvalues of An are approximately equal to

𝜆i

(
f

(
a1 + j1

b1 − a1
n

, a2 + j2
b2 − a2

n

))
, j1, j2 = 1,… , n, i = 1,… , k,

for n large enough; and so on for d ⩾ 3. In the case where d = k = 1, Ω = [a, b] is a bounded interval,

{𝜆1(An ),… , 𝜆dn (An )} ⊆ f (Ω) for all n, and f is a real function satisfying suitable conditions, a precise math-

ematical formulation and proof of the previous informal meaning was given by Bogoya, Böttcher, Grudsky, and

Maximenko first in the Toeplitz case An = Tn( f ) [25, Th. 1.5] and then in the case of an arbitrary An [26, Th. 1.3].

In a nutshell, they proved the uniform convergence to 0 of the difference 𝝀(An)− f (xn), i.e.,

lim
n→∞
‖ f (xn )− 𝝀(An )‖∞ = 0, (1.5)

where ‖ ⋅ ‖∞ is the usual∞-norm of vectors, 𝝀(An) is the properly sorted vector of eigenvalues of An, f (xn) is

the vector of samples [ f (x1,n ),… , f (xdn,n )], and xn = [x1,n,… , xdn,n] is a uniform grid inΩ.
In this paper, using the concept of monotone rearrangement (quantile function) and matrix analysis argu-

ments from the theory of GLT sequences, we provide deeper insights into the notion of asymptotic spectral

distribution by presenting precise mathematical formulations and proofs of the informal meaning behind (1.3)

that are more general than [26, Th. 1.3]. Our formulations are made in terms of uniform convergence to 0 of

differences of vectors, in complete analogy with (1.5).

– In our first main result (Theorem 2.1), we extend [26, Th. 1.3] by formulating and proving the informalmean-

ing behind (1.3) in the case where d ⩾ 1 and the domain Ω of the spectral symbol f is a Peano–Jordan

measurable set (i.e., a bounded set with 𝜇d(𝜕Ω) = 0). In Corollary 2.1, we prove (a slightly more general

version of) [26, Th. 1.3] as a corollary of Theorem 2.1.

– In our secondmain result (Theorem 2.2), we prove for d = 1 that Theorem 2.1 can be strengthened in the case

where the spectrum of An is contained in the image of f for every n and f satisfies some mild assumptions.

More precisely, in this casewe prove that the eigenvalues ofAn are exact samples of f over an asymptotically

uniform grid (see Section 2 for the corresponding definition).

– In our last main result (Theorem 2.3), we extend [26, Th. 1.3] by formulating and proving the informal

meaning behind (1.3) in the case where k ⩾ 1, i.e., the spectral symbol f is a matrix-valued function.

The results herein, including the main Theorems 2.1–2.3, are actually formulated in terms of asymptotic dis-

tributions of sequences of finite multisets of numbers (Definition 1.2) and not in terms of asymptotic spectral

distributions (Definition 1.1). This is done to allow for a better comparison with the previous literature and

especially with [26]. Reinterpreting the results in terms of asymptotic spectral distributions is a straightforward

rephrasing exercise that is left to the reader.

The paper is organized as follows. In Section 2, we formulate the main results. In Section 3, we prove the

main results. In Section 4, we illustrate the main results through numerical experiments. In Section 5, we draw

conclusions and we also highlight the relation existing between the asymptotic distribution and the vague con-

vergence of probability measures (a relation that allows for a reinterpretation of the main results of this paper

in a probabilistic perspective).

2 Main results

2.1 Notation and terminology

Throughout this paper, the cardinality, the interior, the closure, and the characteristic (indicator) function of a

set E are denoted by |E|, ⚬E, E, and 𝜒E , respectively. We use “increasing” as a synonym of “non-decreasing”. We

use “strictly increasing” whenever we want to specify that the increase is strict. Similarly, we use “decreasing”
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as a synonym of “non-increasing” and “strictly decreasing” whenever we want to specify that the decrease is

strict. The word “monotone” means either “increasing” or “decreasing”, while “strictly monotone” means either

“strictly increasing” or “strictly decreasing”. If z ∈ ℂ and 𝜀 > 0, we denote by D(z, 𝜀) the open disk with center z

and radius 𝜀, i.e., D(z, 𝜀) = {𝑤 ∈ ℂ: |𝑤− z| < 𝜀}. If S ⊆ ℂ and 𝜀 > 0, we denote by S𝜀 =
⋃

z∈S D(z, 𝜀) the 𝜀-

expansion of S, i.e., the set of points whose distance from S is smaller than 𝜀. We use a notation borrowed

from probability theory to indicate sets. For example, if f , g:Ω ⊆ ℝd → ℝ, then { f ⩽ 1} = {x ∈ Ω: f (x) ⩽ 1},
𝜇d{ f > 0, g < 0} is the measure of the set {x ∈ Ω: f (x) > 0, g(x) < 0}, etc.

2.1.1 Multi-index notation

A multi-index i of size d, also called a d-index, is a vector in ℤd. 0 and 1 are the vectors of all zeros and all ones,

respectively (their size will be clear from the context). For any vector n ∈ ℝd, we set N(n) =∏d

j=1nj and we

write n→∞ to indicate that min(n)→∞. If h, k ∈ ℝd, an inequality such as h ⩽ k means that hj ⩽ k j for all

j = 1,… , d. If h, k are d-indices such that h ⩽ k, the d-index range {h,… , k} is the set {i ∈ ℤd:h ⩽ i ⩽ k}. We

assume for this set the standard lexicographic ordering:

[
…
[
[ (i1,… , id ) ]id=hd ,…,kd

]
id−1=hd−1,…,kd−1

…
]
i1=h1,…,k1

.

For instance, in the case d = 2 the ordering is

(h1, h2 ), (h1, h2 + 1), … , (h1, k2 ), (h1 + 1, h2 ), (h1 + 1, h2 + 1), … , (h1 + 1, k2 ),

……… , (k1, h2 ), (k1, h2 + 1), … , (k1, k2 ).

When a d-index i varies in a finite set  ⊂ ℤd (this is simply written as i ∈ ), it is always understood that i
follows the lexicographic ordering. For instance, if we write x = [xi]i∈ , then x is a vector of size || whose
components are indexed by the d-index i varying in  according to the lexicographic ordering. Similarly, if

we write X = [xij]i,j∈ , then X is a square matrix of size || whose components are indexed by a pair of d-

indices i, j, both varying in  according to the lexicographic ordering. When  is a d-index range {h,… , k},
the notation i ∈  is often replaced by i = h,… , k. Operations involving d-indices (or general vectors with d

components) that have no meaning in the vector space ℝd must always be interpreted in the componentwise

sense. For instance, jh = (j1h1,… , jdhd), i∕j = (i1∕j1,… , id∕jd), etc. If a, b ∈ ℝd and a ⩽ b, we denote by [a, b]

the closed d-dimensional rectangle given by [a1, b1] × · · · × [ad, bd].

2.1.2 Essential range

Given a measurable function f :Ω ⊆ ℝd → ℂ, the essential range of f is denoted by (f ). We recall that (f )

is defined as

(f ) = {z ∈ ℂ: 𝜇d{f ∈ D(z, 𝜀)} > 0 for all 𝜀 > 0}.

It is clear that (f ) ⊆ f (Ω). Moreover, (f ) is closed and f ∈ (f ) a.e.;1 see, e.g., [1, Lem. 2.1]. If f is real

then (f ) is a subset of ℝ. In this case, we define the essential infimum (resp., supremum) of f on Ω as the

infimum (resp., supremum) of (f ):

ess inf
Ω

f = inf (f ), ess sup
Ω

f = sup (f ).

1 The notation “f ∈ (f ) a.e.” is borrowed fromprobability theory andmeans “f (x) ∈ (f ) for almost every x ∈ Ω”, i.e., “𝜇d{f ∉(f )} = 0”.
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2.1.3 Asymptotically uniform grids

Let [a, b] be a closed d-dimensional rectangle and let {n = n(n)}n be a sequence of d-indices in ℕd such that

n→∞ as n→∞. For every n, let (n)
n

= {x(n)
i,n
}i=1,…,n be a sequence of N(n) points in ℝd. We say that (n)

n
is an

asymptotically uniform (a.u.) grid in [a, b] if

lim
n→∞

m((n)
n
) = 0,

where

m((n)
n
) = max

i=1,…,n

‖‖‖‖‖x(n)i,n
−
(
a+ i

b− a

n

)‖‖‖‖‖∞
is referred to as the distance of (n)

n
from the uniform grid {a+ i(b− a)∕n}i=1,…,n. Note that (n)n

needs not to

be contained in [a, b] in order to be an a.u. grid in [a, b]. Note also that the notation n is used instead of n(n) for

simplicity, but it is understood that n = n(n) depends on n.

2.1.4 Regular sets

We say that Ω ⊂ ℝd is a regular set if it is bounded and 𝜇d(𝜕Ω) = 0. Note that the condition “𝜇d(𝜕Ω) = 0”

is equivalent to “𝜒Ω is continuous a.e. on ℝd”. Any regular set Ω ⊂ ℝd is measurable and we have 𝜇d(Ω) =

𝜇d(
⚬
Ω) = 𝜇d(Ω) < ∞. In Riemann integration theory, a regular set is simply a Peano–Jordan measurable set.

2.2 Statements of the main results

Theorem 2.1 is our first main result. It is a generalization to the multidimensional case of a previous result due

to Bogoya, Böttcher, Grudsky, and Maximenko [26, Th. 1.3]. For a better comparison between Theorem 2.1 and

[26, Th. 1.3], we recall that, if f :Ω ⊂ ℝd → ℝ is a function defined on a regular set Ω, then the condition “ f is
bounded and continuous a.e.” is equivalent to “ f is Riemann-integrable”.

Theorem 2.1. Let f :Ω ⊂ ℝd → ℝ be bounded and continuous a.e. on the regular set Ω with 𝜇d(Ω) > 0

and (f ) = [infΩ f , supΩ f ]. Take any d-dimensional rectangle [a, b] containing Ω and any a.u. grid

(n)
n

= {x(n)
i,n
}i=1,…,n in [a, b], where n = n(n) ∈ ℕd and n→∞ as n→∞. For every n, define n(Ω) =

{i ∈ {1,… ,n}: x(n)
i,n

∈ Ω} and consider the multiset of samples {f (x(n)
i,n
): i ∈ n(Ω)} = {f1,n,… , f|n(Ω)|,n} and a

multiset of |n(Ω)| real numbersΛn = {𝜆1,n,… , 𝜆|n(Ω)|,n} with the following properties:
– {Λn}n ∼ f ;

– Λn ⊆ [infΩ f − 𝜀n, supΩ f + 𝜀n] for every n and for some 𝜀n → 0 as n→∞.

Then, if 𝜎n and 𝜏n are two permutations of {1,… , |n(Ω)|} such that the vectors [ f𝜎n(1),n,… , f𝜎n(|n(Ω)|),n] and
[𝜆𝜏n(1),n,… , 𝜆𝜏n(|n(Ω)|),n] are sorted in increasing order, we have

max
i=1,…,|n(Ω)| | f𝜎n(i),n − 𝜆𝜏n(i),n|→ 0 as n→∞.

In particular,

min
𝜏

max
i=1,…,|n(Ω)| | fi,n − 𝜆𝜏(i),n|→ 0 as n→∞,

where the minimum is taken over all permutations 𝜏 of {1,… , |n(Ω)|}.
Remark 2.1. Since (f ) is closed, the hypothesis (f ) = [infΩ f , supΩ f ] in Theorem 2.1 is equivalent to ask-

ing that (f ) is connected with infΩ f = ess infΩ f and supΩ f = ess supΩ f . Note that the condition infΩ f =
ess infΩ f is equivalent to infΩ f ⩾ ess infΩ f (the other inequality infΩ f ⩽ ess infΩ f is always satisfied because

(f ) ⊆ f (Ω)). Similarly, the condition supΩ f = ess supΩ f is equivalent to supΩ f ⩽ ess supΩ f . Note also that

the hypothesis (f ) = [infΩ f , supΩ f ] implies f (Ω) = (f ).
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As a consequence of Theorem 2.1, in Corollary 2.1 we prove (a slightly more general version of) [26, Th. 1.3].

Corollary 2.1. Let f : [a, b]→ ℝ be bounded and continuous a.e. with (f ) = [inf[a,b] f , sup[a,b] f ]. Let

{Λn = {𝜆1,n,… , 𝜆dn,n}}n be a sequence of finite multisets of real numbers such that dn →∞ as n→∞.

Assume the following:

– {Λn}n ∼ f ;

– Λn ⊆ [inf[a,b] f − 𝜀n, sup[a,b] f + 𝜀n] for every n and for some 𝜀n → 0 as n→∞.

Then, for every a.u. grid {xi,n}i=1,…,dn
in [a, b] with {xi,n}i=1,…,dn

⊂ [a, b], if 𝜎n and 𝜏n are two permutations of

{1,… , dn} such that the vectors [ f (x𝜎n(1),n ),… , f (x𝜎n(dn ),n )] and [𝜆𝜏n(1),n,… , 𝜆𝜏n(dn ),n] are sorted in increasing

order, we have

max
i=1,…,dn

| f (x𝜎n(i),n )− 𝜆𝜏n(i),n|→ 0 as n→∞.

In particular,

min
𝜏

max
i=1,…,dn

| f (xi,n )− 𝜆𝜏(i),n|→ 0 as n→∞,

where the minimum is taken over all permutations 𝜏 of {1,… , dn}.

Proof. Take an a.u. grid {xi,n}i=1,…,dn
in [a, b] and two permutations 𝜎n and 𝜏n as specified in the statement. Since

{xi,n}i=1,…,dn
⊂ [a, b] by assumption, for everynwehave In([a, b]) = {i ∈ {1,… , dn}: xi,n ∈ [a, b]} = {1,… , dn}.

To conclude thatmaxi=1,…,dn
| f (x𝜎n(i),n )− 𝜆𝜏n(i),n|→ 0 as n→∞, apply Theorem 2.1 to the function f with the a.u.

grid {xi,n}i=1,…,dn
and the multiset of real numbersΛn = {𝜆1,n,… , 𝜆dn,n}. □

Remark 2.2. The hypothesis “(f ) = [inf[a,b] f , sup[a,b] f ]” in Corollary 2.1 is replaced in ref. [26, Th. 1.3] by

the weaker version “(f ) is connected”. However, the latter is not enough to get the thesis, as shown by

the following counterexample. Let f (x) = 𝜒{1}(x): [0, 1]→ ℝ be the characteristic function of {1}. Note that
f is bounded and continuous a.e. with (f ) = {0} connected. Take dn = n and 𝜆1,n = … = 𝜆n,n = 0 for all

n. All the hypotheses of Corollary 2.1 are satisfied except for the assumption “(f ) = [inf[0,1] f , sup[0,1] f ]”,

and the thesis does not hold. Indeed, if we take the a.u. grid in [0, 1] given by {xi,n = i∕n}i=1,…,n, then the

samples f (x1,n),… , f (xn,n) are sorted in increasing order just as the numbers 𝜆1,n,… , 𝜆n,n, and we have

maxi=1,…,n| f (xi,n)− 𝜆i,n| = 1, which does not tend to 0 as n→∞. This same counterexample shows that the

hypothesis “(f ) is connected” in ref. [26, Th. 1.3] must be replaced by the stronger version “(f ) =
[inf[a,b] f , sup[a,b] f ]” as in Corollary 2.1, otherwise the result does not hold.

2

Theorem 2.2 is our second main result. It shows that, if in Corollary 2.1 we assume that Λn ⊆ f ([a, b]) and

f has a finite number of local maximum, local minimum, and discontinuity points, then the values in Λn, up to

a suitable permutation, are exact samples of f on an a.u. grid in [a, b]. It is important to point out that by “local

maximum/minimum point” we here mean “weak local maximum/minimum point” according to the following

definition.

