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We study the spectral properties of flipped Toeplitz matrices of the form 𝐻𝑛(𝑓 ) = 𝑌𝑛𝑇𝑛(𝑓 ), where 
𝑇𝑛(𝑓 ) is the 𝑛 × 𝑛 Toeplitz matrix generated by the function 𝑓 and 𝑌𝑛 is the 𝑛 × 𝑛 exchange (or 
flip) matrix having 1 on the main anti-diagonal and 0 elsewhere. In particular, under suitable 
assumptions on 𝑓 , we establish an alternating sign relationship between the eigenvalues of 𝐻𝑛(𝑓 ), 
the eigenvalues of 𝑇𝑛(𝑓 ), and the quasi-uniform samples of 𝑓 . Moreover, after fine-tuning a 
few known theorems on Toeplitz matrices, we use them to provide localization results for the 
eigenvalues of 𝐻𝑛(𝑓 ). Our study is motivated by the convergence analysis of the minimal residual 
(MINRES) method for the solution of real non-symmetric Toeplitz linear systems of the form 
𝑇𝑛(𝑓 )𝐱 = 𝐛 after pre-multiplication of both sides by 𝑌𝑛, as suggested by Pestana and Wathen [26]. 
A selection of numerical experiments is provided to illustrate the theoretical results and to show 
how to use the spectral localizations for predicting the MINRES performance on linear systems 
with coefficient matrix 𝐻𝑛(𝑓 ).

1. Introduction

A matrix of the form

[
𝑓𝑖−𝑗

]𝑛
𝑖,𝑗=1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑓0 𝑓−1 ⋯ ⋯ 𝑓−(𝑛−1)

𝑓1
. . .

. . .
...

...
. . .

. . .
. . .

...

...
. . .

. . . 𝑓−1

𝑓𝑛−1 ⋯ ⋯ 𝑓1 𝑓0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (1.1)
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whose entries are constant along each diagonal, is called a Toeplitz matrix. In the case where the entries 𝑓𝑘 are the Fourier coefficients 
of a function 𝑓 ∶ [−𝜋,𝜋]→ℂ in 𝐿1([−𝜋,𝜋]), i.e.,

𝑓𝑘 =
1 
2𝜋

𝜋

∫
−𝜋 

𝑓 (𝑥)e−i𝑘𝑥d𝑥, 𝑘 ∈ℤ,

the matrix (1.1) is denoted by 𝑇𝑛(𝑓 ) and is referred to as the 𝑛th Toeplitz matrix generated by 𝑓 .

The efficient solution of a linear system with a coefficient matrix of the form 𝑇𝑛(𝑓 ) by means of Krylov subspace methods is 
a research topic that involved several researchers over time. The main efforts focused on the case where 𝑇𝑛(𝑓 ) is real symmetric 
positive definite, so that the conjugate gradient (CG) method can be applied as well as its preconditioned version. Whenever 𝑇𝑛(𝑓 )
is real symmetric but indefinite, an alternative to (preconditioned) CG is the (preconditioned) minimal residual (MINRES) method. 
A common feature of CG and MINRES is that their convergence bounds are formally identical and rely only on the eigenvalues of 
the system matrix, or on the eigenvalues of the preconditioned system matrix if preconditioning is applied; see [8, Sections 2.1.1 
and 2.2] for CG and [8, Sections 6.1 and 6.2.4] for MINRES. In the case where the Fourier coefficients of 𝑓 are real but 𝑇𝑛(𝑓 ) is not 
symmetric, Pestana and Wathen [26] suggested pre-multiplying 𝑇𝑛(𝑓 ) by the 𝑛× 𝑛 exchange (or flip) matrix

𝑌𝑛 =

⎡⎢⎢⎢⎢⎢⎣

1
1

. .
.

1
1

⎤⎥⎥⎥⎥⎥⎦
. (1.2)

In this way, the resulting flipped matrix 𝐻𝑛(𝑓 ) = 𝑌𝑛𝑇𝑛(𝑓 ) is real symmetric and (preconditioned) MINRES can be applied. Solving 
a real non-symmetric Toeplitz linear system 𝑇𝑛(𝑓 )𝒙 = 𝒃 by (preconditioned) MINRES applied to the symmetrized linear system 
𝐻𝑛(𝑓 )𝒙 = 𝑌𝑛𝒃 has some advantages over solving the original system through either direct methods or iterative methods for non

symmetric Toeplitz matrices. For a detailed discussion on this topic, we refer the reader to [26, Sections 1--2], where a comparison 
between the proposed symmetrization approach and other relevant Toeplitz solvers available in the literature is presented. We also 
emphasize that the flipping strategy along with the solution by (preconditioned) MINRES of the resulting symmetrized linear system, 
originally proposed in [26] for real non-symmetric Toeplitz matrices, is gaining more and more popularity over time. In particular, this 
approach has recently been used for real non-symmetric multilevel Toeplitz matrices [18,19,25] as well as for the numerical treatment 
of evolutionary partial differential equations [17--19,24], optimal control problems [12,16] and image deblurring [7,11]�-where real 
non-symmetric (multilevel block) Toeplitz structures naturally arise—and it proved to be a viable alternative to other notable solvers 
for the related non-symmetric linear systems [20,21,32].

A main reason behind the interest in the spectral properties of flipped Toeplitz matrices such as 𝐻𝑛(𝑓 ) is precisely the convergence 
analysis of MINRES for symmetrized Toeplitz systems. In this regard, a precise asymptotic spectral distribution theorem for the 
sequence of flipped Toeplitz matrices {𝐻𝑛(𝑓 )}𝑛 was established independently by Ferrari et al. [9] through techniques based on the 
notion of approximating classes of sequences [13, Chapter 5], and by Mazza and Pestana [22] through the theory of block generalized 
locally Toeplitz sequences [2]. The same type of study was later extended to flipped multilevel Toeplitz matrices in [10,23]. However, 
no localization result for the eigenvalues of 𝐻𝑛(𝑓 ) was provided so far in the literature, despite the importance of spectral localization 
in the convergence analysis of MINRES.

In this paper, based on classical results for Toeplitz matrices [4,5,13] and on recent results on the asymptotic spectral distribution 
of arbitrary sequences of matrices [1], we delve deeper into the spectral properties of 𝐻𝑛(𝑓 ) under suitable assumptions on the 
function 𝑓 . In particular:

• We show that the eigenvalues of 𝐻𝑛(𝑓 ) can be subdivided into two subsets of cardinalities ⌈𝑛∕2⌉ and ⌊𝑛∕2⌋ such that

– the ⌈𝑛∕2⌉ eigenvalues belonging to the first subset coincide with ⌈𝑛∕2⌉ eigenvalues of 𝑇𝑛(𝑓 ) and have an asymptotic distribu

tion described by 𝑓 ;

– the ⌊𝑛∕2⌋ eigenvalues belonging to the second subset coincide with ⌊𝑛∕2⌋ eigenvalues of −𝑇𝑛(𝑓 ) and have an asymptotic 
distribution described by −𝑓 .