Definition 2.1 (local extremum points). Given a function f : [a, b]→ ℝ and a point x0 ∈ [a, b], we say that x0 is

a local maximum point (resp., local minimum point) for f if f (x0) ⩾ f (x) (resp., f (x0) ⩽ f (x)) for all x belonging

to a neighborhood of x0 in [a, b].

2 With the notations of ref. [26, Th. 1.3], the symbols f , (f ), dn, 𝜆i,n, xi,n used in the above counterexample should be changed to

X,(X ), d(n), 𝛼(n)
i
, 𝜉(n)

i
, respectively.
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For example, if f is constant on [a, b], then all points of [a, b] are both local maximum and local minimum

points for f .

Theorem 2.2. Let f : [a, b]→ ℝ be bounded with a finite number of local maximum points, local minimum points,

and discontinuity points, and with (f ) = [inf[a,b] f , sup[a,b] f ]. Let {Λn = {𝜆1,n,… , 𝜆dn,n}}n be a sequence of

finite multisets of real numbers such that dn →∞ as n→∞. Assume the following:

– {Λn}n ∼ f ;

– Λn ⊆ f ([a, b]) for every n.

Then, there exist an a.u. grid {xi,n}i=1,…,dn
in [a, b] with {xi,n}i=1,…,dn

⊂ [a, b] and a permutation 𝜏n of {1,… , dn}
such that, for every n,

𝜆𝜏n(i),n = f (xi,n ), i = 1,… , dn.

Theorem 2.3 is our lastmain result. It is a generalization of Corollary 2.1 to the casewhere the scalar function

f is replaced by a matrix-valued function.

Theorem 2.3. Let f1,… , fk : [a, b]→ ℝ be bounded and continuous a.e. with ( f1 ) = [inf[a,b] f1, sup[a,b] f1],

… , ( fk ) = [inf[a,b] fk, sup[a,b] fk]. Let {Λn = {𝜆1,n,… , 𝜆dn,n}}n be a sequence of finite multisets of real numbers
such that dn →∞ as n→∞. Assume the following:

– {Λn}n ∼ f with f = diag( f1,… , fk);

– For every n there exists a partition {Λ̃n,1,… , Λ̃n,k} ofΛn such that, for every j = 1,… , k, |Λ̃n, j|∕dn → 1∕k as
n→∞ and Λ̃n, j ⊆ [inf[a,b] f j − 𝜀n, sup[a,b] f j + 𝜀n] for some 𝜀n → 0 as n→∞.

Then, for every n there exists a partition {Λn,1,… ,Λn,k} of Λn such that, for every j = 1,… , k, the following

properties hold:

– |Λn, j| = |Λ̃n, j|;
– Λn, j ⊆ [inf[a,b] f j − 𝛿n, sup[a,b] f j + 𝛿n] for some 𝛿n → 0 as n→∞;

– {Λn, j}n ∼ f j;

– Let Λn, j = {𝜆( j)
1,n
,… , 𝜆

( j)|Λn, j|,n}. For every a.u. grid {x( j)i,n
}i=1,…,|Λn, j| in [a, b] with {x( j)i,n

}i=1,…,|Λn, j| ⊂ [a, b], if 𝜎n, j

and 𝜏n, j are two permutations of {1,… , |Λn, j|} such that the vectors [ f j(x( j)𝜎n, j(1),n
),… , f j(x

( j)

𝜎n, j(|Λn, j|),n )] and
[𝜆

( j)

𝜏n, j(1),n
,… , 𝜆

( j)

𝜏n, j(|Λn, j|),n] are sorted in increasing order, we have
max

i=1,…,|Λn, j| | f j(x( j)𝜎n, j(i),n
)− 𝜆

( j)

𝜏n, j(i),n
|→ 0 as n→∞.

In particular,

min
𝜏

max
i=1,…,|Λn, j| | f j(x( j)i,n

)− 𝜆
( j)

𝜏(i),n
|→ 0 as n→∞,

where the minimum is taken over all permutations 𝜏 of {1,… , |Λn, j|}.
In order to prove Theorem 2.3, we shall need the following lemmas, which are reported here because they

have a special interest in themselves andmay be considered as further main results of this paper, although “less

important” than Theorems 2.1–2.3.

Lemma 2.1. Let f1,… , fk : [a, b]→ ℝ bemeasurable. Let {Λn = {𝜆1,n,… , 𝜆dn,n}}n be a sequence of finitemultisets
of real numbers such that dn →∞ as n→∞. Assume the following:

– {Λn}n ∼ f with f = diag( f1,… , fk);

– {Ln,1}n,… , {Ln,k}n are sequences of natural numbers such that Ln,1 +…+ Ln,k = dn for every n and

Ln, j∕dn → 1∕k as n→∞ for every j = 1,… , k.
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Then, for every n there exists a partition {Λn,1,… ,Λn,k} of Λn such that, for every j = 1,… , k, the following

properties hold:

– |Λn, j| = Ln, j;

– {Λn, j}n ∼ f j.

Lemma 2.2. Let f1,… , fk : [a, b]→ ℝ bemeasurable. Let {Λn = {𝜆1,n,… , 𝜆dn,n}}n be a sequence of finitemultisets
of real numbers such that dn →∞ as n→∞. Assume the following:

– {Λn}n ∼ f with f = diag( f1,… , fk);

– for every n there exists a partition {Λ̃n,1,… , Λ̃n,k} ofΛn such that, for every j = 1,… , k, |Λ̃n, j|∕dn → 1∕k as
n→∞ and Λ̃n, j ⊆ (( f j ))𝜀n for some 𝜀n → 0 as n→∞.

Then, for every n there exists a partition {Λn,1,… ,Λn,k} of Λn such that, for every j = 1,… , k, the following

properties hold:

– |Λn, j| = |Λ̃n, j|;
– {Λn, j}n ∼ f j;

– Λn, j ⊆ (( f j ))𝛿n for some 𝛿n → 0 as n→∞.

3 Proofs of the main results

3.1 Monotone rearrangement

In this section, we recall the notion of monotone rearrangement and we collect some related results that we

shall need in the proof of Theorem 2.1.

Definition 3.1. Let f :Ω ⊂ ℝd → ℝ be measurable on a set Ω with 0 < 𝜇d(Ω) < ∞. The monotone rearrange-

ment of f is the function denoted by f † and defined as follows:

f †(y) = inf

{
u ∈ ℝ: 𝜇d{f ⩽ u}

𝜇d(Ω)
⩾ y

}
, y ∈ (0, 1). (3.1)

Note that f †(y) is a well-defined real number for every y ∈ (0, 1), because

lim
u→+∞

𝜇d{f ⩽ u} = 𝜇d(Ω), lim
u→−∞

𝜇d{f ⩽ u} = 0.

In probability theory, where f is interpreted as a random variable on Ω with probability distribution mf and

distribution function Ff given by

mf (A) = ℙ{f ∈ A} = 𝜇d{f ∈ A}
𝜇d(Ω)

, A ⊆ ℝ is a Borel set,

F f (u) = ℙ{f ⩽ u} = 𝜇d{f ⩽ u}
𝜇d(Ω)

, u ∈ ℝ,

the monotone rearrangement f † in (3.1) can be rewritten as

f †(y) = inf
{
u ∈ ℝ: F f (u) ⩾ y

}
, y ∈ (0, 1),

and is referred to as the quantile function of f or the generalized inverse of Ff . It is clear that f
† is monotone

increasing on (0, 1), which implies that the limits limy→0 f
†(y) and limy→1 f

†(y) always exist. The next lemma

gives the exact values of these limits and allows us to complete the definition of f † by continuous extension; see

Definition 3.2.
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Lemma 3.1. Let f :Ω ⊂ ℝd → ℝ be measurable on a setΩ with 0 < 𝜇d(Ω) < ∞. Then,

lim
y→0

f †(y) = ess inf
Ω

f , lim
y→1

f †(y) = ess sup
Ω

f .

Proof. We only prove the equality limy→0 f
†(y) = ess infΩ f as the proof of the other equality is analogous.

Case 1: ess infΩ f = −∞. In this case, by definition of ess infΩ f , we have 𝜇d{ f ⩽ u} > 0 for all u ∈ ℝ, i.e.,
Ff (u) > 0 for all u ∈ ℝ. Hence, for every u0 ∈ ℝ there exists y0 = Ff (u0)∕2 ∈ (0, 1) such that, for 0 < y ⩽ y0,

f †(y) ⩽ f †(y0 ) = inf{u ∈ ℝ: F f (u) ⩾ y0} ⩽ u0.

This means that limy→0 f
†(y) = −∞.

Case 2: ess infΩ f = m ∈ ℝ. In this case, since f ∈ (f ) a.e., we have 𝜇d{ f ⩽ u} = 0 for all u < m, i.e.,

Ff (u) = 0 for all u < m. Thus, for every y ∈ (0, 1),

f †(y) = inf{u ∈ ℝ: F f (u) ⩾ y} ⩾ m ⟹ lim
y→0

f †(y) ⩾ m.

To prove the other inequality, fix 𝜀 > 0. By definition ofm, we have

𝜇d{f ⩽ m+ 𝜀} > 0 ⟹ F f (m+ 𝜀) = 𝜇d{f ⩽ m+ 𝜀}
𝜇d(Ω)

= 𝛼𝜀 ∈ (0, 1].

Hence, 𝛼𝜀∕2 ∈ (0, 1) and

f †(𝛼𝜀∕2) = inf{u ∈ ℝ: F f (u) ⩾ 𝛼𝜀∕2} ⩽ m+ 𝜀 ⟹ lim
y→0

f †(y) ⩽ m+ 𝜀.

Since this is true for all 𝜀 > 0, we conclude that limy→0 f
†(y) ⩽ m. □

Definition 3.2 (monotone rearrangement). Let f :Ω ⊂ ℝd → ℝ be measurable on a setΩ with 0 < 𝜇d(Ω) < ∞.

The monotone rearrangement of f is the function denoted by f † and defined as follows:

f †(y) = inf

{
u ∈ ℝ: 𝜇d{f ⩽ u}

𝜇d(Ω)
⩾ y

}
, if y ∈ (0, 1),

f †(0) = ess inf
Ω

f , if ess inf
Ω

f > −∞,

f †(1) = ess sup
Ω

f , if ess sup
Ω

f < ∞.

The domain of f † is denoted byΩ†
and is always assumed to be the largest possible. This means thatΩ†

always

includes (0, 1) and it also includes 0 (resp., 1) whenever f †(0) (resp., f †(1)) is defined, i.e., whenever ess infΩ f >

−∞ (resp., ess supΩ f < ∞).

We remark that, according to Definition 3.2 and Lemma 3.1, f † is always continuous at 0 and 1 whenever

it is defined there. In particular, the discontinuity points of f †, if any, must lie in (0, 1). The next lemma collects

some basic properties of monotone rearrangements.

Lemma 3.2. Let f :Ω ⊂ ℝd → ℝ be measurable on a setΩ with 0 < 𝜇d(Ω) < ∞.

1. f † is monotone increasing and left-continuous onΩ†
.

2. For every Borel set A ⊆ ℝ, we have

𝜇1{f † ∈ A} = 𝜇d{f ∈ A}
𝜇d(Ω)

.
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3. For every continuous bounded function F:ℝ→ ℝ, we have

1

𝜇d(Ω)∫
Ω

F( f (x))dx =
1

∫
0

F( f †(y))dy.

4. ( f † ) = (f ).

5. For every y ∈ Ω†
we have f †(y) ∈ ( f † ).

6. If f † is continuous on (0, 1) then ( f † ) = f †(Ω†
).

7. f † is continuous on (0, 1) if and only if (f ) is connected.

Proof. 1–3. These properties can be derived from [27, Ch. 3, Prop. 4 and Prob. 3], [27, Ch. 4, Th. 15] and [27, Ch. 14,

Prop. 7].

4. By definition of (f ) and property 2,

(f ) = {x ∈ ℝ: 𝜇d{f ∈ D(x, 𝜀)} > 0 for all 𝜀 > 0}

=
{
x ∈ ℝ: 𝜇d{f † ∈ D(x, 𝜀)} > 0 for all 𝜀 > 0

}
= ( f † ).

5. Let y ∈ Ω†
. f † is left-continuous at y (by property 1), and it is continuous at y if y = 0 or y = 1 (because f †

is always continuous at 0 and 1 whenever it is defined there). Thus, we have 𝜇1{ f † ∈ D( f †(y), 𝜀)} > 0 for every

𝜀 > 0. Hence, y ∈ ( f † ).

6. Suppose that f † is continuous on (0, 1). This means that f † is continuous onΩ†
, since f † is always contin-

uous at 0 and 1 whenever it is defined there. By property 5, we infer that f †(Ω†
) ⊆ ( f † ). On the other hand,

( f † ) ⊆ f †(Ω†
) = f †(Ω†

), where the latter equality follows from the fact that f †(Ω†
) is closed by definition

ofΩ†
and the continuity and monotonicity of f †. Thus, ( f † ) = f †(Ω†

).

7. (⟹) Suppose that f † is continuous on (0, 1), i.e., continuous onΩ†
. By properties 4 and 6, we have

(f ) = ( f † ) = f †(Ω†
).

In particular, (f ) is connected because it is equal to the image of a connected set Ω†
through a continuous

function f †; see [28, Th. 4.22].

(⟸) Suppose that f † is not continuous on (0, 1). Then, there exists for f † a discontinuity point y0 ∈ (0, 1),

which is necessarily a jump because f † is monotone increasing. In particular, we can find a point 𝛼 in the open

jump ( f †−(y0 ), f
†
+(y0 )), where f

†
−(y0 ) and f †+(y0 ) are the left and right limits of f

† in y0 (note that f
†
−(y0 ) = f †(y0 )

by the left-continuity of f †; see property 1). Obviously, 𝛼 ∉ ( f † ). We show that 𝛼 disconnects ( f † ). Take

two points u, 𝑣 ∈ (0, 1) such that u < y0 < 𝑣. By property 5, we have f †(u), f †(𝑣) ∈ ( f † ). Moreover, bymono-

tonicity, f †(u) < 𝛼 < f †(𝑣). Hence, ( f † ) = (f ) is not connected. □

The main results we need on monotone rearrangements are Theorems 3.1 and 3.2. For the proof of

Theorem 3.1, see [29, Th. 3.1]. Theorem 3.2 is a generalization of ref. [29, Th. 3.2] and is proved below.

Theorem 3.1. Let f :Ω ⊂ ℝd → ℝ be continuous a.e. on the regular setΩwith𝜇d(Ω) > 0. Take any d-dimensional

rectangle [a, b] containingΩ and any a.u. grid (n)
n

= {x(n)
i,n
}i=1,…,n in [a, b], where n = n(n) ∈ ℕd and n→∞ as

n→∞. For every n, consider the samples

f (x(n)
i,n
), i ∈ n(Ω) =

{
i ∈ {1,… ,n}: x(n)

i,n
∈ Ω
}
,

sort them in increasing order, and put them into a vector [s0,… , s𝜔(n)], where 𝜔(n) = |n(Ω)|− 1. Let

f †n : [0, 1]→ ℝ be the linear spline function interpolating the samples [s0,… , s𝜔(n)] over the equally spaced nodes

[0, 1∕𝜔(n), 2∕𝜔(n),… , 1] in [0, 1]. Then,

lim
n→∞

f †
n
(y) = f †(y)
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for every continuity point y of f † in (0, 1).

Theorem 3.2. In Theorem 3.1, suppose that (f ) is connected. Then, the following properties hold.

1. f †n → f † uniformly on every compact interval [𝛼, 𝛽] ⊂ (0, 1).

2. If f is bounded from below onΩwith infΩ f = ess infΩ f , then f †n → f † uniformly on every compact interval

[0, 𝛼] ⊂ [0, 1).

3. If f is bounded from above onΩwith supΩ f = ess supΩ f , then f †n → f † uniformly on every compact interval

[𝛼, 1] ⊂ (0, 1].

4. If f is bounded onΩ and (f ) = [infΩ f , supΩ f ], then f †n → f † uniformly on [0, 1].

Recall from Remark 2.1 that the assumption infΩ f = ess infΩ f in the second statement is equivalent to

infΩ f ⩾ ess infΩ f and the assumption supΩ f = ess supΩ f in the third statement is equivalent to supΩ f ⩽
ess supΩ f . Moreover, under the hypothesis that (f ) is connected and bounded, the assumption (f ) =
[infΩ f , supΩ f ] in the fourth statement is equivalent to asking that infΩ f = ess infΩ f and supΩ f = ess supΩ f ,

which in turn is equivalent to asking that f (Ω) ⊆ (f ), i.e., f (Ω) = (f ). The proof of Theorem 3.2 relies on

the following lemma, which is sometimes referred to as Dini’s second theorem [30, pp. 81 and 270, Prob. 127].

Lemma 3.3. If a sequence of monotone functions converges pointwise on a compact interval to a continuous

function, then it converges uniformly.

Proof of Theorem 3.2.

1. f † is continuous on (0, 1) by Lemma 3.2 and f †n → f † everywhere in (0, 1) by Theorem 3.1. Since the functions

f †n are continuous and increasing on (0, 1), the thesis follows from Lemma 3.3.

2. Since f is bounded from below on Ω, we have ess infΩ f > −∞ and f †(0) = limy→0 f
†(y) = ess infΩ f

is defined. Moreover, the function f † is continuous on [0, 1) by Lemma 3.2 and the definition f †(0) =
limy→0 f

†(y). Since f †n (0) = s0 is the evaluation of f at a point ofΩ and infΩ f = ess infΩ f by assumption,

for every n we have

f †
n
(0) ⩾ inf

Ω
f = ess inf

Ω
f = f †(0).

Since f †n → f † everywhere in (0, 1) by Theorem 3.1 and the functions f †n , f
† are continuous and increasing

on [0, 1), for every 𝜀 > 0 we have

f †(0) ⩽ lim inf
n→∞

f †
n
(0) ⩽ lim sup

n→∞
f †
n
(0) ⩽ lim sup

n→∞
f †
n
(𝜀) = f †(𝜀),

hence

f †(0) = lim
n→∞

f †
n
(0).

We have therefore proved that f †n → f † everywhere in [0, 1), and the thesis now follows from Lemma 3.3.

3. It is proved in the same way as the second statement.

4. It follows immediately from the second and third statements. □

3.2 Proof of Theorem 2.1

The last result we need to prove Theorem 2.1 is the following technical lemma [29, Lem. 3.3].

Lemma 3.4. Let 𝜔(n) be a sequence of positive integers such that 𝜔(n)→∞ and let gn: [0, 1]→ ℝ be a sequence

of increasing functions such that
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lim
n→∞

1

𝜔(n)

𝜔(n)∑
𝓁=0

F

(
gn

(
𝓁

𝜔(n)

))
=

1

∫
0

F(g(y))dy ∀ F ∈ Cc(ℝ),

where g: (0, 1)→ ℝ is increasing. Then, gn(y)→ g(y) for every continuity point y of g in (0, 1).

Proof of Theorem 2.1. We begin with the following observation: since (f ) is connected and bounded by

assumption, the domain of f † is Ω† = [0, 1] and f † is continuous on [0, 1]; see Lemma 3.2 (property 7) and

Definition 3.2.

Sort the samples {f (x(n)
i,n
): i ∈ n(Ω)} = {f1,n,… , f|n(Ω)|,n} in increasing order through a permutation 𝜎n

as in the statement of the theorem, and put them into a vector [s0,… , s𝜔(n)], where 𝜔(n) = |n(Ω)|− 1. Note

that [s0,… , s𝜔(n)] = [ f𝜎n(1),n,… , f𝜎n(|n(Ω)|),n]. Let f †n : [0, 1]→ ℝ be the linear spline function interpolating the

samples [s0,… , s𝜔(n)] over the equally spaced nodes [0, 1∕𝜔(n), 2∕𝜔(n),… , 1] in [0, 1]. By Theorem 3.2,

f †
n
→ f † uniformly on [0, 1] as n→∞. (3.2)

Sort the real numbersΛn = {𝜆1,n,… , 𝜆|n(Ω)|,n} in increasing order through a permutation 𝜏n as in the state-
ment of the theorem, and put them into a vector [t0,… , t𝜔(n)]. Note that [t0,… , t𝜔(n)] = [𝜆𝜏n(1),n,… , 𝜆𝜏n(|n(Ω)|),n].
Let gn: [0, 1]→ ℝ be the linear spline function interpolating the samples [t0,… , t𝜔(n)] over the equally spaced

nodes [0, 1∕𝜔(n), 2∕𝜔(n),… , 1] in [0, 1]. Since {Λn}n ∼ f † by the assumption {Λn}n ∼ f and Lemma 3.2

(property 3), the hypotheses of Lemma 3.4 are satisfied with g = f †. Since f † is continuous on [0, 1], we infer

that gn(y)→ f †(y) for every y ∈ (0, 1). Moreover, gn(y)→ f †(y) also for y = 0, 1. Indeed, for every n we have

gn(0) ⩾ f †(0)− 𝜀n,

because on the one hand f †(0) = ess infΩ f = infΩ f by our assumption (f ) = [infΩ f , supΩ f ], and on the

other handΛn ⊆ [infΩ f − 𝜀n, supΩ f + 𝜀n] by hypothesis. Thus, for every 𝜀 > 0 we have

f †(0) ⩽ lim inf
n→∞

gn(0) ⩽ lim sup
n→∞

gn(0) ⩽ lim sup
n→∞

gn(𝜀) = f †(𝜀),

and so, by the continuity of f † at 0,

lim
n→∞

gn(0) = f †(0).

The same argument shows that gn(1)→ f †(1) as n→∞. We conclude that gn(y)→ f †(y) for all y ∈ [0, 1] and so,

by Lemma 3.3,

gn → f † uniformly on [0, 1] as n→∞. (3.3)

By combining (3.2) and (3.3), we obtain that ‖ f †n − gn‖∞,[0,1] → 0 as n→∞. In particular,

max
i=0,…,𝜔(n)

||||| f †n
(

i

𝜔(n)

)
− gn

(
i

𝜔(n)

)||||| = max
i=0,…,𝜔(n)

|si − ti| = max
i=1,…,|n(Ω)| | f𝜎n(i),n − 𝜆𝜏n(i),n|→ 0 as n→∞,

which proves the theorem. □

3.3 Properties of a.u. grids

In this section, we collect the properties of a.u. grids that we need in the proof of Theorem 2.2. We begin with the

following general result on real vectors. If A ∈ ℂm×m, we denote by ‖A‖ = max(𝜎1(A),… , 𝜎m(A)) the spectral

(or Euclidean) norm of A.

Lemma 3.5. Let x, y ∈ ℝm and let 𝜎, 𝜏 be permutations of {1,… ,m} that sort the components of x, y in increas-
ing order, i.e., x𝜎(1) ⩽ … ⩽ x𝜎(m) and y𝜏(1) ⩽ … ⩽ y𝜏(m). Then,

max
i=1,…,m

|x𝜎(i) − y𝜏(i)| ⩽ max
i=1,…,m

|xi − yi|. (3.4)
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Proof. ByWeyl’s perturbation theorem [31, Cor. III.2.6], for every pair ofm × mHermitianmatrices A and Bwe

have

max
i=1,…,m

|𝜆i(A)− 𝜆i(B)| ⩽ ‖A− B‖,
where the eigenvalues ofA and B are arranged in increasing order: 𝜆1(A) ⩽ … ⩽ 𝜆m(A) and 𝜆1(B) ⩽ … ⩽ 𝜆m(B).

If we apply this result to the real diagonal matrices A = diag(x1,… , xm) and B = diag(y1,… , ym), we obtain

(3.4). □

As a consequence of Lemma 3.5, the increasing rearrangement of an a.u. grid is still an a.u. grid.

Lemma 3.6 (increasing rearrangement of an a.u. grid is still an a.u. grid). Let n = {xi,n}i=1,…,dn
be an a.u. grid

in [a, b] with dn →∞, and let 𝜏n be a permutation of {1,… , dn} such that x𝜏n(1),n ⩽ … ⩽ x𝜏n(dn ),n. Then ′
n
=

{x𝜏n(i),n}i=1,…,dn
is an a.u. grid in [a, b] with m

(′
n

)
⩽ m(n ) for all n.

Proof. We apply Lemma 3.5 with x = [xi,n]
dn
i=1 and y = [a+ i(b− a)∕dn]

dn
i=1, and we obtain

m
(′

n

)
= max

i=1,…,dn

|||||x𝜏n(i),n −
(
a+ i

b− a

dn

)||||| ⩽ max
i=1,…,dn

|||||xi,n −
(
a+ i

b− a

dn

)||||| = m(n ). □

In view of the next lemma, we point out that if n = {xi,n}i=1,…,dn
is an a.u. grid in [a, b] then n is a sequence

of points for each fixed n. Moreover, every sequence of points n = {xi,n}i=1,…,dn
can also be interpreted as a

multiset consisting of dn elements. In particular, if n = {xi,n}i=1,…,dn
and ′

n
= {x′

i,n
}i=1,…,d′n

are two sequences of

points (andhence twomultisets), the intersectionn ∩ ′
n
, the unionn ∪ ′

n
, the differencen∖′n, the symmetric

difference n △ ′
n
=
(n∖′n) ∪ (′n∖n), etc., are well-defined multisets. Throughout this paper, if {an}n and

{bn}n are any two sequences such that an, bn ≠ 0 for all n, we write an ∼ bn as n→∞ to indicate that an∕bn → 1

as n→∞.

Lemma 3.7 (multiset differing little from an a.u. grid is an a.u. grid). Let n = {xi,n}i=1,…,dn
be an a.u. grid in

[a, b] with dn →∞, and let ′
n
= {x′

i,n
}i=1,…,d′n

be a sequence of d′
n
real points such that ′

n
⊂ [a− 𝜀n, b+ 𝜀n] for

some 𝜀n → 0 and |n △ ′
n
| = o(dn ) as n→∞. Then, d′

n
∼ dn as n→∞ and ′

n
is an a.u. grid in [a, b] provided

that we rearrange its points in increasing order.

Proof. Without loss of generality, we can assume that the points of n and ′
n
are arranged in increasing order:

x1,n ⩽ … ⩽ xdn,n, x′
1,n

⩽ … ⩽ x′
d′n,n

.

Indeed, after rearranging the points ofn and′n in increasing order (if necessary), the assumptions of the lemma
are still satisfied, becausen remains an a.u. grid in [a, b] by Lemma 3.6 andn △ ′

n
does not change. To simplify

the notation, we prove the lemma in the case [a, b] = [0, 1]; up to obvious modifications, the proof for a general

interval [a, b] is the same as the proof for the interval [0, 1]. Let an = |n ∩ ′
n
| and bn = |n △ ′

n
| = o(dn ). Let

In = {i1,… , ian} and Jn = {j1,… , jan} be two sets of indices such that

{xi1,n,… , xian ,n
} = n ∩ ′

n
, 1 ⩽ i1 < … < ian ⩽ dn,

{x′
j1,n
,… , x′

jan ,n
} = n ∩ ′

n
, 1 ⩽ j1 < … < jan ⩽ d′

n
;

see Figure 1. We make the following observations.

– xik ,n = x′
jk ,n

for all k = 1,… , an. Indeed, xi1,n,… , xian ,n
and x′

j1,n
,… , x′

jan ,n
are the points of the samemultiset

n ∩ ′
n
arranged in increasing order.

– |dn − d′
n
| ⩽ bn. Indeed, if cn = |n∖′n| and en = |′n∖n|, then

dn − cn = |n|− |n∖′n| = |n ∩ ′
n
| = an,



G. Barbarino et al.: From asymptotic distribution to uniform convergence with applications — 15

Figure 1: Illustration for the proof of Lemma 3.7. The dots on the first line are the points of n and the dots on the second line are the
points of ′

n
. The green dots are the points of n ∩ ′

n
while the red dots are the points of n △ ′

n
. In this case, we have dn = 12, d′

n
= 14,

an = 5, bn = 16, In = {3, 4, 8, 11, 12}, Jn = {4, 5, 10, 13, 14}.

d′
n
− en = |′n|− |′n∖n| = |′n ∩ n| = an,

cn + en = |n∖′n|+ |′n∖n| = |n △ ′
n
| = bn,

and

|dn − d′
n
| = |dn − cn + cn − en + en − d′

n
| = |an + cn − en − an| = |cn − en| ⩽ cn + en = bn.

– |ik − jk| ⩽ bn for all k = 1,… , an. Indeed, if cn,k = |n,k∖′n| with n,k = {x1,n,… , xik ,n} ⊆ n and en,k =|′
n,k
∖n| with ′

n,k
= {x′

1,n
,… , x′

jk ,n
} ⊆ ′

n
, then3

ik − cn,k = |n,k|− |n,k∖′n| = |n,k ∩ ′
n
| = |n,k ∩ (n ∩ ′

n

)| = |{xi1,n,… , xik ,n}| = k,

jk − en,k = |′n,k|− |′n,k∖n| = |′n,k ∩ n| = |′n,k ∩ (′n ∩ n)| = |{x′j1,n,… , x′
jk ,n

}| = k,

cn,k + en,k = |n,k∖′n|+ |′n,k∖n| ⩽ |n∖′n|+ |′n∖n| = cn + en = bn,

and

|ik − jk| = |ik − cn,k + cn,k − en,k + en,k − jk| = |k + cn,k − en,k − k| = |cn,k − en,k| ⩽ cn,k + en,k ⩽ bn.

From |dn − d′
n
| ⩽ bn and the assumption bn = o(dn), we immediately obtain that

|||||
d′
n

dn
− 1
||||| =
|||||
d′
n
− dn
dn

||||| ⩽
bn
dn

→ 0 as n→∞ ⟹ d′
n
∼ dn as n→∞.

It remains to prove that ′
n
is a.u. in [0, 1], i.e.,

lim
n→∞

m
(′

n

)
= 0, m

(′
n

)
= max

j=1,…,d′n

|||||x′j,n −
j

d′
n

|||||. (3.5)

Recall that, by assumption, n is a.u. in [0, 1], i.e.,
lim
n→∞

m(n ) = 0, m(n ) = max
i=1,…,dn

||||xi,n − i

dn

||||.
We consider two cases.

– j ∈ Jn. In this case, j = jk for some k = 1,… , an and x
′
j,n
= x′

jk ,n
= xik ,n. Thus,

3 To follow the reasoning, look at Figure 1 and assume, for example, that k = 3. Then, i3 = 8, j3 = 10, cn,3 = 5, en,3 = 7.
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Figure 2: Illustration for the proof of Lemma 3.7.

|||||x′j,n −
j

d′
n

||||| =
|||||xik ,n −

jk
d′
n

||||| ⩽
||||xik ,n − ik

dn

||||+
|||||
ik
dn

− ik
d′
n

|||||+
|||||
ik
d′
n

− jk
d′
n

|||||
=
||||xik ,n − ik

dn

||||+ ik
|d′

n
− dn|
dnd

′
n

+ |ik − jk|
d′
n

⩽ m(n )+ 2
bn
d′
n

. (3.6)

– j ∉ Jn. In this case, let jk, jk+1 ∈ Jn be the two indices in Jn surrounding j as in Figure 2. Note that jk may

not exist if j is “too close” to the left boundary (as it would happen in Figure 2 if j were equal to 1, 2 or 3); in

this situation, we have jk+1 = j1 and we set by convention jk = j0 = 0, ik = i0 = 0, x′
0,n

= x0,n = 0. Similarly,

if jk+1 does not exist (this may happen if j is “too close” to the right boundary), then jk = jan and we set

by convention jk+1 = jan+1 = d′
n
+ 1, ik+1 = ian+1 = dn + 1, x′

d′n+1,n
= xdn+1,n = 1. With these definitions and

conventions, we have the following.