• As an extension of the previous result, we show that, for every 𝑛, the eigenvalues of 𝐻𝑛(𝑓 ) are given by the following alternating 
sign relationship:

𝜆𝑖(𝐻𝑛(𝑓 )) = (−1)𝑖+1𝜆𝑖(𝑇𝑛(𝑓 )) = (−1)𝑖+1𝑓 (𝑥𝑖,𝑛) + 𝜀𝑖,𝑛, 𝑖 = 1,… , 𝑛,

where 𝜆𝑖(𝑇𝑛(𝑓 )), 𝑖 = 1,… , 𝑛, are the eigenvalues of 𝑇𝑛(𝑓 ), {𝑥𝑖,𝑛}𝑖=1,…,𝑛 is an asymptotically uniform grid (see Section 2.1), and 
max𝑖=1,…,𝑛 |𝜀𝑖,𝑛| → 0 as 𝑛 → ∞; moreover, 𝜀𝑖,𝑛 = 0 for every 𝑖 = 1,… , 𝑛 if 𝑓 has a finite number of local maximum/minimum 
points and discontinuities.

• After fine-tuning a few known theorems on the singular values of Toeplitz matrices, we use them and other related theorems to 
provide localization results for the eigenvalues of 𝐻𝑛(𝑓 ).

The paper is organized as follows. Section 2 contains preliminaries. Section 3 contains statements and proofs of our main spectral 
results for flipped Toeplitz matrices of the form 𝐻𝑛(𝑓 ). Section 4 contains numerical experiments that illustrate part of the main 
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theorems and show how the obtained localizations for the eigenvalues of 𝐻𝑛(𝑓 ) can be used to predict the MINRES performance on 
linear systems with coefficient matrix 𝐻𝑛(𝑓 ). Section 5 contains final remarks.

2. Preliminaries

2.1. Notation and terminology

We denote by 𝜇 the Lebesgue measure in ℝ. Throughout this paper, all terminology from measure theory (such as ``measurable'', 
“almost everywhere (a.e.)'', etc.) always refers to the Lebesgue measure. The closure of a set 𝐸 is denoted by 𝐸. We use a notation 
borrowed from probability theory to indicate sets. For example, if 𝑓, 𝑔 ∶ [𝑎, 𝑏]→ ℝ, then {𝑓 ≤ 1} = {𝑥 ∈ [𝑎, 𝑏] ∶ 𝑓 (𝑥) ≤ 1}, 𝜇{𝑓 >

0, 𝑔 < 0} is the measure of the set {𝑥 ∈ [𝑎, 𝑏] ∶ 𝑓 (𝑥) > 0, 𝑔(𝑥) < 0}, etc.

Given a measurable function 𝑓 ∶ [𝑎, 𝑏]→ℂ, the essential range of 𝑓 is denoted by (𝑓 ). We recall that (𝑓 ) is defined as

(𝑓 ) = {𝑧 ∈ℂ ∶ 𝜇{|𝑓 − 𝑧| < 𝜀} > 0 for all 𝜀 > 0}.

It is clear that (𝑓 ) ⊆ 𝑓 ([𝑎, 𝑏]). Moreover, (𝑓 ) is closed and 𝑓 ∈ (𝑓 ) a.e.; see, e.g., [13, Lemma 2.1]. If 𝑓 is real a.e. then 
(𝑓 ) is a subset of ℝ. In this case, we define the essential infimum (resp., supremum) of 𝑓 on [𝑎, 𝑏] as the infimum (resp., supremum) 
of (𝑓 ):

ess inf
[𝑎,𝑏] 𝑓 = inf (𝑓 ), ess sup

[𝑎,𝑏] 
𝑓 = sup(𝑓 ).

Throughout this paper, any finite sequence of points in ℝ is referred to as a grid. Consider an interval [𝑎, 𝑏] and, for every 𝑛, let 
𝑛 = {𝑥𝑖,𝑛}𝑖=1,…,𝑑𝑛

be a grid of 𝑑𝑛 points in [𝑎, 𝑏] with 𝑑𝑛 →∞ as 𝑛→∞. The number

𝑚(𝑛) = max 
𝑖=1,…,𝑑𝑛

||||𝑥𝑖,𝑛 − (
𝑎+ 𝑖 𝑏− 𝑎 

𝑑𝑛 + 1

)||||
measures the distance of 𝑛 from the uniform grid {𝑎+ 𝑖(𝑏− 𝑎)∕(𝑑𝑛 + 1)}𝑖=1,…,𝑑𝑛

; we refer to it as the uniformity measure of the grid 
𝑛. We say that 𝑛 is asymptotically uniform (a.u.) in [𝑎, 𝑏] if

lim 
𝑛→∞

𝑚(𝑛) = 0.

2.2. Asymptotic singular value and eigenvalue distributions of a matrix-sequence

Throughout this paper, a matrix-sequence is a sequence of the form {𝐴𝑛}𝑛, where 𝐴𝑛 is a square matrix and size(𝐴𝑛) = 𝑑𝑛 →∞
as 𝑛→∞. We denote by 𝐶𝑐(ℝ) (resp., 𝐶𝑐(ℂ)) the space of continuous complex-valued functions with bounded support defined on ℝ
(resp., ℂ). If 𝐴 ∈ℂ𝑚×𝑚, the singular values and eigenvalues of 𝐴 are denoted by 𝜎1(𝐴),… , 𝜎𝑚(𝐴) and 𝜆1(𝐴),… , 𝜆𝑚(𝐴), respectively. 
The minimum and maximum singular values of 𝐴 are also denoted by 𝜎min(𝐴) and 𝜎max(𝐴). A matrix-valued function 𝑓 ∶ [𝑎, 𝑏]→ℂ𝑘×𝑘

is said to be measurable (resp., bounded, continuous, continuous a.e., in 𝐿𝑝([𝑎, 𝑏]), etc.) if its components 𝑓𝑖𝑗 ∶ [𝑎, 𝑏]→ℂ, 𝑖, 𝑗 = 1,… , 𝑘, 
are measurable (resp., bounded, continuous, continuous a.e., in 𝐿𝑝([𝑎, 𝑏]), etc.).