– jk < j < jk+1.

– xik ,n = x′
jk ,n

⩽ x′
jk+1,n

= xik+1,n.

– x′
jk ,n

− 𝜀n ⩽ x′
j,n

⩽ x′
jk+1,n

+ 𝜀n (recall that ′n ⊂ [−𝜀n, 1+ 𝜀n] by assumption).

– |j − jk| ⩽ bn. Indeed, looking at Figure 2 and keeping in mind our conventions for the left and right

boundaries, we have

| j − jk| ⩽ jk+1 − jk − 1 = number of indices strictly between jk and jk+1

⩽ |′
n
∖n| ⩽ |′n △ n| = bn.

– |ik+1 − ik| ⩽ bn + 1. Indeed, looking at Figure 2 and keeping in mind our conventions for the left and

right boundaries, we have

|ik+1 − ik| = ik+1 − ik = number of indices between ik and ik+1 (including ik+1 )

⩽ |n∖′n|+ 1 ⩽ |n △ ′
n
|+ 1 = bn + 1.

–
||||x′jk ,n − jk

d′n

|||| ⩽ m(n )+ 2 bn
d′n
by (3.6) (if jk ∈ Jn) or by direct verification (if jk = 0).

–
|||xik ,n − ik

dn

||| ⩽ m(n ) by definition ofm(n ) (if ik ∈ In) or by direct verification (if ik = 0).

–
|||xik+1,n − ik+1

dn

||| ⩽ max
(
m(n ), |||1− dn+1

dn

|||
)
= max

(
m(n ), 1

dn

)
, where the quantity 1∕dn takes into

account the boundary case ik+1 = dn + 1.

Thus, |||||x′j,n −
j

d′
n

||||| ⩽ |x′j,n − x′
jk ,n
|+ |||||x′jk ,n −

jk
d′
n

|||||+
|||||
jk
d′
n

− j

d′
n

|||||
⩽ x′

jk+1,n
− x′

jk ,n
+ 2𝜀n +m(n )+ 2

bn
d′
n

+ bn
d′
n

= |xik+1,n − xik ,n|+ 2𝜀n +m(n )+ 3
bn
d′
n

⩽
||||xik+1,n − ik+1

dn

||||+ |||| ik+1dn
− ik
dn

||||+ |||| ikdn − xik ,n
||||+ 2𝜀n +m(n )+ 3

bn
d′
n
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⩽ max

(
m(n ), 1dn

)
+ bn + 1

dn
+m(n )+ 2𝜀n +m(n )+ 3

bn
d′
n

⩽ 3m(n )+ bn + 2

dn
+ 2𝜀n + 3

bn
d′
n

.

In conclusion, by combining the two considered cases, for all j = 1,… , d′
n
we have

|||||x′j,n −
j

d′
n

||||| ⩽ 3m(n )+ bn + 2

dn
+ 2𝜀n + 3

bn
d′
n

,

which is a quantity independent of j and tending to 0 as n→∞ (recall that bn = o(dn) and d
′
n
∼ dn as n→∞).

Thus, the thesis (3.5) follows. □

3.4 Properties of continuous functions satisfying particular conditions

Lemma 3.8 highlights a property of continuous monotone functions on a compact interval. This property can be

proved on the basis of the following more general results:

– if f : [a, b]→ ℝ is continuous and strictly monotone, then its inverse f −1: f ([a, b])→ [a, b] is continuous and

strictly monotone;

– if f : [a, b]→ ℝ is continuous and monotone, then f is uniformly continuous.

However, for the reader’s convenience, we include a direct proof of Lemma 3.8.

Lemma 3.8. Let f : [a, b]→ ℝ be continuous and strictly monotone on [a, b]. Then, for every 𝛿 > 0 there exists

𝜀 > 0 such that

[ f (x)− 𝜀, f (x)+ 𝜀] ⊆ f ([x − 𝛿, x + 𝛿]) ∀ x ∈ [a+ 𝛿, b− 𝛿].

Proof. We prove the lemma under the assumption that f is strictly increasing on [a, b]; the proof in the case

where f is strictly decreasing on [a, b] is completely analogous. Fix 𝛿 > 0. Since f is continuous and strictly

increasing on [a, b], the function f +
𝛿
(x) = f (x + 𝛿 )− f (x) is continuous and strictly positive on [a, b− 𝛿]. As a

consequence, f +
𝛿
(x) has a strictly positive minimum 𝜀+ > 0 on [a, b− 𝛿]:

f (x + 𝛿 )− f (x) ⩾ 𝜀+ ∀ x ∈ [a, b− 𝛿].

Similarly, the function f −
𝛿
(x) = f (x)− f (x − 𝛿 ) is continuous and strictly positive on [a+ 𝛿, b] and so it has a

strictly positive minimum 𝜀− > 0 on [a+ 𝛿, b]:

f (x)− f (x − 𝛿 ) ⩾ 𝜀− ∀ x ∈ [a+ 𝛿, b].

If we set 𝜀 = min(𝜀+, 𝜀−) > 0, then we see that

{
f (x + 𝛿 )− f (x) ⩾ 𝜀,

f (x)− f (x − 𝛿 ) ⩾ 𝜀,
∀ x ∈ [a+ 𝛿, b− 𝛿],

which is equivalent to {
f (x − 𝛿 ) ⩽ f (x)− 𝜀,

f (x)+ 𝜀 ⩽ f (x + 𝛿 ),
∀ x ∈ [a+ 𝛿, b− 𝛿].

Thus, for every x ∈ [a+ 𝛿, b− 𝛿] we have [ f (x)− 𝜀, f (x)+ 𝜀] ⊆ [ f (x − 𝛿), f (x + 𝛿)] = f ([x − 𝛿, x + 𝛿]), where

the latter equality follows from the fact that f is continuous and monotone increasing. □
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Lemma 3.9 shows that the preimage of any point through a continuous function f : [a, b]→ ℝ having a finite

number of local maximum/minimum points is finite.

Lemma 3.9. Let I be a bounded real interval and let f : I → ℝ be continuous on I with a finite number of local

maximum points and local minimum points. Then, for every 𝜆 ∈ ℝ, the set f−1(𝜆) = {x ∈ I: f (x) = 𝜆} is finite.

Proof. For a given 𝜆 ∈ ℝ, suppose that 𝜉, 𝜂 are any two distinct points in f −1(𝜆) with 𝜉 < 𝜂. The function

f : [𝜉, 𝜂]→ ℝ is continuous by assumption, is not constant on [𝜉, 𝜂] by the assumption that it has a finite number

of local maximum/minimum points, and satisfies f (𝜉) = f (𝜂) = 𝜆. Thus, at least one local extremum point of f

(either the absolute maximum or the absolute minimum of f on [𝜉, 𝜂]) lies in the open interval (𝜉, 𝜂).

Now, suppose by contradiction that f −1(𝜆) is infinite for a certain 𝜆 ∈ ℝ. Since f −1(𝜆) is contained in the

compact interval I, it must have an accumulation point 𝛼 ∈ I. Hence, we can find a strictly monotone sequence

{𝜉i}i ⊆ f −1(𝜆) such that 𝜉i → 𝛼. In each interval between two consecutive points 𝜉i and 𝜉i+1 we have at least one

local extremum point of f by the reasoning at the beginning of the proof. We conclude that f has infinitely many

local extremum points, which is a contradiction to the hypothesis. □

Corollary 3.1. Let I be a bounded real interval and let f : I → ℝ be continuous on I with a finite number of local

maximum points, local minimum points, and discontinuity points. Then, for every 𝜆 ∈ ℝ, the set f −1(𝜆) = {x ∈
I: f (x) = 𝜆} is finite.

Proof. Leta < bbe the endpoints of the interval I and leta = 𝜂0 < 𝜂1 < … < 𝜂𝓁 < 𝜂𝓁+1 = bbe thediscontinuity

points of f , towhichwealso add theboundary points 𝜂0 = a and 𝜂𝓁+1 = b. Note that the restriction f : (𝜂 j, 𝜂 j+1 )→

ℝ is continuous and satisfies the assumptions of Lemma 3.9 for every j = 0,… ,𝓁. Hence, for every 𝜆 ∈ ℝ, the
set

f −1(𝜆) = {x ∈ I: f (x) = 𝜆} ⊆
𝓁⋃
j=1

{
x ∈ (𝜂 j, 𝜂 j+1 ): f (x) = 𝜆

}
∪ {𝜂0, 𝜂1,… , 𝜂𝓁+1}

is finite by Lemma 3.9. □

3.5 Proof of Theorem 2.2

The last results we need to prove Theorem 2.2 are the following two technical lemmas. Lemma 3.10 provides

a straightforward estimate of the largest number of points taken from a uniform grid that can lie in a fixed

interval; the proof is left to the reader. Lemma 3.11 is a slight generalization of ref. [1, Ex. 3.3].

Lemma 3.10. Let h > 0 and let {𝜗i,h}i∈ℤ be a uniform grid inℝwith stepsize h, say 𝜗i,h = x0 + ih with x0 ∈ ℝ and

i ∈ ℤ. Then, for any interval [𝛼, 𝛽] ⊂ ℝ, we have

|{i ∈ ℤ:𝜗i,h ∈ [𝛼, 𝛽]}| ⩽ ⌊(𝛽 − 𝛼 )∕h⌋+ 1.

Lemma 3.11. For every 𝜀 > 0, let {qn(𝜀)}n be a sequence of numbers such that qn(𝜀)→ q(𝜀) as n→∞ and q(𝜀)→ 0

as 𝜀→ 0. Then, there exists a sequence of positive numbers {𝜀n}n such that 𝜀n → 0 and qn(𝜀n)→ 0.

Proof. Since qn(𝜀)→ q(𝜀) for every 𝜀 > 0,

– for 𝜀 = 1 there exists n1 such that |qn(1)− q(1)| ⩽ 1 for n ⩾ n1,

– for 𝜀 = 1

2
there exists n2 > n1 such that |qn( 12 )− q( 1

2
)| ⩽ 1

2
for n ⩾ n2,

– for 𝜀 = 1

3
there exists n3 > n2 such that |qn( 13 )− q( 1

3
)| ⩽ 1

3
for n ⩾ n3,

– …
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Define

– 𝜀n = 1 for n < n2,

– 𝜀n = 1

2
for n2 ⩽ n < n3,

– 𝜀n = 1

3
for n3 ⩽ n < n4,

– …
By construction, 𝜀n → 0 and |qn(𝜀n)− q(𝜀n)| ⩽ 𝜀n for n ⩾ n2, so |qn(𝜀n)| ⩽ |q(𝜀n)|+ 𝜀n for n ⩾ n2 and

qn(𝜀n)→ 0. □

Proof of Theorem 2.2. Let 𝜃i,n = a+ i(b− a)∕dn, i = 1,… , dn. It is clear that the grid {𝜃i,n}i=1,…,dn
⊂ [a, b] is a.u.

in [a, b]. Hence, by Corollary 2.1, for every n there exists a permutation 𝜏n of {1,… , dn} such that

max
i=1,…,dn

| f (𝜃i,n )− 𝜆𝜏n(i),n| = max
i=1,…,dn

| f (𝜃i,n )− 𝜇i,n| = 𝜀n → 0, (3.7)

where for simplicity we have set 𝜇i,n = 𝜆𝜏n(i),n for all i = 1,… , dn. Moreover, Λn ⊆ f ([a, b]) by hypothesis. This

implies that, for every n and every i = 1,… , dn, the set f
−1(𝜇i,n) is finite (by Corollary 3.1) and non-empty. Thus,

we can define the grid n = {xi,n}i=1,…,dn
⊂ [a, b] such that, for every n and every i = 1,… , dn, the point xi,n is

chosen as one of the closest points to 𝜃i,n in f −1(𝜇i,n), i.e.,

f (xi,n ) = 𝜇i,n, |xi,n − 𝜃i,n| = min
x∈ f−1(𝜇i,n )

|x − 𝜃i,n| = min
x∈[a,b]:
f (x )=𝜇i,n

|x − 𝜃i,n|. (3.8)

We show that n is a.u. in [a, b] (provided that we arrange its points in increasing order). Once this is done, the
theorem is proved.

For every 𝛿, 𝜀 ⩾ 0 and every n, we define the “bad” sets

E𝛿,𝜀 =
{
x ∈ [a+ 𝛿, b− 𝛿]: [ f (x)− 𝜀, f (x)+ 𝜀] ⊈ f ([x − 𝛿, x + 𝛿])

}
∪ [a, a+ 𝛿 ) ∪ (b− 𝛿, b],

𝛿,n = {i ∈ {1,… , dn}: 𝜃i,n ∈ E𝛿,𝜀n}.

We call them“bad” sets, because if i ∉ 𝛿,n, i.e.,𝜃i,n ∉ E𝛿,𝜀n , then “things arefine” in the sense that |xi,n − 𝜃i,n| ⩽ 𝛿.

In formulas, for every 𝛿 > 0, every n and every i = 1,… , dn, we have

i ∈ (𝛿,n )c ⟺ 𝜃i,n ∈ (E𝛿,𝜀n )
c ⟹ |xi,n − 𝜃i,n| ⩽ 𝛿, (3.9)

where (𝛿,n )c is the complement of 𝛿,n in {1,… , dn} and (E𝛿,𝜀n )
c is the complement of E𝛿,𝜀n in [a, b].

To prove (3.9), suppose that 𝜃i,n ∈ (E𝛿,𝜀n )
c. Then, by definition of E𝛿,𝜀n , we have 𝜃i,n ∈ [a+ 𝛿, b− 𝛿] and

[ f (𝜃i,n)− 𝜀n, f (𝜃i,n)+ 𝜀n] ⊆ f ([𝜃i,n − 𝛿, 𝜃i,n + 𝛿]). Since 𝜇i,n ∈ [ f (𝜃i,n)− 𝜀n, f (𝜃i,n)+ 𝜀n] by (3.7), we infer that

𝜇i,n ∈ f ([𝜃i,n − 𝛿, 𝜃i,n + 𝛿]). Hence, there exists yi,n ∈ [𝜃i,n − 𝛿, 𝜃i,n + 𝛿] such that f (yi,n) = 𝜇i,n. But thenwehave

yi,n ∈ f −1(𝜇i,n) and |yi,n − 𝜃i,n| ⩽ 𝛿, which implies |xi,n − 𝜃i,n| ⩽ |yi,n − 𝜃i,n| ⩽ 𝛿 by our choice of xi,n as one of the

closest points to 𝜃i,n in f −1(𝜇i,n); see (3.8). This concludes the proof of (3.9).

Now, let a = 𝜉0 < 𝜉1 < … < 𝜉k < 𝜉k+1 = b be the local maximum points, local minimum points, and dis-

continuity points of f , to which we also add the boundary points 𝜉0 = a and 𝜉k+1 = b. For every j = 0,… , k, the

function f is continuous on (𝜉 j, 𝜉 j+1) and has no local maximum/minimum points on (𝜉 j, 𝜉 j+1), so it is strictly

monotone on (𝜉 j, 𝜉 j+1). Thus, by Lemma 3.8 applied to f : [𝜉 j + 𝛿∕2, 𝜉 j+1 − 𝛿∕2]→ ℝ, for every j = 0,… , k and

every 𝛿 > 0 there exists 𝜀( j,𝛿) > 0 such that

[ f (x)− 𝜀( j,𝛿 ), f (x)+ 𝜀( j,𝛿 )] ⊆ f ([x − 𝛿∕2, x + 𝛿∕2]) ⊆ f ([x − 𝛿, x + 𝛿]) ∀ x ∈ [𝜉 j + 𝛿, 𝜉 j+1 − 𝛿].

Hence, for every 𝛿 > 0 there exists 𝜀(𝛿) = min j=0,…,k𝜀
( j,𝛿) > 0 such that

[ f (x)− 𝜀(𝛿 ), f (x)+ 𝜀(𝛿 )] ⊆ f ([x − 𝛿, x + 𝛿]) ∀ x ∈
k⋃
j=0

[𝜉 j + 𝛿, 𝜉 j+1 − 𝛿]. (3.10)
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For every 𝛿 > 0, let n𝛿 be such that 𝜀n ⩽ 𝜀(𝛿) for n ⩾ n𝛿 . If n ⩾ n𝛿 and i ∈ {1,… , dn} is an index such that
𝜃i,n ∈

⋃k

j=0[𝜉 j + 𝛿, 𝜉 j+1 − 𝛿], then in particular 𝜃i,n ∈ [a+ 𝛿, b− 𝛿] and, by (3.10),

[ f (𝜃i,n )− 𝜀n, f (𝜃i,n )+ 𝜀n] ⊆
[
f (𝜃i,n )− 𝜀(𝛿 ), f (𝜃i,n )+ 𝜀(𝛿 )

]
⊆ f ([𝜃i,n − 𝛿, 𝜃i,n + 𝛿]).

Hence, 𝜃i,n ∉ E𝛿,𝜀n , i.e., i ∉ 𝛿,n. In follows that, for every 𝛿 > 0 and every n ⩾ n𝛿 ,

|𝛿,n| = |{i ∈ {1,… , dn}: 𝜃i,n ∈ E𝛿,𝜀n}| ⩽
||||||
{
i ∈ {1,… , dn}: 𝜃i,n ∈

k+1⋃
j=0

[𝜉 j − 𝛿, 𝜉 j + 𝛿]

}||||||
⩽ (k + 2)

(
2𝛿

dn
b− a

+ 1

)
,

where the latter inequality is due to Lemma 3.10.We can therefore choose, by Lemma 3.11, a sequence of positive

numbers {𝛿n}n such that 𝛿n → 0 and |𝛿n,n|∕dn → 0.

To conclude the proof, let ′
n
= {x′

i,n
}i=1,…,dn

be the sequence of dn points defined as follows:

x′
i,n
=
⎧⎪⎨⎪⎩
xi,n, if 𝜃i,n ∈ (E𝛿n,𝜀n )

c,

𝜃i,n, if 𝜃i,n ∈ E𝛿n,𝜀n .

′
n
⊂ [a, b] and ′

n
is a.u. in [a, b] because its distance from the a.u. grid {𝜃i,n}i=1,…,dn

is uniformly bounded by

𝛿n → 0. Indeed, by (3.9),

max
i=1,…,dn

|x′
i,n
− 𝜃i,n| = max

i∈{1,…,dn}:
𝜃i,n∈(E𝛿n ,𝜀n )

c

|xi,n − 𝜃i,n| ⩽ 𝛿n.

The grid ′
n
differs from the original grid n by at most 2|𝛿n,𝜀n | = o(dn ) elements, in the sense that |′n △ n| ⩽

2|𝛿n,𝜀n |. Thus, by Lemma 3.7, n is a.u. in [a, b] (provided that we arrange its points in increasing order). □

3.6 Concatenation lemma

The following lemma is a plain consequence of Definition 1.1 and has often been used in the literature, but lucid

statement and proof have never been provided. We therefore provide the details below.

Lemma 3.12 (concatenation lemma). Let {An}n be amatrix-sequence, let f : [a, b]→ ℂr×r be measurable, and sup-

pose that {An}n ∼𝜆 f . Let 𝜆1(f ),… , 𝜆r(f ): [a, b]→ ℂ be r measurable functions such that 𝜆1( f (x)),… , 𝜆r( f (x)) are

the eigenvalues of f (x) for every x ∈ [a, b]. Then {An}n ∼𝜆 f̃ , where f̃ is the concatenation of resized versions of

𝜆1( f ),… , 𝜆r( f ) given by

f̃ : [0, 1]→ ℂ, f̃ (y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜆1( f (a+ (b− a)ry)), 0 ⩽ y <
1

r
,

𝜆2( f (a+ (b− a)(ry− 1))),
1

r
⩽ y <

2

r
,

𝜆3( f (a+ (b− a)(ry− 2))),
2

r
⩽ y <

3

r
,

… …

𝜆r( f (a+ (b− a)(ry− r + 1))),
r − 1

r
⩽ y ⩽ 1.

Proof. The result follows from Definition 1.1, after observing that, for every F ∈ Cc(ℂ),
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1

∫
0

F( f̃ (y))dy =
r∑
i=1

i∕r

∫
(i−1)∕r

F(𝜆i( f (a+ (b− a)(ry− i+ 1))))dy

=
r∑
i=1

1

(b− a)r∫
b

a

F(𝜆i( f (x)))dx =
1

b− a

b

∫
a

r∑
i=1

F(𝜆i( f (x)))

r
dx,

where in the second equality we have used the change of variable formula for the Lebesgue integral. □

3.7 Restriction operator and asymptotic spectral distribution of restricted
matrix-sequences

For every n ⩾ 1, letΞn be the uniform grid in [0, 1] given byΞn = {i∕(n+ 1): i = 1,… , n}. If E ⊆ ℝ, we define dE
n

as the number of points of Ξn inside E, i.e., d
E
n
= |Ξn ∩ E|. If A is a square matrix of size n and E ⊆ ℝ, we define

RE(A) as the principal submatrix ofA of size d
E
n
obtained fromAby selecting the rows and columns corresponding

to indices i ∈ {1,… , n} such that i∕(n+ 1) ∈ E. For the proof of the next lemma, see [3, Lem. 4.9].

Lemma 3.13. Let Ω ⊆ [0, 1] be a regular set with 𝜇1(Ω) > 0, let {Γn}n be a sequence of measurable sets con-

tained in [0, 1], and suppose that d
Ω△Γn
dn

→∞ and d
Ω△Γn
dn

= o(dn ). Then, for every matrix-sequence {An}n formed
by Hermitian matrices with An of size dn, we have the equivalence

{RΩ(An )}n ∼𝜆 f ⟺ {RΓn (An )}n ∼𝜆 f .

3.8 GLT sequences

Let {An}n be a matrix-sequence and let 𝜘: [0, 1] × [−𝜋, 𝜋]→ ℂ be a measurable function. We say that {An}n is a
GLT sequence with symbol 𝜘 , and we write {An}n ∼GLT 𝜘 , if the pair ({An}n,𝜘 ) satisfies some special properties
that are not reported here as they are difficult to formulate. The interested reader is referred to refs. [1, Ch. 8] and

[7] for details. Here, we only collect the properties of GLT sequences that we need in the proof of Theorem 2.3.

The first property is reported in the next lemma [3, Lem. 5.1].

Lemma 3.14. Let {An}n be a matrix-sequence formed by Hermitian matrices, let 𝜘: [0, 1] × [−𝜋, 𝜋]→ ℂ be mea-

surable, and suppose that {An}n ∼GLT 𝜘 . Then, {RΩ(An )}n ∼𝜆 𝜘|Ω×[−𝜋,𝜋] for every regular setΩ ⊆ [0, 1].

The second property is reported in the next lemma [32, Th. 2].

Lemma 3.15. Let g: [0, 1]→ ℂ be measurable and let {Dn}n be a matrix-sequence formed by diagonal matrices
such that {Dn}n ∼𝜆 g. Then, there exists a matrix-sequence formed by permutation matrices {Pn}n such that{
PnDnP

T
n

}
n
∼GLT 𝜘(x, 𝜃 ) = g(x).

The third property is reported in the next lemma, which has never appeared in the literature.

Lemma 3.16 (splitting of GLT sequences formed by diagonal matrices). Let g: [0, 1]→ ℂ be measurable and let

{Λn = {𝜆1,n,… , 𝜆dn,n}}n be a sequence of finite multisets of real numbers such that dn →∞ as n→∞. Assume

the following:

– {Dn}n ∼GLT 𝜘(x, 𝜃 ) = g(x) with Dn = diag(𝜆1,n,… , 𝜆dn,n );

– {Ln,1}n,… , {Ln,k}n are sequences of natural numbers such that Ln,1 +…+ Ln,k = dn for every n and

Ln, j∕dn → 1∕k as n→∞ for every j = 1,… , k.
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Then {
diag

i=1,…,Ln, j

(𝜆Ln,1+···+Ln, j−1+i,n )

}
n

∼𝜆 g|[( j−1)∕k, j∕k], j = 1,… , k.

Proof. Let Ω j = [(j − 1)∕k, j∕k] for j = 1,… , k, and fix j ∈ {1,… , k}. Since {Dn}n ∼GLT 𝜘(x, 𝜃 ) = g(x) and the

matrices Dn are Hermitian, by Lemma 3.14 we have {RΩ j
(Dn )}n ∼𝜆 𝜘|Ω j×[−𝜋,𝜋], which is equivalent to

{RΩ j
(Dn )}n ∼𝜆 g|Ω j

. (3.11)

Let

Γn, j =
{
Ln,1 + · · · + Ln, j−1 + i

dn + 1
: i = 1,… , Ln, j

}
.

For every n, we have

d
Ω j△Γn, j
dn

=
|||||
{
i ∈ {1,… , dn}:

i

dn + 1
∈ Ω j △ Γn, j

}|||||
=
|||||
{
i ∈ {1,… , dn}:

i

dn + 1
∈ Ω j∖Γn, j

}|||||+
|||||
{
i ∈ {1,… , dn}:

i

dn + 1
∈ Γn, j∖Ω j

}|||||
=
|||||
{
i ∈ {1,… , dn}:

i

dn + 1
∈ Ω j,

i

dn + 1
⩽
Ln,1 + · · · + Ln, j−1

dn + 1

}|||||
+
|||||
{
i ∈ {1,… , dn}:

i

dn + 1
∈ Ω j,

i

dn + 1
>

Ln,1 + · · · + Ln, j

dn + 1

}|||||
+
|||||
{
i ∈ {1,… , dn}:

i

dn + 1
∈ Γn, j,

i

dn + 1
<

j − 1

k

}|||||
+
|||||
{
i ∈ {1,… , dn}:

i

dn + 1
∈ Γn, j,

i

dn + 1
>

j

k

}|||||
⩽
|||||
{
i ∈ {1,… , dn}:

j − 1

k
⩽ i

dn + 1
⩽
Ln,1 + · · · + Ln, j−1

dn + 1

}|||||
+
|||||
{
i ∈ {1,… , dn}:

Ln,1 + · · · + Ln, j

dn + 1
<

i

dn + 1
⩽ j

k

}|||||
+
|||||
{
i ∈ {1,… , dn}:

Ln,1 + · · · + Ln, j−1
dn + 1

<
i

dn + 1
<

j − 1

k

}|||||
+
|||||
{
i ∈ {1,… , dn}:

j

k
<

i

dn + 1
⩽
Ln,1 + · · · + Ln, j

dn + 1

}|||||
⩽
|||||
{
i ∈ {1,… , dn}: min

(
j − 1

k
,
Ln,1 + · · · + Ln, j−1

dn + 1

)
⩽ i

dn + 1
⩽ max

(
j − 1

k
,
Ln,1 + · · · + Ln, j−1

dn + 1

)}|||||
+
|||||
{
i ∈ {1,… , dn}: min

(
j

k
,
Ln,1 + · · · + Ln, j

dn + 1

)
⩽ i

dn + 1
⩽ max

(
j

k
,
Ln,1 + · · · + Ln, j

dn + 1

)}|||||
⩽
⌊ |||| (dn + 1)( j − 1)

k
− Ln,1 − · · · − Ln, j−1

||||
⌋
+
⌊ |||| (dn + 1) j

k
− Ln,1 − · · · − Ln, j

||||
⌋
+ 2,

where the last inequality is due to Lemma 3.10. Since Ln,i∕dn → 1∕k as n→∞ for every i = 1,… , k by

assumption, we have

1

dn

|||| (dn + 1)( j − 1)

k
− Ln,1 − · · · − Ln, j−1

||||→ 0,
1

dn

|||| (dn + 1) j

k
− Ln,1 − · · · − Ln, j

||||→ 0,
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and so d
Ω j△Γn, j
dn

= o(dn ). Therefore, by (3.11) and Lemma 3.13,

{RΓn, j (Dn )}n =
{

diag
i=1,…,Ln, j

(𝜆Ln,1+···+Ln, j−1+i,n )

}
n

∼𝜆 g|Ω j
. □

3.9 Proof of Lemma 2.1

We have now collected all the ingredients to prove Lemma 2.1.

Proof of Lemma 2.1. By Lemma 3.12, the hypothesis {Dn}n ∼𝜆 f is equivalent to {Dn}n ∼𝜆 f̃ , where f̃ : [0, 1]→ ℝ
is a concatenation of resized versions of the functions f1,… , fk . More precisely,

f̃ (x) = f j(a+ (b− a)(kx − j + 1)), x ∈
[
j − 1

k
,
j

k

)
, j = 1,… , k, f̃ (1) = fk(b).

By Lemma 3.15, there exists a sequence {𝜏n}n such that 𝜏n is a permutation of {1,… , dn} and

{D̃n = diag(𝜆𝜏n(1),n,… , 𝜆𝜏n(dn ),n )}n ∼GLT f̃ (x).

By Lemma 3.16, we conclude that{
diag

i=1,…,Ln, j

(𝜆𝜏n(Ln,1+···+Ln, j−1+i),n )

}
n

∼𝜆 f̃ |[( j−1)∕k, j∕k], j = 1,… , k.

Since

k

j∕k

∫
( j−1)∕k

f̃ |[( j−1)∕k, j∕k](y)dy = k

j∕k

∫
( j−1)∕k

f j(a+ (b− a)(ky− j + 1))dy = 1

b− a

b

∫
a

f j(x)dx

(this is proved by direct computation using the change of variable formula for the Lebesgue integral as in the

proof of Lemma 3.12), the thesis is proved with

Dn, j = diag
i=1,…,Ln, j

(𝜆𝜏n(Ln,1+···+Ln, j−1+i),n ),

Λn, j = {𝜆𝜏n(Ln,1+···+Ln, j−1+i),n: i = 1,… , Ln, j}. □

3.10 Proof of Lemma 2.2

In order to prove Lemma 2.2, we need some auxiliary results. The first result is reported in the next lemma [1,

Th. 3.1].

Lemma 3.17. If {An}n ∼𝜆 f , then

lim
n→∞
|{i ∈ {1,… , dn}:𝜆i(An ) ∉ ((f ))𝜀}|

dn
= 0 ∀ 𝜀 > 0,

where dn is the size of An.

The second result is reported in the next lemma [1, Th. 3.2]. In what follows, the notation {Zn}n ∼𝜎 0 means

that {Zn}n is a matrix-sequence with an asymptotic singular value distribution described by the identically

zero function defined on any subset Ω of some ℝd with 0 < 𝜇d(Ω) < ∞. Hence, regardless of Ω, the notation
{Zn}n ∼𝜎 0 means that

1

dn

∑dn
i=1F(𝜎i(Zn ))→ F(0) for all F ∈ Cc(ℝ), where dn is the size of Zn.
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Lemma 3.18. Let {Zn}n be a matrix-sequence with Zn of size dn. We have {Zn}n ∼𝜎 0 if and only if Zn = Rn + Nn

for every n with limn→∞(dn )
−1rank(Rn ) = limn→∞‖Nn‖ = 0.