Definition 2.1 (asymptotic singular value and eigenvalue distributions of a matrix-sequence). Let {𝐴𝑛}𝑛 be a matrix-sequence with 𝐴𝑛 of 
size 𝑑𝑛, and let 𝑓 ∶ [𝑎, 𝑏]→ℂ𝑘×𝑘 be measurable.

• We say that {𝐴𝑛}𝑛 has an asymptotic eigenvalue (or spectral) distribution described by 𝑓 if

lim 
𝑛→∞

1 
𝑑𝑛

𝑑𝑛∑
𝑖=1 

𝐹 (𝜆𝑖(𝐴𝑛)) =
1 

𝑏− 𝑎

𝑏 

∫
𝑎 

∑𝑘

𝑖=1 𝐹 (𝜆𝑖(𝑓 (𝑥)))
𝑘 

d𝑥, ∀ 𝐹 ∈ 𝐶𝑐(ℂ). (2.1)

In this case, 𝑓 is called the eigenvalue (or spectral) symbol of {𝐴𝑛}𝑛 and we write {𝐴𝑛}𝑛 ∼𝜆 𝑓 .

• We say that {𝐴𝑛}𝑛 has an asymptotic singular value distribution described by 𝑓 if

lim 
𝑛→∞

1 
𝑑𝑛

𝑑𝑛∑
𝑖=1 

𝐹 (𝜎𝑖(𝐴𝑛)) =
1 

𝑏− 𝑎

𝑏 

∫
𝑎 

∑𝑘

𝑖=1 𝐹 (𝜎𝑖(𝑓 (𝑥)))
𝑘 

d𝑥, ∀ 𝐹 ∈ 𝐶𝑐(ℝ). (2.2)

In this case, 𝑓 is called the singular value symbol of {𝐴𝑛}𝑛 and we write {𝐴𝑛}𝑛 ∼𝜎 𝑓 .

We remark that Definition 2.1 is well-posed as the functions 𝑥 ↦
∑𝑘

𝑖=1 𝐹 (𝜆𝑖(𝑓 (𝑥))) and 𝑥 ↦
∑𝑘

𝑖=1 𝐹 (𝜎𝑖(𝑓 (𝑥))) appearing in 
(2.1)--(2.2) are measurable [2, Lemma 2.1]. Throughout this paper, whenever we write a relation such as {𝐴𝑛}𝑛 ∼𝜆 𝑓 or {𝐴𝑛}𝑛 ∼𝜎 𝑓 , 
it is understood that {𝐴𝑛}𝑛 and 𝑓 are as in Definition 2.1, i.e., {𝐴𝑛}𝑛 is a matrix-sequence and 𝑓 is a measurable function taking 
values in ℂ𝑘×𝑘 for some 𝑘 and defined on some compact real interval [𝑎, 𝑏].
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Remark 2.1. The informal meaning behind the asymptotic spectral distribution (2.1) is the following: assuming that 𝑓 possesses 𝑘
a.e. continuous eigenvalue functions 𝜆𝑖(𝑓 (𝑥)), 𝑖 = 1,… , 𝑘, the eigenvalues of 𝐴𝑛, except possibly for 𝑜(𝑑𝑛) outliers, can be subdivided 
into 𝑘 different subsets of approximately the same cardinality; and, for 𝑛 large enough, the eigenvalues belonging to the 𝑖th subset 
are approximately equal to the samples of the 𝑖th eigenvalue function 𝜆𝑖(𝑓 (𝑥)) over a uniform grid in the domain [𝑎, 𝑏]. For instance, 
if 𝑑𝑛 = 𝑛𝑘 then, assuming we have no outliers, the eigenvalues of 𝐴𝑛 are approximately equal to

𝜆𝑖

(
𝑓

(
𝑎+ 𝑗 𝑏− 𝑎

𝑛 

))
, 𝑗 = 1,… , 𝑛, 𝑖 = 1,… , 𝑘.

A completely analogous meaning can also be given for the asymptotic singular value distribution (2.2). A noteworthy class of matrix

sequences {𝐴𝑛}𝑛 that, under suitable assumptions, enjoy an asymptotic singular value and spectral distribution described by a function 
𝑓 taking values in ℂ𝑘×𝑘 is the class of 𝑘 × 𝑘 block generalized locally Toeplitz (GLT) sequences [2].

Since any finite multiset of numbers can always be interpreted as the spectrum of a matrix, a byproduct of Definition 2.1 is the 
following definition.

Definition 2.2 (asymptotic distribution of a sequence of finite multisets of numbers). Let {Λ𝑛 = {𝜆1,𝑛,… , 𝜆𝑑𝑛,𝑛
}}𝑛 be a sequence of fi

nite multisets of numbers such that 𝑑𝑛 → ∞ as 𝑛 → ∞, and let 𝑓 be as in Definition 2.1. We say that {Λ𝑛}𝑛 has an asymptotic 
distribution described by 𝑓 , and we write {Λ𝑛}𝑛 ∼ 𝑓 , if {𝐴𝑛}𝑛 ∼𝜆 𝑓 , where 𝐴𝑛 is any matrix whose spectrum equals Λ𝑛 (e.g., 
𝐴𝑛 = diag(𝜆1,𝑛,… , 𝜆𝑑𝑛,𝑛

)).

The next lemma is a slight generalization of [1, Lemma 3.12] and it can be proved in the same way.

Lemma 2.1. Let {𝐴𝑛}𝑛 be a matrix-sequence, let 𝑓 ∶ [𝑎, 𝑏]→ ℂ𝑘×𝑘 be measurable, and suppose that {𝐴𝑛}𝑛 ∼𝜆 𝑓 . Let 𝜆1(𝑓 ),… , 𝜆𝑘(𝑓 ) ∶
[𝑎, 𝑏]→ℂ be 𝑘 measurable functions such that 𝜆1(𝑓 (𝑥)),… , 𝜆𝑘(𝑓 (𝑥)) are the eigenvalues of 𝑓 (𝑥) for every 𝑥 ∈ [𝑎, 𝑏]. Then, for every 𝛼, 𝛽 ∈ℝ
with 𝛼 < 𝛽, we have {𝐴𝑛}𝑛 ∼𝜆 𝑓 , where 𝑓 is the following concatenation on the interval [𝛼, 𝛽] of resized versions of 𝜆1(𝑓 ),… , 𝜆𝑘(𝑓 ):

𝑓 ∶ [𝛼, 𝛽]→ℂ, 𝑓 (𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜆1(𝑓 (𝑎+
(𝑏−𝑎)𝑘
𝛽−𝛼 (𝑦− 𝛼))), 𝛼 ≤ 𝑦 < 𝛼 + 𝛽−𝛼

𝑘 ,

𝜆2(𝑓 (𝑎+
(𝑏−𝑎)𝑘
𝛽−𝛼 (𝑦− 𝛼 − 𝛽−𝛼

𝑘 ))), 𝛼 + 𝛽−𝛼
𝑘 ≤ 𝑦 < 𝛼 + 2 𝛽−𝛼

𝑘 ,

𝜆3(𝑓 (𝑎+
(𝑏−𝑎)𝑘
𝛽−𝛼 (𝑦− 𝛼 − 2 𝛽−𝛼

𝑘 ))), 𝛼 + 2 𝛽−𝛼
𝑘 ≤ 𝑦 < 𝛼 + 3 𝛽−𝛼

𝑘 ,

...
...