The third result is reported in the next lemma [1, Ex. 5.3].

Lemma 3.19. Let {Xn}n and {Yn}n be matrix-sequences formed by Hermitianmatrices, with Xn and Yn of the same

size. If {Xn}n ∼𝜆 f and {Yn}n ∼𝜎 0 then {Xn + Yn}n ∼𝜆 f .

The last result is the following lemma of graph theory. In what follows, given a directed graph  = (V , E)

and any two nodes i, j ∈ V , a directed path from i to j is any sequence of nodes i1i2… iq such that i1 = i, iq = j,

and (ia, ia+1) ∈ E for all a = 1,… , q− 1. Note that a directed path from a node i to itself always exists (take the

sequence i consisting only of the node i).

Lemma 3.20. Let X be a finite set, and let A1, . . . ,Ak and B1, . . . ,Bk be two partitions of X with |Ai| = |Bi| for every
i = 1,… , k. Let  = (V , E) be a directed graph on k nodes V = {1,… , k} such that a directed edge (i, j) ∈ E exists

if and only if Ai ∩ Bj is not empty. If (i, j) ∈ E then there exists a directed path from j to i.

Proof. Suppose by contradiction that (i, j) ∈ E but there is no directed path from j to i. Then, the sets of nodes

Ni = {nodes with a directed path to i}, N j = {nodes with a directed path from j}

are disjoint. Moreover, there is no edge from N j to (N j )c, hence

∑
x∈N j

|Ax| = ∑
x∈N j

∑
y∈V
|Ax ∩ By| = ∑

x∈N j

∑
y∈N j

|Ax ∩ By|,
∑
y∈N j

|By| = ∑
y∈N j

∑
x∈V
|Ax ∩ By| ⩾ |Ai ∩ Bj|+ ∑

x∈N j

∑
y∈N j

|Ax ∩ By|,
where the last inequality follows by letting x vary inN j ∪ {i} instead ofV .Wehave thus obtained a contradiction,

because
∑

x∈N j |Ax| = ∑y∈N j |By| and |Ai ∩ Bj| > 0. □

Proof of Lemma 2.2. The hypotheses of Lemma 2.1 are satisfied with f1,… , fk,Λn as in the statement of

Lemma 2.2 and with Ln, j = |Λ̃n, j| for every n and every j = 1,… , k. Thus, by Lemma 2.1, for every n there exists

a partition {Λ̂n,1,… , Λ̂n,k} ofΛn such that, for every j = 1,… , k, the following properties hold:

– |Λ̂n, j| = Ln, j = |Λ̃n, j|;
– {Λ̂n, j}n ∼ f j, i.e., {D̂n, j}n ∼𝜆 f j, where D̂n, j = diag(𝜆̂

( j)

1,n
,… , 𝜆̂

( j)

Ln, j,n
) and {𝜆̂( j)

1,n
,… , 𝜆̂

( j)

Ln, j,n
} = Λ̂n, j.

The partition {Λ̂n,1,… , Λ̂n,k} satisfies the first two properties required in the thesis of the lemma, but it may not
satisfy the third property. Through “successive displacements”, we want to change the partition {Λ̂n,1,… , Λ̂n,k}
into a new partition {Λn,1,… ,Λn,k} that satisfies also the third property.

For every j = 1,… , k, since {D̂n, j}n ∼𝜆 f j, by Lemmas 3.11 and 3.17 there exists some 𝛿n, j tending to 0 as

n→∞ such that |Λ̂n, j ∩ (( f j ))
c
𝛿n, j
|

Ln, j
→ 0 as n→∞.

Note that the previous limit relation continues to hold if we replace Ln, j with dn (because Ln, j∕dn = |Λ̃n, j|∕dn →
1∕k by hypothesis) and 𝛿n, j with 𝛿n = max(𝛿n,1,… , 𝛿n,k, 𝜀n), where 𝜀n is the same as in the assumptions of the

lemma. Thus, if we define

Ên, j = Λ̂n, j ∩ (( f j ))
c
𝛿n
, j = 1,… , k, (3.12)
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then we have the following: for every n there exists some 𝛿n tending to 0 as n→∞ such that 𝜀n ⩽ 𝛿n and, for

every j = 1,… , k, |Ên, j|
dn

→ 0 as n→∞. (3.13)

We remark that, since Λ̃n, j ⊆ (( f j ))𝜀n by assumption, we have

Ên, j ⊆ (( f j ))
c
𝛿n
⊆ (( f j ))

c
𝜀n
⊆ (Λ̃n, j )

c. (3.14)

Now, fix n and take an element x ∈ Ên,1 ∪…∪ Ên,k . To fix ideas, suppose that x ∈ Ên,1. By definition

of Ên,1 we have x ∈ Λ̂n,1, and by (3.14) we have x ∉ Λ̃n,1. Since {Λ̃n,1,… , Λ̃n,k} is a partition of Λn just

like {Λ̂n,1,… , Λ̂n,k}, there exists p ∈ {1,… , k} with p ≠ 1 such that x ∈ Λ̃n, p. Note that all hypotheses

of Lemma 3.20 are satisfied for X = Λn and the partitions {A1,… ,Ak} = {Λ̂n,1,… , Λ̂n,k} and {B1,… ,Bk}
= {Λ̃n,1,… , Λ̃n,k}, and moreover (1, p) is an edge of the graph  mentioned in Lemma 3.20 due to the element

x ∈ Λ̂n,1 ∩ Λ̃n, p. Hence, by Lemma 3.20, there exists in  a directed path from p to 1. This means that there exist

indices

i0 = 1, i1 = p, i2, i3, … , iq, iq+1 = 1

(with i0,… , iq+1 ∈ {1,… , k} and i0,… , iq distinct) and corresponding elements

x0 = x, x1, x2, x3, … , xq

(with x0,… , xq ∈ Λn) such that

xs ∈ Λ̂n,is
∩ Λ̃n,is+1

, s = 0,… , q.

As a consequence, we can produce a new partition {Λn,1,… ,Λn,k} ofΛn with the same cardinalities

|Λn, j| = Ln, j = |Λ̂n, j|, j = 1,… , k,

by removing xs from Λ̂n,is
and adding it to Λ̂n,is+1

for s = 1,… , q. Note that, for every s = 0,… , q,

xs ∈ Λ̃n,is+1
⊆ (( fis+1 ))𝜀n ⊆ (( fis+1 ))𝛿n ,

hence

xs ∉ Ên,is+1 , s = 0,… , q. (3.15)

Therefore, if in analogy with (3.12) we define

En, j = Λn, j ∩ (( f j ))
c
𝛿n
, j = 1,… , k, (3.16)

then we have

En, j ⊆ Ên, j, j = 1,… , k,

|En,1| = |Ên,1|− 1,

where the latter equation is due to the fact that x = x0 has been removed from Ên,1 and has been replaced with

xq ∉ Ên,1; see (3.15). In conclusion, starting from the original partition

{Λ̂n,1,… , Λ̂n,k}, {Ên,1,… , Ên,k}

we have produced a new partition

{Λn,1,… ,Λn,k}, {En,1,… , En,k}

with the same cardinalities

|Λn,1| = Ln,1 = |Λ̂n,1|, … , |Λn,k| = Ln,k = |Λ̂n,k|
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and with

En,1 ∪…∪ En,k ⫋ Ên,1 ∪…∪ Ên,k .

We can now repeat the same procedure for another element x ∈ En,1 ∪…∪ En,k until all the “E-sets” are empty.

At the end of the whole construction, we obtain a final partition

{Λn,1,… ,Λn,k}, {En,1,… , En,k}

with the same cardinalities

|Λn,1| = Ln,1 = |Λ̂n,1|, … , |Λn,k| = Ln,k = |Λ̂n,k| (3.17)

and with corresponding “E-sets”

En,1 = … = En,k = ∅, (3.18)

where En, j is defined in analogy with (3.12) and (3.16) as follows:

En, j = Λn, j ∩ (( f j ))
c
𝛿n
, j = 1,… , k. (3.19)

We prove that the partition {Λn,1,… ,Λn,k} satisfies the three properties required in the thesis of the lemma.
The partition {Λn,1,… ,Λn,k} satisfies the first property by (3.17) and the third property by (3.18) and (3.19).

It only remains to prove that {Λn,1,… ,Λn,k} satisfies the second property. To this end, we note that the above
procedure must be repeated at most a number Nn of times equal to

Nn = |Ên,1 ∪…∪ Ên,k| ⩽ |Ên,1|+ · · · + |Ên,k| = o(dn ), (3.20)

because each time we apply the procedure, the union of the “E-sets” loses an element (the final equality in (3.20)

is due to (3.13)). Moreover, each timewe apply the procedure, the new partition {Λ(new)
n,1

,… ,Λ(new)

n,k
} differs from

the previous partition {Λ(old)
n,1

,… ,Λ(old)

n,k
} by at most 1 element per set, in the sense that

|Λ(new)

n, j
∖Λ(old)

n, j
| ⩽ 1, j = 1,… , k.

For example, the first time we apply the procedure, we obtain

|Λn, j∖Λ̂n, j| ⩽ 1, j = 1,… , k.

So, after Nn applications of the procedure, we obtain

|Λn, j∖Λ̂n, j| ⩽ Nn, j = 1,… , k.

Thus, for every j = 1,… , k, if we define Dn, j as in the second property of the thesis of the lemma, the previous

inequality implies that, after a suitable permutation of its diagonal elements, Dn, j becomes equal to D̂n, j +Δn, j

with Δn, j a diagonal matrix with rank(Δn, j ) = |Λn, j∖Λ̂n, j| ⩽ Nn = o(dn ). This implies that {Δn, j}n ∼𝜎 0 by

Lemma 3.18 and {Dn, j}n ∼𝜆 f j by Lemma 3.19. □

3.11 Proof of Theorem 2.3

We have now collected all the ingredients to prove Theorem 2.3.

Proof of Theorem 2.3. The theorem follows immediately from Lemma 2.2 and Corollary 2.1. Indeed, by

Lemma 2.2, for every n there exists a partition {Λn,1,… ,Λn,k} of Λn such that, for every j = 1,… , k, the

following properties hold:

– |Λn, j| = |Λ̃n, j|;
– {Dn, j}n ∼𝜆 f j, where Dn, j = diag(𝜆

( j)

1,n
,… , 𝜆

( j)|Λn, j|,n ) and {𝜆( j)1,n
,… , 𝜆

( j)|Λn, j|,n} = Λn, j;

– Λn, j ⊆ [inf[a,b] f j − 𝛿n, sup[a,b] f j + 𝛿n] for some 𝛿n → 0 as n→∞.
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By Corollary 2.1, for every j = 1,… , k and every a.u. grid {x( j)
i,n
}i=1,…,|Λn, j| in [a, b] with {x( j)i,n

}i=1,…,|Λn, j| ⊂ [a, b],

if 𝜎n, j and 𝜏n, j are two permutations of {1,… , |Λn, j|} such that the vectors [ f j(x( j)𝜎n, j(1),n
),… , f j(x

( j)

𝜎n, j(|Λn, j|),n )] and
[𝜆

( j)

𝜏n, j(1),n
,… , 𝜆

( j)

𝜏n, j(|Λn, j|),n] are sorted in increasing order, we have
max

i=1,…,|Λn, j| | f j(x( j)𝜎n, j(i),n
)− 𝜆

( j)

𝜏n, j(i),n
|→ 0 as n→∞. □

4 Numerical experiments

In this section, after recalling some properties of Toeplitz matrices, we illustrate our main results through

numerical examples.

4.1 Preliminaries on Toeplitz matrices

It is not difficult to see that the conjugate transpose of Tn( f ) is given by

Tn(f )
∗ = Tn(f )

for every f ∈ L1([−𝜋, 𝜋]) and every n; see, e.g., [1, Sect. 6.2]. In particular, if f is real a.e., then f = f a.e. and the

matrices Tn( f ) are Hermitian. The next theorem collects some properties of Toeplitz matrices generated by a

real function. For the proof, see [1, Theorems 6.1 and 6.5].

Theorem 4.1. Let f ∈ L1([−𝜋, 𝜋]) be real and letmf = ess inf[−𝜋,𝜋] f andMf = ess sup[−𝜋,𝜋] f . Then, the following

properties hold:

1. Tn( f ) is Hermitian and the eigenvalues of Tn( f ) lie in the interval [mf ,Mf ] for all n;

2. if f is not a.e. constant, then the eigenvalues of Tn( f ) lie in (mf ,Mf ) for all n;

3. {Tn(f )}n ∼𝜆 f .

4.2 Numerical examples

Example 4.1. Let f (𝜃 ) = a+ b cos 𝜃: [−𝜋, 𝜋]→ ℝ, with a, b ∈ ℝ and b ≠ 0, and letΛn = {𝜆1,n,… , 𝜆n,n} be the
multiset consisting of the eigenvalues of the Hermitian Toeplitz matrix Tn( f ). By Theorem 4.1 and the fact that f

is an even function, we have {Λn}n ∼ f |[0,𝜋] and Λn ⊆ (min[0,𝜋] f , max[0,𝜋] f ). Since f is continuous, f |[0,𝜋] and
Λn satisfy all the assumptions of Corollary 2.1 and Theorem 2.2, and we therefore conclude the following.

– For every a.u. grid {𝜃i,n}i=1,…,n in [0, 𝜋] with {𝜃i,n}i=1,…,n ⊂ [0, 𝜋], we have

max
i=1,…,n

| f (𝜃i,n )− 𝜆𝜏n(i),n|→ 0 as n→∞,

where 𝜏n is a suitable permutation of {1,… , n}.
– There exists an a.u. grid {𝜃i,n}i=1,…,n in [0, 𝜋] with {𝜃i,n}i=1,…,n ⊂ [0, 𝜋] such that, for every n,

𝜆𝜏n(i),n = f (𝜃i,n ), i = 1,… , n,

where 𝜏n is a suitable permutation of {1,… , n}.
The two previous assertions are actually well known in this case, becauseΛn = { f (i𝜋∕(n+ 1)): i = 1,… , n}; see
[33, Th. 2.4].
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Figure 3: Example 4.2: Graph on the interval [0, 𝜋] of the function f (𝜃)

defined in (4.1).

Table 1: Example 4.2: Computation of Mn for

increasing values of n.

n M
n

8 0.0851

16 0.0632

32 0.0454

64 0.0312

128 0.0206

256 0.0132

512 0.0082

1,024 0.0050

Example 4.2. Let f : [−𝜋, 𝜋]→ ℝ,

f (𝜃 ) =

⎧⎪⎪⎨⎪⎪⎩

1, 0 ⩽ 𝜃 < 𝜋∕2,

𝜃 + 1− 𝜋∕2, 𝜋∕2 ⩽ 𝜃 ⩽ 𝜋,

f (−𝜃 ), −𝜋 ⩽ 𝜃 < 0,

(4.1)

and letΛn = {𝜆1,n,… , 𝜆n,n} be themultiset consisting of the eigenvalues of the Hermitian Toeplitzmatrix Tn( f ).
Figure 3 shows the graph of f over the interval [0, 𝜋]. By Theorem 4.1 and the fact that f is an even function, we

have {Λn}n ∼ f |[0,𝜋] andΛn ⊆ (min[0,𝜋] f , max[0,𝜋] f ) = (1, 1+ 𝜋∕2). Since f is continuous, f |[0,𝜋] andΛn satisfy

all the assumptions of Corollary 2.1, and we therefore conclude that, for every a.u. grid {𝜃i,n}i=1,…,n in [0, 𝜋] with

{𝜃i,n}i=1,…,n ⊂ [0, 𝜋], we have

Mn = max
i=1,…,n

| f (𝜃i,n )− 𝜆𝜏n(i),n|→ 0 as n→∞, (4.2)

where 𝜏n is the permutation of {1,… , n} that sorts 𝜆1,n,… , 𝜆n,n in increasing order (note that f |[0,𝜋] is increas-
ing). To provide numerical evidence of (4.2), in Table 1 we computeMn for increasing values of n in the case of

the a.u. grid 𝜃i,n = i𝜋∕(n+ 1), i = 1,… , n. We see from the table thatMn → 0 as n→∞, though the convergence

is slow.