𝜆𝑘(𝑓 (𝑎+
(𝑏−𝑎)𝑘
𝛽−𝛼 (𝑦− 𝛼 − (𝑘− 1) 𝛽−𝛼

𝑘 ))), 𝛼 + (𝑘− 1) 𝛽−𝛼
𝑘 ≤ 𝑦 ≤ 𝛽.

Theorems 2.1--2.2 are fundamental asymptotic distribution results obtained in [1]. They play a central role hereinafter. Throughout 
this paper, we use ``increasing'' as a synonym of ``non-decreasing''.

Theorem 2.1. Let 𝑓 ∶ [𝑎, 𝑏]→ ℝ be bounded and continuous a.e. with (𝑓 ) = [inf [𝑎,𝑏] 𝑓, sup[𝑎,𝑏] 𝑓 ]. Let {Λ𝑛 = {𝜆1,𝑛,… , 𝜆𝑑𝑛,𝑛
}}𝑛 be a 

sequence of finite multisets of real numbers such that 𝑑𝑛 →∞ as 𝑛→∞. Assume the following.

• {Λ𝑛}𝑛 ∼ 𝑓 .

• Λ𝑛 ⊆ [inf [𝑎,𝑏] 𝑓 − 𝜀𝑛, sup[𝑎,𝑏] 𝑓 + 𝜀𝑛] for every 𝑛 and for some 𝜀𝑛 → 0 as 𝑛→∞.

Then, for every a.u. grid {𝑥𝑖,𝑛}𝑖=1,…,𝑑𝑛
in [𝑎, 𝑏], if 𝜎𝑛 and 𝜏𝑛 are two permutations of {1,… , 𝑑𝑛} such that the vectors [𝑓 (𝑥𝜎𝑛(1),𝑛),… , 𝑓 (𝑥𝜎𝑛(𝑑𝑛),𝑛)]

and [𝜆𝜏𝑛(1),𝑛,… , 𝜆𝜏𝑛(𝑑𝑛),𝑛] are sorted in increasing order, we have

max 
𝑖=1,…,𝑑𝑛

|𝑓 (𝑥𝜎𝑛(𝑖),𝑛) − 𝜆𝜏𝑛(𝑖),𝑛|→ 0 as 𝑛→∞.

In particular,

min
𝜏

max 
𝑖=1,…,𝑑𝑛

|𝑓 (𝑥𝑖,𝑛) − 𝜆𝜏(𝑖),𝑛|→ 0 as 𝑛→∞,

where the minimum is taken over all permutations 𝜏 of {1,… , 𝑑𝑛}.

To properly state Theorem 2.2, we need the following definition.

Definition 2.3 (local extremum points). Given a function 𝑓 ∶ [𝑎, 𝑏]→ ℝ and a point 𝑥0 ∈ [𝑎, 𝑏], we say that 𝑥0 is a local maximum 
point (resp., local minimum point) for 𝑓 if 𝑓 (𝑥0) ≥ 𝑓 (𝑥) (resp., 𝑓 (𝑥0) ≤ 𝑓 (𝑥)) for all 𝑥 belonging to a neighborhood of 𝑥0 in [𝑎, 𝑏].



Applied Mathematics and Computation 499 (2025) 129408

5

G. Barbarino, S.-E. Ekström, C. Garoni et al. 

We point out that, according to Definition 2.3, by ``local maximum/minimum point'' we mean ``weak local maximum/minimum 
point''. For example, if 𝑓 is constant on [𝑎, 𝑏], then all points of [𝑎, 𝑏] are both local maximum and local minimum points for 𝑓 .

Theorem 2.2. Let 𝑓 ∶ [𝑎, 𝑏]→ℝ be bounded with a finite number of local maximum points, local minimum points, and discontinuity points, 
and with (𝑓 ) = [inf [𝑎,𝑏] 𝑓, sup[𝑎,𝑏] 𝑓 ]. Let {Λ𝑛 = {𝜆1,𝑛,… , 𝜆𝑑𝑛,𝑛

}}𝑛 be a sequence of finite multisets of real numbers such that 𝑑𝑛 →∞ as 
𝑛→∞. Assume the following.

• {Λ𝑛}𝑛 ∼ 𝑓 .

• Λ𝑛 ⊆ 𝑓 ([𝑎, 𝑏]) for every 𝑛.

Then, for every 𝑛, there exist an a.u. grid {𝑥𝑖,𝑛}𝑖=1,…,𝑑𝑛
in [𝑎, 𝑏] and a permutation 𝜏𝑛 of {1,… , 𝑑𝑛} such that

𝜆𝜏𝑛(𝑖),𝑛 = 𝑓 (𝑥𝑖,𝑛), 𝑖 = 1,… , 𝑑𝑛.

2.3. Toeplitz matrices

It is not difficult to see that the operator 𝑇𝑛(⋅) ∶𝐿1([−𝜋,𝜋])→ℂ𝑛×𝑛, which associates with each 𝑓 ∈𝐿1([−𝜋,𝜋]) the corresponding 
𝑛× 𝑛 Toeplitz matrix 𝑇𝑛(𝑓 ), is linear and satisfies 𝑇𝑛(1) = 𝐼𝑛, where 𝐼𝑛 is the 𝑛× 𝑛 identity matrix. Moreover, the conjugate transpose 
of 𝑇𝑛(𝑓 ) is given by

𝑇𝑛(𝑓 )∗ = 𝑇𝑛(𝑓 )

for every 𝑓 ∈ 𝐿1([−𝜋,𝜋]) and every 𝑛; see, e.g., [13, Section 6.2]. In particular, if 𝑓 is real a.e., then 𝑓 = 𝑓 a.e. and the matrices 
𝑇𝑛(𝑓 ) are Hermitian. Moreover, if 𝑓 is real a.e. and even, then its Fourier coefficients are real and even (see Lemma 3.4 below), and 
therefore the matrices 𝑇𝑛(𝑓 ) are real and symmetric. The next theorems collect relevant properties of Toeplitz matrices generated by 
a function. For the related proofs, see [13, Theorems 6.1 and 6.5].

Theorem 2.3. For every 𝑓 ∈𝐿1([−𝜋,𝜋]) we have {𝑇𝑛(𝑓 )}𝑛 ∼𝜎 𝑓 .

Theorem 2.4. Let 𝑓 ∈𝐿1([−𝜋,𝜋]) be real and let

𝑚𝑓 = ess inf
[−𝜋,𝜋] 𝑓, 𝑀𝑓 = ess sup

[−𝜋,𝜋] 
𝑓.

Then, the following properties hold.

1. 𝑇𝑛(𝑓 ) is Hermitian and the eigenvalues of 𝑇𝑛(𝑓 ) lie in the interval [𝑚𝑓 ,𝑀𝑓 ] for all 𝑛.

2. If 𝑓 is not a.e. constant, then 𝑚𝑓 <𝑀𝑓 and the eigenvalues of 𝑇𝑛(𝑓 ) lie in (𝑚𝑓 ,𝑀𝑓 ) for all 𝑛.

3. {𝑇𝑛(𝑓 )}𝑛 ∼𝜆 𝑓 .

The next localization results for the singular values of Toeplitz matrices have been proved in [31, Lemma I.2] and [29, Theo

rem 4.4], respectively. Throughout this paper, if 𝑆 is any subset of ℂ, we denote by Co(𝑆) its convex hull.

Lemma 2.2. Let 𝑓 ∈𝐿1([−𝜋,𝜋]) and let 𝑑𝑓 be the distance of 0 from Co((𝑓 )) in ℂ. Then, the singular values of 𝑇𝑛(𝑓 ) lie in [𝑑𝑓 ,𝑀|𝑓 |]
for all 𝑛, where 𝑀|𝑓 | = ess sup[−𝜋,𝜋] |𝑓 |.
Lemma 2.3. Let 𝑓 ∶ [−𝜋,𝜋]→ℂ belong to the Krein algebra, i.e., 𝑓 ∈𝐿∞([−𝜋,𝜋]) and the Fourier coefficients of 𝑓 satisfy∑

𝑘∈ℤ
|𝑘| |𝑓𝑘|2 <∞.

Then, for every 𝜀 > 0 there exists a constant 𝐶𝜀 such that the singular values of 𝑇𝑛(𝑓 ) lie in the 𝜀-expansion of (|𝑓 |) given by

((|𝑓 |))𝜀 = {𝑠 ∈ [0,∞) ∶ |𝑠− 𝑡| < 𝜀 for some 𝑡 ∈ (|𝑓 |)}
except for at most 𝐶𝜀 outliers.

2.4. Flipped Toeplitz matrices

If 𝑓 ∶ [−𝜋,𝜋]→ℂ is a function in 𝐿1([−𝜋,𝜋]) and 𝑛 ∈ℕ, we define the Hankel matrix

𝐻𝑛(𝑓 ) = 𝑌𝑛𝑇𝑛(𝑓 ),
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where 𝑌𝑛 =𝐻𝑛(1) is the 𝑛×𝑛 exchange matrix in (1.2). We remark that our definition of 𝐻𝑛(𝑓 ) is different from the standard definition 
of Hankel matrices generated by a function 𝑓 [4, Section 11.4]. We therefore refer to 𝐻𝑛(𝑓 ) as the flipped Toeplitz matrix generated 
by 𝑓 rather than the Hankel matrix generated by 𝑓 . A vector 𝒗 ∈ ℝ𝑛 is called symmetric (resp., skew-symmetric) if 𝑌𝑛𝒗 = 𝒗 (resp., 
𝑌𝑛𝒗 = −𝒗).

Remark 2.2 (eigendecomposition of the exchange matrix). Let 𝕍+
𝑛

and 𝕍−
𝑛

be the subspaces of ℝ𝑛 consisting of symmetric and skew

symmetric vectors, respectively:

𝕍+
𝑛
= {𝒗 ∈ℝ𝑛 ∶ 𝑌𝑛𝒗 = 𝒗}, 𝕍−

𝑛
= {𝒗 ∈ℝ𝑛 ∶ 𝑌𝑛𝒗 = −𝒗}.

It is easy to see that dim𝕍+
𝑛
= ⌈𝑛∕2⌉ and dim𝕍−

𝑛
= ⌊𝑛∕2⌋. Indeed, a basis for 𝕍+

𝑛
is

𝒆𝑖 + 𝒆𝑛−𝑖+1, 𝑖 = 1,… ,⌈𝑛∕2⌉,
and a basis for 𝕍−

𝑛
is

𝒆𝑖 − 𝒆𝑛−𝑖+1, 𝑖 = 1,… ,⌊𝑛∕2⌋,
where 𝒆1,… ,𝒆𝑛 are the vectors of the canonical basis of ℝ𝑛. Note that 𝕍+

𝑛
and 𝕍−

𝑛
are, by definition, eigenspaces of 𝑌𝑛 associated 

with the eigenvalues 1 and −1, respectively, and we have dim𝕍+
𝑛
+ dim𝕍−

𝑛
= 𝑛. This yields the eigendecomposition of the exchange 

matrix 𝑌𝑛, which has only two distinct eigenvalues 1 and −1 with corresponding eigenspaces 𝕍+
𝑛

and 𝕍−
𝑛

. We can thus write the 
eigendecomposition of 𝑌𝑛 as follows:

𝑌𝑛 = 𝑉𝑛Δ𝑛𝑉
−1
𝑛

, Δ𝑛 = diag 
𝑖=1,…,𝑛

(−1)𝑖+1, 𝑉𝑛 =
[
𝒗1 | 𝒗2 | ⋯ | 𝒗𝑛] , (2.3)

where {𝒗𝑖 ∶ 𝑖 is odd} is any basis of 𝕍+
𝑛

and {𝒗𝑖 ∶ 𝑖 is even} is any basis of 𝕍−
𝑛

.

If 𝑓 ∶ [−𝜋,𝜋]→ℂ is a function in 𝐿1([−𝜋,𝜋]) with real Fourier coefficients, then 𝑇𝑛(𝑓 ) is real for all 𝑛. In this case, 𝐻𝑛(𝑓 ) is real 
and symmetric for every 𝑛, and the next theorem appeared in [9,22] gives the asymptotic spectral distribution of the matrix-sequence 
{𝐻𝑛(𝑓 )}𝑛.