Now we observe that f |[0,𝜋] and Λn do not satisfy the assumptions of Theorem 2.2. Actually, they satisfy all

the assumptions of Theorem 2.2 except the hypothesis that f has a finite number of local maximum/minimum

points. Indeed, f is constant on [0, 𝜋∕2] and so all points in [0, 𝜋∕2) are both local maximum and local minimum

points for f according to our Definition 2.1. We observe that, in fact, the thesis of Theorem 2.2 does not hold in

this case, i.e., there is no a.u. grid {𝜃i,n}i=1,…,n in [0, 𝜋] with {𝜃i,n}i=1,…,n ⊂ [0, 𝜋] such that, for every n,

𝜆𝜏n(i),n = f (𝜃i,n ), i = 1,… , n,

for a suitable permutation 𝜏n of {1,… , n}. This is clear, becauseΛn ⊂ (1, 1+ 𝜋∕2) and so any grid {𝜃i,n}i=1,…,n ⊂

[0, 𝜋] satisfying the previous condition must be contained in (𝜋∕2, 𝜋), which implies that it cannot be a.u. in

[0, 𝜋].
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Figure 4: Example 4.3: Graph on the interval [0, 𝜋] of the function f (𝜃)

defined in (4.3).

Table 2: Example 4.3: Computation of Mn for

increasing values of n.

n M
n

8 0.7220

16 0.5625

32 0.4471

64 0.2956

128 0.1783

256 0.1096

512 0.0605

1,024 0.0373

Example 4.3. Let f : [−𝜋, 𝜋]→ ℝ,

f (𝜃 ) =

⎧⎪⎪⎨⎪⎪⎩

cos(2𝜃 )+ cos(3𝜃 ), 0 ⩽ 𝜃 < 𝜋∕2,

𝜃, 𝜋∕2 ⩽ 𝜃 ⩽ 𝜋,

f (−𝜃 ), −𝜋 ⩽ 𝜃 < 0,

(4.3)

and letΛn = {𝜆1,n,… , 𝜆n,n} be themultiset consisting of the eigenvalues of the Hermitian Toeplitzmatrix Tn( f ).
Figure 4 shows the graph of f over the interval [0, 𝜋]. By Theorem 4.1 and the fact that f is an even function, we

have {Λn}n ∼ f |[0,𝜋] andΛn ⊆ (min[0,𝜋] f ,max[0,𝜋] f ) = (− 25

54
− 10

√
10

27
, 𝜋 ). Note that the function f |[0,𝜋] is not con-

tinuous, but it satisfies anyway all the assumptions of Corollary 2.1 and Theorem 2.2, and we therefore conclude

the following.

– For every a.u. grid {𝜃i,n}i=1,…,n in [0, 𝜋] with {𝜃i,n}i=1,…,n ⊂ [0, 𝜋], we have

Mn = max
i=1,…,n

| f (𝜃𝜎n(i),n )− 𝜆𝜏n(i),n|→ 0 as n→∞, (4.4)

where 𝜎n and 𝜏n are two permutations of {1,… , n} such that the vectors [ f (𝜃𝜎n(1),n ),… , f (𝜃𝜎n(n),n )] and

[𝜆𝜏n(1),n,… , 𝜆𝜏n(n),n] are sorted in increasing order.

– There exists an a.u. grid {𝜃i,n}i=1,…,n in [0, 𝜋] with {𝜃i,n}i=1,…,n ⊂ [0, 𝜋] such that, for every n,

𝜆𝜏n(i),n = f (𝜃i,n ), i = 1,… , n,

where 𝜏n is a suitable permutation of {1,… , n}.
To provide numerical evidence of (4.4), in Table 2 we compute Mn for increasing values of n in the case of the

a.u. grid 𝜃i,n = i𝜋∕(n+ 1), i = 1,… , n. We see from the table thatMn → 0 as n→∞, though the convergence is

slow.

Example 4.4. Consider the following second-order differential problem:{− (a(x)u′(x))′ = g(x), x ∈ (0, 1),

u(0) = 𝛼, u(1) = 𝛽,

where a: [0, 1]→ ℝ is assumed to be continuous and non-negative on [0, 1]. In the classical finite difference

method based on second-order central finite differences over the uniform grid xi = i∕(n+ 1), i = 0,… , n+ 1,
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the computation of the numerical solution reduces to solving a linear system whose coefficient matrix is the

symmetric n × n tridiagonal matrix given by

An =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1∕2 + a3∕2 −a3∕2
−a3∕2 a3∕2 + a5∕2 −a5∕2

−a5∕2 ⋱ ⋱

⋱ ⋱ −an−1∕2
−an−1∕2 an−1∕2 + an+1∕2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where ai = a(xi) for all i in the real interval [0, n+ 1]; see [1, Sect. 10.5.1] for more details. Let f (x, 𝜃 ) = a(x)(2−
2 cos 𝜃 ): [0, 1] × [0, 𝜋]→ ℝ, and letΛn = {𝜆1,n,… , 𝜆n,n} be the multiset consisting of the eigenvalues of An. We

know from ref. [1, Th. 10.5] that {An}n ∼𝜆 f , i.e., {Λn}n ∼ f . Moreover, in view of the dyadic decomposition of An
in ref. [34, Sect. 2], we have

Λn ⊆

[
𝜆min(Tn(2− 2 cos 𝜃 )) ⋅min

[0,1]
a, 𝜆max(Tn(2− 2 cos 𝜃 )) ⋅max

[0,1]
a

]
⊆

[
0, 4max

[0,1]
a

]

=
[

min
[0,1]×[0,𝜋]

f , max
[0,1]×[0,𝜋]

f

]
= f ([0, 1] × [0, 𝜋]) = (f ),

where the latter equality follows from the continuity of f and the fact that the domain [0, 1] × [0, 𝜋] is not “too

wild” (in particular, it is contained in the closure of its interior); see [1, Ex. 2.1].

Now, following the notations of Theorem 2.1, let a = (0, 0) and b = (1, 𝜋), so that [a, b] = [0, 1] × [0, 𝜋].

Assume that n is a perfect square, let n = n(n) = (
√
n,
√
n), consider the a.u. grid in [a, b] given by

(n)
n

=
{
x
(n)

i,n

}
i=1,…,n

, x
(n)

i,n
= a+ i(b− a)

n
=
(

i1√
n
,
i2𝜋√
n

)
, i = 1,… ,n,

and let [f1,n,… , fn,n] = [ fi,n]i=1,…,n be the same as the vector [ f (x
(n)
1,n
),… , f (x(n)

n,n )] = [ f (x(n)
i,n
)]i=1,…,n but indexed

with a 1-index i = 1,… , n instead of a 2-index i = 1,… ,n. Then, by Theorem 2.1,

Mn = max
i=1,…,n

| f𝜎n(i),n − 𝜆𝜏n(i),n|→ 0 as n→∞, (4.5)

where 𝜎n and 𝜏n are two permutations of {1,… , n} such that the vectors

[ f𝜎n(1),n,… , f𝜎n(n),n] = [ f𝜎n(i),n]i=1,…,n,

[𝜆𝜏n(1),n,… , 𝜆𝜏n(n),n] = [𝜆𝜏n(i),n]i=1,…,n

are sorted in increasing order. To provide numerical evidence of (4.5), in Table 3 we computeMn for increasing

values of n and different choices of a(x). In all cases, we see from the table that Mn → 0 as n→∞, though the

convergence is slow.

Example 4.5. Consider the two-dimensional Poisson problem{ −Δu(x) = g(x), x ∈ (0, 1)2,

u(x) = h(x), x ∈ 𝜕((0, 1)2 ).

In the isogeometric Galerkin discretization based on tensor-product biquadratic B-splines defined over the uni-

formgrid i∕n for i = 0,… ,n andn = n(n) = (n, n), the computation of the numerical solution reduces to solving

a linear system whose coefficient matrix is the symmetric n2 × n2 matrix given by

An = Kn ⊗Mn +Mn ⊗ Kn,
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Table 3: Example 4.4: Computation of Mn for increasing values of n and different choices of a(x).

(a) a(x)= e−x (b) a(x)= 2+ cos(3x) (c) a(x)= x log(1+ x)

n M
n

n M
n

n M
n

900 0.0684 900 0.1471 900 0.1240

1,600 0.0559 1,600 0.1132 1,600 0.0915

2,500 0.0473 2,500 0.0890 2,500 0.0717

3,600 0.0411 3,600 0.0738 3,600 0.0583

4,900 0.0364 4,900 0.0634 4,900 0.0497

6,400 0.0326 6,400 0.0558 6,400 0.0435

8,100 0.0296 8,100 0.0484 8,100 0.0383

10,000 0.0271 10,000 0.0436 10,000 0.0344

where⊗ is the Kronecker tensor product and Kn,Mn are the symmetric n × nmatrices given by

Kn =
1

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 −1 −1
−1 6 −2 −1
−1 −2 6 −2 −1

⋱ ⋱ ⋱ ⋱ ⋱

−1 −2 6 −2 −1
−1 −2 6 −1

−1 −1 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Mn =
1

120

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

40 25 1

25 66 26 1

1 26 66 26 1

⋱ ⋱ ⋱ ⋱ ⋱

1 26 66 26 1

1 26 66 25

1 25 40

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

see [2, Sect. 7.6] for more details. Let

f : [0, 𝜋]2 → ℝ, f (𝜃1, 𝜃2 ) = 𝜘(𝜃1 )𝜇(𝜃2 )+ 𝜇(𝜃1 )𝜘(𝜃2 ),
where

𝜘(𝜃 ) = 1− 2

3
cos 𝜃 − 1

3
cos(2𝜃 ), 𝜇(𝜃 ) = 11

20
+ 13

30
cos 𝜃 + 1

60
cos(2𝜃 ),

and let Λn =
{
𝜆1,n,… , 𝜆n2,n

}
be the multiset consisting of the eigenvalues of An. We know from ref. [2, Th. 7.7]

that {An}n ∼𝜆 f , i.e., {Λn}n ∼ f . Moreover, numerical experiments reveal that there are no outliers, i.e.,

Λn ⊆
[
0,
3

2

]
=
[
min
[0,𝜋]2

f ,max
[0,𝜋]2

f

]
= f ([0, 𝜋]2 ) = (f )

for all n. Thus, Theorem 2.1 applies in this case. In fact, in view of the spectral decompositions obtained in ref.

[35, Sect. 3.3], the eigenvalues of An are exactly given by

f (x(n)
i,n
), i = 1,… ,n,

where n = n(n) = (n, n) as above and (n)
n

= {x(n)
i,n
}i=1,…,n is the a.u. grid in [0, 𝜋]

2 given by

x
(n)

i,n
=
(
i1𝜋

n
,
i2𝜋

n

)
, i = 1,… ,n.

Example 4.6. Consider the following second-order differential problem:{ − u′′(x) = g(x), x ∈ (0, 1),

u(0) = 𝛼, u(1) = 𝛽 .
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In the classical Galerkin method with basis functions given by the 2n− 1 B-splines of degree 2 and smoothness

C0([0, 1]) defined over the uniform knot sequence {0, 0, 0, 1
n
,
1

n
,
2

n
,
2

n
,… ,

n−1
n
,
n−1
n
, 1, 1, 1} and vanishing at the

boundary points x = 0 and x = 1, the computation of the numerical solution reduces to solving a linear system

whose coefficient matrix is the symmetric (2n− 1) × (2n− 1) matrix given by

1

3

4 −2

−2 8 −2 −2

−2 4 −2

−2 −2 8 −2 −2

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

−2 4 −2

−2 −2 8 −2 −2

−2 4 −2

−2 −2 8 −2

−2 4

;A
n

=

see [22, Sect. 2.3.2] for more details. Let

f (𝜃 ) = 1

3

[
4 −2− 2ei𝜃

−2− 2e−i𝜃 8− 4 cos 𝜃

]
: [0, 𝜋]→ ℂ2×2,

and let Λn = {𝜆1,n,… , 𝜆2n−1,n} be the multiset consisting of the eigenvalues of An (sorted in increasing order

for later convenience). We know from refs. [5, Th. 6.5] and [22, Sect. 2.3.2] that {An}n ∼𝜆 f , i.e., {Λn}n ∼ f . By

Definition 1.1, the latter is equivalent to {Λn}n ∼ diag( f1, f2 ), where f1, f2: [0, 𝜋]→ ℝ are given by

f1(𝜃 ) = 𝜆1( f (𝜃 )) = 2− 2

3
cos 𝜃 − 2

3

√
3+ cos2 𝜃, (4.6)

f2(𝜃 ) = 𝜆2( f (𝜃 )) = 2− 2

3
cos 𝜃 + 2

3

√
3+ cos2 𝜃. (4.7)

Figure 5 shows the graphs of the functions f1,2(𝜃) and the set of eigenvaluesΛn for n = 20. The eigenvalues 𝜆i,n,

i = 1,… , 2n− 1, are positioned at i𝜋∕n for i = 1,… , n and (i− n)𝜋∕n for i = n+ 1,… , 2n− 1. Note that

( f1 ) = f1([0, 𝜋]) = [ f1(0), f1(𝜋 )] =
[
0,
4

3

]
,

( f2 ) = f2([0, 𝜋]) = [ f2(0), f2(𝜋 )] =
[
8

3
, 4
]
.

From the figure, wemay assume that the hypotheses of Theorem 2.3 are satisfiedwith the partition {Λ̃n,1, Λ̃n,2} of
Λn given by Λ̃n,1 = {𝜆1,n,… , 𝜆n,n} and Λ̃n,2 = {𝜆n+1,n,… , 𝜆2n−1,n}. Thus, by Theorem 2.3, for every n there exists

a partition {Λn,1,Λn,2} of Λn (which must necessarily coincide with the original partition {Λ̃n,1, Λ̃n,2}) with the
following properties:

– |Λn,1| = |Λ̃n,1| = n and |Λn,2| = |Λ̃n,2| = n− 1;

– Λn,1 ⊆
[
−𝛿n, 43 + 𝛿n

]
andΛn,2 ⊆

[
8

3
− 𝛿n, 4+ 𝛿n

]
for some 𝛿n → 0 as n→∞;

– {Λn,1}n ∼ f1 and {Λn,2}n ∼ f2;

– if {𝜃i,n}i=1,…,n and {𝜗i,n}i=1,…,n−1 are any two a.u. grids in [0, 𝜋] contained in [0, 𝜋], then

Mn,1 = max
i=1,…,n

| f1(𝜃i,n )− 𝜆i,n|→ 0 as n→∞, (4.8)

Mn,2 = max
i=1,…,n−1

| f2(𝜗i,n )− 𝜆i+n,n|→ 0 as n→∞. (4.9)
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Figure 5: Example 4.6: Graphs of the functions f1,2(𝜃) in

(4.6)–(4.7) and set of eigenvaluesΛn for n = 20.

Actually, we can saymore than (4.8) and (4.9). Indeed, numerical experiments reveal thatMn,1 = Mn,2 = 0 for all

n if we choose the a.u. grids suggested by Figure 5, i.e., 𝜃i,n = i𝜋∕n, i = 1,… , n, and 𝜗i,n = i𝜋∕n, i = 1,… , n− 1.

In other words, the eigenvalues of An are explicitly given by

{f1(𝜃i,n ): i = 1,… , n} ∪ {f2(𝜗i,n ): i = 1,… , n− 1}.