Theorem 2.5. If 𝑓 is a function in 𝐿1([−𝜋,𝜋]) with real Fourier coefficients then {𝐻𝑛(𝑓 )}𝑛 ∼𝜆 𝐻 , where

𝐻 ∶ [−𝜋,𝜋]→ℂ2×2, 𝐻(𝑥) = diag(|𝑓 (𝑥)|,−|𝑓 (𝑥)|).
The next lemma is a corollary of the Cantoni–Butler theorem [5, Theorem 2]; see also [33, Section 5]. An 𝑛 × 𝑛 matrix 𝐴 is 

called centrosymmetric if it is symmetric with respect to its center, i.e., 𝐴𝑖𝑗 = 𝐴𝑛−𝑖+1,𝑛−𝑗+1 for all 𝑖, 𝑗 = 1,… , 𝑛. Equivalently, 𝐴 is 
centrosymmetric if 𝑌𝑛𝐴𝑌𝑛 =𝐴. Note that any symmetric Toeplitz matrix is centrosymmetric.

Lemma 2.4. Let 𝑇𝑛 be a real symmetric Toeplitz matrix of size 𝑛 and let 𝐻𝑛 = 𝑌𝑛𝑇𝑛. Then, the following properties hold.

1. There exists an orthonormal basis of ℝ𝑛 consisting of eigenvectors of 𝑇𝑛 such that ⌈𝑛∕2⌉ vectors of this basis are symmetric and the other ⌊𝑛∕2⌋ vectors are skew-symmetric.

2. Let {𝒗1,… ,𝒗𝑛} be a basis of ℝ𝑛 such that, setting 𝑉𝑛 =
[
𝒗1 | 𝒗2 | ⋯ | 𝒗𝑛], we have:

• 𝒗𝑖 is alternately symmetric or skew-symmetric (starting with symmetric), i.e., in view of Remark 2.2,

𝑌𝑛 = 𝑉𝑛Δ𝑛𝑉
∗
𝑛
, Δ𝑛 = diag 

𝑖=1,…,𝑛

(−1)𝑖+1;

• 𝑇𝑛𝒗𝑖 = 𝜆𝑖(𝑇𝑛)𝒗𝑖 for 𝑖 = 1,… , 𝑛, i.e.,

𝑇𝑛 = 𝑉𝑛𝐷𝑛𝑉
∗
𝑛
, 𝐷𝑛 = diag 

𝑖=1,…,𝑛

𝜆𝑖(𝑇𝑛).

Then,

• 𝐻𝑛𝒗𝑖 = 𝜆𝑖(𝐻𝑛)𝒗𝑖 with 𝜆𝑖(𝐻𝑛) = (−1)𝑖+1𝜆𝑖(𝑇𝑛) for 𝑖 = 1,… , 𝑛, i.e.,

𝐻𝑛 = 𝑉𝑛𝐸𝑛𝑉
∗
𝑛
, 𝐸𝑛 =Δ𝑛𝐷𝑛.

Proof. Since 𝑇𝑛 is symmetric centrosymmetric, the first property follows from [5, Theorem 2]. The second property is a consequence 
of the first property and the definition 𝐻𝑛 = 𝑌𝑛𝑇𝑛. □

Taking into account that the matrices 𝑇𝑛(𝑓 ) are real and symmetric whenever 𝑓 is real and even, the following result is a corollary 
of Lemma 2.4 and Theorem 2.4.
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Corollary 2.1. Let 𝑓 ∈𝐿1([−𝜋,𝜋]) be real and even. Then, for every 𝑛, there exists a real unitary matrix 𝑉𝑛 such that

𝑌𝑛 = 𝑉𝑛Δ𝑛𝑉
∗
𝑛
, Δ𝑛 = diag 

𝑖=1,…,𝑛

(−1)𝑖+1, (2.4)

𝑇𝑛(𝑓 ) = 𝑉𝑛𝐷𝑛𝑉
∗
𝑛
, 𝐷𝑛 = diag 

𝑖=1,…,𝑛

𝜆𝑖(𝑇𝑛(𝑓 )), (2.5)

𝐻𝑛(𝑓 ) = 𝑉𝑛𝐸𝑛𝑉
∗
𝑛
, 𝐸𝑛 =Δ𝑛𝐷𝑛 = diag 

𝑖=1,…,𝑛

𝜆𝑖(𝐻𝑛(𝑓 )), (2.6)

𝜆𝑖(𝐻𝑛(𝑓 )) = (−1)𝑖+1𝜆𝑖(𝑇𝑛(𝑓 )), 𝑖 = 1,… , 𝑛. (2.7)

In particular, if 𝑓 is not a.e. constant, the eigenvalues of 𝐻𝑛(𝑓 ) lie in (−𝑀𝑓 ,−𝑚𝑓 ) ∪ (𝑚𝑓 ,𝑀𝑓 ), where

𝑚𝑓 = ess inf
[0,𝜋] 𝑓, 𝑀𝑓 = ess sup

[0,𝜋] 
𝑓.

3. Main results: spectral properties of flipped Toeplitz matrices

In this section, we state and prove the main results of this paper. Theorem 3.1 is our first main result. It shows, among others, that, 
for a real even function 𝑓 bounded from below or above, the eigenvalues of 𝐻𝑛(𝑓 ) can be subdivided into two subsets of cardinalities ⌈𝑛∕2⌉ and ⌊𝑛∕2⌋ such that

• the ⌈𝑛∕2⌉ eigenvalues belonging to the first subset coincide with ⌈𝑛∕2⌉ eigenvalues of 𝑇𝑛(𝑓 ) and have an asymptotic distribution 
described by 𝑓 ;

• the ⌊𝑛∕2⌋ eigenvalues belonging to the second subset coincide with ⌊𝑛∕2⌋ eigenvalues of −𝑇𝑛(𝑓 ) and have an asymptotic distri

bution described by −𝑓 .

Throughout this paper, if Λ is a multiset of numbers and 𝛼 ∈ ℂ, we denote by Λ + 𝛼 and Λ − 𝛼 the multisets {𝜆 + 𝛼 ∶ 𝜆 ∈ Λ} and 
{𝜆− 𝛼 ∶ 𝜆 ∈Λ}, respectively.

Theorem 3.1. Let 𝑓 ∈ 𝐿1([−𝜋,𝜋]) be real and even, and suppose that 𝑚𝑓 = ess inf [0,𝜋] 𝑓 > −∞ or 𝑀𝑓 = ess sup[0,𝜋] 𝑓 <∞. Then, for 
every 𝑛, there exists a real unitary matrix 𝑉𝑛 such that (2.4)--(2.7) hold and

{Λ+
𝑛
}𝑛 ∼ 𝑓, Λ+

𝑛
= {𝜆2𝑖−1(𝐻𝑛(𝑓 ))}𝑖=1,…,⌈𝑛∕2⌉ = {𝜆2𝑖−1(𝑇𝑛(𝑓 ))}𝑖=1,…,⌈𝑛∕2⌉, (3.1)

{Λ−
𝑛
}𝑛 ∼ −𝑓, Λ−

𝑛
= {𝜆2𝑖(𝐻𝑛(𝑓 ))}𝑖=1,…,⌊𝑛∕2⌋ = {−𝜆2𝑖(𝑇𝑛(𝑓 ))}𝑖=1,…,⌊𝑛∕2⌋. (3.2)

Proof. We prove the theorem in the case where 𝑚𝑓 > −∞ (the proof in the case where 𝑀𝑓 <∞ is similar). Let 𝑔 = 𝑓 + 𝛼, where 
𝛼 ∈ℝ is a constant such that 𝑚𝑓 + 𝛼 > 0. Note that 𝑔 is a real even function in 𝐿1([−𝜋,𝜋]) like 𝑓 , and moreover 𝑔 ≥𝑚𝑓 + 𝛼 > 0 a.e. 
in [0, 𝜋], so (𝑔) is a closed subset of (0,∞). By Corollary 2.1, for every 𝑛, there exists a real unitary matrix 𝑉𝑛 such that

𝑌𝑛 = 𝑉𝑛Δ𝑛𝑉
∗
𝑛
, Δ𝑛 = diag 

𝑖=1,…,𝑛

(−1)𝑖+1, (3.3)

𝑇𝑛(𝑔) = 𝑉𝑛𝐷
′
𝑛
𝑉 ∗
𝑛
, 𝐷′

𝑛
= diag 

𝑖=1,…,𝑛

𝜆𝑖(𝑇𝑛(𝑔)), (3.4)

𝐻𝑛(𝑔) = 𝑉𝑛𝐸
′
𝑛
𝑉 ∗
𝑛
, 𝐸′

𝑛
=Δ𝑛𝐷

′
𝑛
= diag 

𝑖=1,…,𝑛

𝜆𝑖(𝐻𝑛(𝑔)), (3.5)

𝜆𝑖(𝐻𝑛(𝑔)) = (−1)𝑖+1𝜆𝑖(𝑇𝑛(𝑔)), 𝑖 = 1,… , 𝑛. (3.6)

Let

Λ̃+
𝑛
= {𝜆2𝑖−1(𝐻𝑛(𝑔))}𝑖=1,…,⌈𝑛∕2⌉ = {𝜆2𝑖−1(𝑇𝑛(𝑔))}𝑖=1,…,⌈𝑛∕2⌉,

Λ̃−
𝑛
= {𝜆2𝑖(𝐻𝑛(𝑔))}𝑖=1,…,⌊𝑛∕2⌋ = {−𝜆2𝑖(𝑇𝑛(𝑔))}𝑖=1,…,⌊𝑛∕2⌋.

We prove that {Λ̃+
𝑛
}𝑛 ∼ 𝑔. For every 𝐹 ∈ 𝐶𝑐(ℂ), let 𝐹 ∈ 𝐶𝑐(ℂ) be a function such that 𝐹 = 𝐹 on [𝑚𝑓 +𝛼,∞) and 𝐹 = 0 on (−∞,−𝑚𝑓 −

𝛼]. Note that Λ̃+
𝑛
⊆ [𝑚𝑓 + 𝛼,∞) and Λ̃−

𝑛
⊆ (−∞,−𝑚𝑓 − 𝛼] by Theorem 2.4. By Theorem 2.5 and the fact that 𝑔 is a real even function,

lim 
𝑛→∞

1 ⌈𝑛∕2⌉
⌈𝑛∕2⌉∑
𝑖=1 

𝐹 (𝜆2𝑖−1(𝐻𝑛(𝑔))) = lim 
𝑛→∞

1 ⌈𝑛∕2⌉
⌈𝑛∕2⌉∑
𝑖=1 

𝐹 (𝜆2𝑖−1(𝐻𝑛(𝑔))) = lim 
𝑛→∞

𝑛 ⌈𝑛∕2⌉ ⋅
1
𝑛 

𝑛 ∑
𝑖=1 

𝐹 (𝜆𝑖(𝐻𝑛(𝑔)))

= 2 ⋅ 1 
𝜋

𝜋

∫
0 

𝐹 (𝑔(𝑥)) + 𝐹 (−𝑔(𝑥))
2 

d𝑥 = 1 
𝜋

𝜋

∫
0 

𝐹 (𝑔(𝑥))d𝑥 = 1 
𝜋

𝜋

∫
0 

𝐹 (𝑔(𝑥))d𝑥.

Hence, {Λ̃+
𝑛
}𝑛 ∼ 𝑔. Similarly, one can show that {Λ̃−

𝑛
}𝑛 ∼ −𝑔.
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To conclude the proof, we note that, by (3.3)--(3.4) and the linearity of the operator 𝑇𝑛(⋅),

𝑇𝑛(𝑓 ) = 𝑇𝑛(𝑔 − 𝛼) = 𝑇𝑛(𝑔) − 𝛼𝐼𝑛 = 𝑉𝑛(𝐷′
𝑛
− 𝛼𝐼𝑛)𝑉 ∗

𝑛
, (3.7)

𝐻𝑛(𝑓 ) = 𝑌𝑛𝑇𝑛(𝑓 ) = 𝑉𝑛Δ𝑛(𝐷′
𝑛
− 𝛼𝐼𝑛)𝑉 ∗

𝑛
. (3.8)

Define the following ordering for the eigenvalues of 𝑇𝑛(𝑓 ) and 𝐻𝑛(𝑓 ):

𝜆𝑖(𝑇𝑛(𝑓 )) = 𝜆𝑖(𝑇𝑛(𝑔)) − 𝛼, 𝑖 = 1,… , 𝑛, (3.9)

𝜆𝑖(𝐻𝑛(𝑓 )) = (−1)𝑖+1(𝜆𝑖(𝑇𝑛(𝑔)) − 𝛼) = (−1)𝑖+1𝜆𝑖(𝑇𝑛(𝑓 )), 𝑖 = 1,… , 𝑛. (3.10)

In view of (3.7)--(3.8), it is now easy to check that (2.4)--(2.7) are satisfied with

𝐷𝑛 =𝐷′
𝑛
− 𝛼𝐼𝑛,

𝐸𝑛 =Δ𝑛(𝐷′
𝑛
− 𝛼𝐼𝑛) = Δ𝑛𝐷𝑛.