We refer the reader to Appendix A for further explicit formulas for the eigenvalues of B-spline Galerkin dis-

cretization matrices. These formulas have been obtained through numerical experiments and provide further

confirmations of Theorem 2.3.

5 Conclusions

Wehaveprovidednew insights into thenotion of asymptotic (spectral) distributionby extendingprevious results

due to Bogoya, Böttcher, Grudsky, and Maximenko [25], [26]. In particular, using the concept of monotone rear-

rangement (quantile function) andmatrix analysis arguments from the theory of GLT sequences, we have shown

that, under suitable assumptions, if the asymptotic distribution of a sequence of multisetsΛn = {𝜆1,n,… , 𝜆dn,n}
is described by a function f in the sense of Definition 1.2, then we observe the uniform convergence to 0 of the

difference between a proper permutation of the vector [𝜆1,n,… , 𝜆dn,n] and the vector of samples of f over an

a.u. grid in the domain of f . We have also illustrated through numerical experiments the main results of the

paper.

We conclude this paper with a remark. The notion of asymptotic distribution given in Definition 1.2 is

deeply connected with the notion of vague convergence of probability measures, which is also referred to as

convergence in distribution in ref. [26]. More precisely, as shown in ref. [32]:

– if {Λn}n is as in Definition 1.2, then we can associate with each Λn the atomic probability measure on ℂ
defined as

𝜇Λn
= 1

dn

dn∑
i=1

𝛿𝜆i,n ,

where 𝛿z is the Dirac probability measure such that 𝛿z(E) = 1 if z ∈ E and 𝛿z(E) = 0 otherwise;

– if f is as inDefinition 1.2with k = 1, thenwe can associatewith f auniquely determinedprobabilitymeasure

𝜇f on ℂ such that

1

𝜇k(D)∫
D

F( f (x))dx = ∫
ℂ

F(z)d𝜇 f (z) ∀ F ∈ Cc(ℂ).
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The asymptotic distribution relation

lim
n→∞

1

dn

dn∑
i=1

F(𝜆i,n ) =
1

𝜇d(Ω)∫
Ω

F( f (x))dx ∀ F ∈ Cc(ℂ)

can therefore be rewritten as

lim
n→∞∫

ℂ

F(z)d𝜇Λn
(z) = ∫

ℂ

F(z)d𝜇 f (z) ∀ F ∈ Cc(ℂ),

which is equivalent to saying that 𝜇Λn
converges vaguely to 𝜇f [36, Def. 13.12]. This equivalence allows for a

reinterpretation of themain results of this paper in a probabilistic perspective. In this regard, it isworth pointing

out that anymultiset of complex numbersΛn = {𝜆1,n,… , 𝜆dn,n} coincides with the spectrum of amatrixAn (take

An = diag(𝜆1,n,… , 𝜆dn,n )) and any probability measure 𝜇 on ℂ coincides with 𝜇f for some f [32, Cor. 1].
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Appendix A: Formulas for the eigenvalues of B-spline Galerkin

discretization matrices

Consider the following second-order differential eigenvalue problem:

⎧⎪⎨⎪⎩
− u′′

j
(x) = 𝜆 ju j(x), x ∈ (0, 1),

uj(0) = 0, uj(1) = 0.
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Let p ⩾ 1 and 0 ⩽ k ⩽ p− 1. In the classical Galerkin method with basis functions given by the n(p− k)+ k − 1

B-splines B2,p,k,… ,Bn(p−k)+k,p,k of degree p and smoothness C
k([0, 1]) defined over the uniform knot sequence{

0,… , 0
⏟⏟⏟

p+1

,
1

n
,… ,

1

n
⏟⏞⏟⏞⏟

p−k

,
2

n
,… ,

2

n
⏟⏞⏟⏞⏟

p−k

,… ,
n− 1

n
,… ,

n− 1

n
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

p−k

, 1,… , 1
⏟⏟⏟

p+1

}

and vanishing at the boundary points x = 0 and x = 1, the computation of the numerical solution reduces to

solving a linear system whose coefficient matrix is the (n(p− k)+ k − 1) × (n(p− k)+ k − 1) matrix given by

Ln, p,k = M−1
n, p,k

Kn, p,k,

where Kn,p,k ,Mn,p,k are the symmetric positive definite matrices given by

Kn, p,k =
⎡⎢⎢⎣

1

∫
0

B′
j+1, p,k(x)B

′
i+1, p,k(x)dx

⎤⎥⎥⎦
n(p−k )+k−1

i, j=1

,

Mn, p,k =
⎡⎢⎢⎣

1

∫
0

Bj+1, p,k(x)Bi+1, p,k(x)dx
⎤⎥⎥⎦
n(p−k )+k−1

i, j=1

;

see [22, Sect. 2.5] for more details. We remark that, for p = 2 and k = 1, the matrix n−1Kn,2,1 coincides with the

matrix An of Example 4.6. As proved in ref. [5, Th. 6.17], we have{
n−1Kn, p,k

}
n
∼𝜆 f p,k,

{nMn, p,k}n∼𝜆 hp,k,{
n−2Ln, p,k

}
n
∼𝜆 ep,k = (hp,k )

−1 f p,k,

where:

– the functions f p,k, hp,k : [0, 𝜋]→ ℂ( p−k )×( p−k ) are given by

f p,k(𝜃 ) =
∑
𝓁∈ℤ

K[𝓁]
p,k
ei𝓁𝜃 = K[0]

p,k
+
∑
𝓁>0

(
K[𝓁]
p,k
ei𝓁𝜃 +

(
K[𝓁]
p,k

)T
e−i𝓁𝜃
)
,

hp,k(𝜃 ) =
∑
𝓁∈ℤ

M[𝓁]
p,k
ei𝓁𝜃 = M[0]

p,k
+
∑
𝓁>0

(
M[𝓁]

p,k
ei𝓁𝜃 +

(
M[𝓁]

p,k

)T
e−i𝓁𝜃
)
;

– the blocks K[𝓁]
p,k
,M[𝓁]

p,k
are given by

K[𝓁]
p,k

=
⎡⎢⎢⎣∫ℝ 𝛽′

j, p,k
(t)𝛽′

i, p,k
(t − 𝓁 )dt

⎤⎥⎥⎦
p−k

i, j=1

, 𝓁 ∈ ℤ,

M[𝓁]
p,k

=
⎡⎢⎢⎣∫ℝ 𝛽 j, p,k(t)𝛽i, p,k(t − 𝓁 )dt

⎤⎥⎥⎦
p−k

i, j=1

, 𝓁 ∈ ℤ;

– the functions 𝛽1, p,k,… , 𝛽 p−k, p,k :ℝ→ ℝ are the first p− k B-splines defined on the knot sequence

0,… , 0
⏟⏟⏟

p−k

, 1,… , 1
⏟⏟⏟

p−k

,… , 𝜂,… , 𝜂
⏟⏟⏟

p−k

, 𝜂 =
⌈
p+ 1

p− k

⌉
.
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We remark that, for every 𝜃 ∈ [0, 𝜋], thematrix f p,k(𝜃) is Hermitian positive semidefinite and thematrix hp,k(𝜃)

is Hermitian positive definite; see [22, Rem. 2.1]. The following Maple worksheet computes f p,k(𝜃) and hp,k(𝜃)
for the input pair p, k defined at the beginning. Here, we have chosen p = 2 and k = 0 for comparison with

Example 4.6.

>p := 2: k := 0:

> 𝜂 := ceil
(

p+1
p−k

)
:

> with(CurveFitting): with(LinearAlgebra):

> ReferenceKnotSequence :=
[
seq(seq( j, i = 1..p− k ), j = 0..𝜂 )

]
:

> # Construction of the reference B-splines 𝛽1,p,k , . . . , 𝛽 p−k,p,k
> 𝛽 := [ ]:

for i from 1 to p− k do

𝛽 := [op(𝛽 ), BSpline( p+ 1, t, knots = ReferenceKnotSequence[i..i + p+ 1])]:

od:

> # Derivatives of the reference B-splines 𝛽1,p,k , . . . , 𝛽 p−k,p,k
> D_𝛽 := simplify(diff (𝛽 , t)):

> # Construction o f the nonzero K_blocks K [𝓁]
p,k

and the nonzero M_blocks M[𝓁]
p,k

> Kblocks := [ ]: Mblocks := [ ]:

for l from 0 to 𝜂 − 1 do

K :=Matrix(p− k ): M :=Matrix(p− k ):

for r from 1 to p− k do: for s from 1 to p− k do

K(r, s) := ∫ 𝜂

0
D_𝛽[s] ⋅ e𝑣al(D_𝛽[r], t = t − l )dt: M(r, s) := ∫ 𝜂

0
𝛽[s] ⋅ e𝑣al(𝛽[r], t = t − l )dt:

od: od:

Kblocks := [op(Kblocks), K]: Mblocks := [op(Mblocks),M]:

od:

> # Construction of the functions f = fp,k and h= hp,k
> f (𝜃) := Kblocks[1]: h(𝜃) := Mblocks[1]:

for j from 2 to 𝜂 do

f (𝜃 ) := simplify( f (𝜃 )+ Kblocks[ j] ⋅ exp(I ⋅ ( j − 1) ⋅ 𝜃 )+ Transpose(Kblocks[ j]) ⋅ exp(−I ⋅ ( j − 1) ⋅ 𝜃 )):
h(𝜃 ) := simplify(h(𝜃 )+ Mblocks[ j] ⋅ exp(I ⋅ ( j − 1) ⋅ 𝜃 )+ Transpose(Mblocks[ j]) ⋅ exp(−I ⋅ ( j − 1) ⋅ 𝜃 )):
od: f (𝜃 ), h(𝜃 )

⎡⎢⎢⎢⎣
4

3
− 2

3
− 2 eI𝜃

3

− 2

3
− 2 e−I𝜃

3

8

3
− 4 cos(𝜃 )

3

⎤⎥⎥⎥⎦
,

⎡⎢⎢⎢⎣
2

15

1

10
+ eI𝜃

10

1

10
+ e−I𝜃

10

2

5
+ cos(𝜃 )

15

⎤⎥⎥⎥⎦

In Theorems A.1–A.3, we report the formulas for the eigenvalues of thematrices n−1Kn,p,k , nMn,p,k , n
−2Ln,p,k

that we obtained through high-precision numerical computations performed in Julia, using an accuracy of at
least 100 decimal digits. In what follows, for every 𝜃 ∈ [0, 𝜋] and every j = 1,… , p− k, we define 𝜆 j( f p,k(𝜃))

(resp., 𝜆 j(hp,k(𝜃)), 𝜆 j(ep,k(𝜃))) as the jth eigenvalue of f p,k(𝜃) (resp., hp,k(𝜃), ep,k(𝜃)) according to the increasing

ordering:

𝜆1( f p,k(𝜃 )) ⩽ … ⩽ 𝜆 p−k( f p,k(𝜃 )), 𝜃 ∈ [0, 𝜋],

𝜆1(hp,k(𝜃 )) ⩽ … ⩽ 𝜆 p−k(hp,k(𝜃 )), 𝜃 ∈ [0, 𝜋],

𝜆1(ep,k(𝜃 )) ⩽ … ⩽ 𝜆 p−k(ep,k(𝜃 )), 𝜃 ∈ [0, 𝜋].

Moreover, for every n ⩾ 1, we define the uniform grids

Θn =
{
i𝜋

n
: i = 0,… , n

}
, Θ0

n
= Θn∖{0}, Θ𝜋

n
= Θn∖{𝜋}, Θ0,𝜋

n
= Θn∖{0, 𝜋}.
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Theorem A.1. Let 1 ⩽ p ⩽ 100 and 0 ⩽ k ⩽ min(1, p− 1). Then, for every n = 1,… , 100, the eigenvalues of

n−1Kn,p,k are given by

𝜆 j( f p,k(𝜃 )), 𝜃 ∈ Θ( j)

n, p,k
, j = 1,… , p− k,

where the gridΘ( j)

n, p,k
belongs to

{
Θn,Θ0

n
,Θ𝜋

n
,Θ0,𝜋

n

}
and is given in Figure A.1.

Conjecture A.1. Theorem A.1 continues to hold if we replace “for every n = 1,… , 100” with “for every n ⩾ 1”.

To simplify the statement of Theorem A.2, we define the integer sequence

a(m) = m+
⌊ √

8m
⌋
, m ⩾ 1.

The sequence {am}m=1,2,… is referred to as the A186348 sequence in the on-line encyclopedia of integer sequences

(OEIS); see https://oeis.org/A186348. For every p ⩾ 3, we define

𝛼 p = minimum positive integer such that p ∈
⎡⎢⎢⎣

𝛼 p∑
m=1

a(m),

𝛼 p+1∑
m=1

a(m)

⎤⎥⎥⎦.

It is not difficult to check that {p− 𝛼 p} p=3,4,… is an increasing sequence such that p− 𝛼 p ⩾ 2 for all p ⩾ 3.

Theorem A.2. Let 1 ⩽ p ⩽ 100 and 0 ⩽ k ⩽ min(1, p− 1). Then, for every n = 1,… , 100, the eigenvalues of

nMn,p,k are given by

𝜆 j(hp,k(𝜃 )), 𝜃 ∈ Θ[j]

n, p,k
, j = 1,… , p− k,

where the gridΘ[j]

n, p,k
belongs to

{
Θn,Θ0

n
,Θ𝜋

n
,Θ0,𝜋

n

}
and is defined as follows:

Θ[ j]

n, p,0
=

⎧⎪⎪⎨⎪⎪⎩

Θ0

n
, if p+ j is odd,

Θ𝜋

n
, if p+ j is e𝑣en and j ≠ p,

Θ0,𝜋

n
, if j = p,

Θ[ j]

n, p,1
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Θn, if p > 2 and j = p− 𝛼 p − 1,

Θ0

n
, if p = 2; or

if p > 2 and either j < p− 𝛼 p − 1 and p+ j is odd or p− 𝛼 p − 1 < j < p− 1 and p+ j is e𝑣en,

Θ𝜋

n
, if p > 2 and either j < p− 𝛼 p − 1 and p+ j is e𝑣en or p− 𝛼 p − 1 < j < p− 1 and p+ j is odd,

Θ0,𝜋

n
, if p > 2 and j = p− 1.

Conjecture A.2. Theorem A.2 continues to hold if we replace “1 ⩽ p ⩽ 100” with “p ⩾ 1” and “for every n =
1,… , 100” with “for every n ⩾ 1”.

Theorem A.3. Let 1 ⩽ p ⩽ 100 and 0 ⩽ k ⩽ min(1, p− 1). Then, for every n = 1,… , 20, the eigenvalues of

n−2Ln,p,k are given by

𝜆 j(ep,k(𝜃 )), 𝜃 ∈ Θ⟨j⟩
n, p,k

, j = 1,… , p− k,

https://oeis.org/A186348
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Figure A.1: Grid Θ( j )

n, p,k
for the values of

n, p, k considered in Theorem A.1 and for j =
1,… , p− k. For example, for p = 2, k = 0, and

every n = 1,… , 100, we have Θ(1 )

n,2,0
= Θ0

n
and

Θ(2)

n,2,0
= Θ0,𝜋

n
, in accordance with Example 4.6.
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where the gridΘ⟨ j⟩
n, p,k

belongs to
{
Θn,Θ0

n
,Θ𝜋

n
,Θ0,𝜋

n

}
and is defined as follows:

Θ⟨ j⟩
n, p,k

=

⎧⎪⎪⎨⎪⎪⎩

Θn, if p+ j is odd and j > 1,

Θ0

n
, if p+ j is odd and j = 1,

Θ0,𝜋

n
, if p+ j is e𝑣en.

Conjecture A.3. Theorem A.3 continues to hold if we replace “1 ⩽ p ⩽ 100” with “p ⩾ 1” and “for every n =
1,… , 20” with “for every n ⩾ 1”.
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