Moreover, also (3.1)--(3.2) are satisfied, because {Λ̃+
𝑛
}𝑛 ∼ 𝑔 is equivalent to {Λ+

𝑛
}𝑛 ∼ 𝑓 and {Λ̃−

𝑛
}𝑛 ∼ −𝑔 is equivalent to {Λ−

𝑛
}𝑛 ∼ −𝑓 . 

These equivalences follow from Definition 2.2, the equation 𝑔 = 𝑓 + 𝛼, and the observation that

Λ̃+
𝑛
= {𝜆2𝑖−1(𝑇𝑛(𝑔))}𝑖=1,…,⌈𝑛∕2⌉ = {𝜆2𝑖−1(𝑇𝑛(𝑓 )) + 𝛼}𝑖=1,…,⌈𝑛∕2⌉ = Λ+

𝑛
+ 𝛼,

Λ̃−
𝑛
= {−𝜆2𝑖(𝑇𝑛(𝑔))}𝑖=1,…,⌈𝑛∕2⌉ = {−𝜆2𝑖(𝑇𝑛(𝑓 )) − 𝛼}𝑖=1,…,⌈𝑛∕2⌉ =Λ−

𝑛
− 𝛼. □

Theorem 3.2 is our second main result. It shows, among others, that, for a real even bounded and a.e. continuous function 𝑓 , the 
eigenvalues of 𝐻𝑛(𝑓 ) are given by the following alternating sign relationship:

𝜆𝑖(𝐻𝑛(𝑓 )) = (−1)𝑖+1𝜆𝑖(𝑇𝑛(𝑓 )) = (−1)𝑖+1𝑓 (𝑥𝑖,𝑛) + 𝜀𝑖,𝑛, 𝑖 = 1,… , 𝑛, (3.11)

where {𝑥𝑖,𝑛}𝑖=1,…,𝑛 is any a.u. grid and max𝑖=1,…,𝑛 |𝜀𝑖,𝑛|→ 0 as 𝑛→∞. To prove Theorem 3.2, we need the following lemma about 
a.u. grids. Throughout this paper, if {𝑎𝑛}𝑛 and {𝑏𝑛}𝑛 are any two numerical sequences such that 𝑎𝑛, 𝑏𝑛 ≠ 0 eventually as 𝑛→∞, we 
write 𝑎𝑛 ∼ 𝑏𝑛 as 𝑛→∞ to indicate that 𝑎𝑛∕𝑏𝑛 → 1 as 𝑛→∞.

Lemma 3.1. Let {𝑥𝑖,𝑛}𝑖=1,…,𝑑𝑛
and {𝑦𝑖,𝑛}𝑖=1,…,𝑒𝑛

be two grids, with 𝑑𝑛 →∞ and 𝑒𝑛 ∼ 𝑑𝑛 as 𝑛→∞. Let {𝑧𝑖,𝑛}𝑖=1,…,𝑑𝑛+𝑒𝑛 be the grid obtained 
by alternately picking one point from the first grid and one point from the second grid, and by positioning the remaining points of the largest 
grid at the end. In formulas,

{𝑧𝑖,𝑛}𝑖=1,…,𝑑𝑛+𝑒𝑛 =

{
{𝑥1,𝑛, 𝑦1,𝑛, 𝑥2,𝑛, 𝑦2,𝑛,… , 𝑥𝑑𝑛,𝑛

, 𝑦𝑑𝑛,𝑛
, 𝑦𝑑𝑛+1,𝑛,… , 𝑦𝑒𝑛,𝑛

}, if 𝑑𝑛 ≤ 𝑒𝑛,

{𝑥1,𝑛, 𝑦1,𝑛, 𝑥2,𝑛, 𝑦2,𝑛,… , 𝑥𝑒𝑛,𝑛
, 𝑦𝑒𝑛,𝑛

, 𝑥𝑒𝑛+1,𝑛,… , 𝑥𝑑𝑛,𝑛
}, if 𝑑𝑛 > 𝑒𝑛.

Then, for every real interval [𝑎, 𝑏], the grid {𝑧𝑖,𝑛}𝑖,…,𝑑𝑛+𝑒𝑛 is a.u. in [𝑎, 𝑏] if and only if the grids {𝑥𝑖,𝑛}𝑖=1,…,𝑑𝑛
and {𝑦𝑖,𝑛}𝑖=1,…,𝑒𝑛

are a.u. in 
[𝑎, 𝑏].

Proof. Set

𝑛 = {𝑥𝑖,𝑛}𝑖=1,…,𝑑𝑛
, 𝑛 = {𝑦𝑖,𝑛}𝑖=1,…,𝑒𝑛

, 𝑛 = {𝑧𝑖,𝑛}𝑖=1,…,𝑑𝑛+𝑒𝑛 ,

𝜉𝑖,𝑛 = 𝑎+ 𝑖 𝑏− 𝑎 
𝑑𝑛 + 1

, 𝜓𝑖,𝑛 = 𝑎+ 𝑖 𝑏− 𝑎 
𝑒𝑛 + 1

, 𝜁𝑖,𝑛 = 𝑎+ 𝑖 𝑏− 𝑎 
𝑑𝑛 + 𝑒𝑛 + 1

.

Note that the uniformity measures of the grids 𝑛 , 𝑛, 𝑛 with respect to the interval [𝑎, 𝑏] are given by

𝑚(𝑛) = max 
𝑖=1,…,𝑑𝑛

|𝑥𝑖,𝑛 − 𝜉𝑖,𝑛|, 𝑚(𝑛) = max 
𝑖=1,…,𝑒𝑛

|𝑦𝑖,𝑛 −𝜓𝑖,𝑛|, 𝑚(𝑛) = max 
𝑖=1,…,𝑑𝑛+𝑒𝑛

|𝑧𝑖,𝑛 − 𝜁𝑖,𝑛|.
Before proving the lemma, we make the following observations.

• For 𝑖= 1,… ,min(𝑑𝑛, 𝑒𝑛),

|𝜉𝑖,𝑛 − 𝜁2𝑖−1,𝑛| = (𝑏− 𝑎)
|||| 𝑖 
𝑑𝑛 + 1

− 2𝑖− 1 
𝑑𝑛 + 𝑒𝑛 + 1

|||| = (𝑏− 𝑎)
|||| 𝑖(𝑒𝑛 − 𝑑𝑛) + 𝑑𝑛 − 𝑖+ 1
(𝑑𝑛 + 1)(𝑑𝑛 + 𝑒𝑛 + 1) 

||||
≤ (𝑏− 𝑎)

𝑑𝑛|𝑒𝑛 − 𝑑𝑛|+ 𝑑𝑛

(𝑑𝑛 + 1)(𝑑𝑛 + 𝑒𝑛 + 1)
=

(𝑏− 𝑎)𝑑2
𝑛

(𝑑𝑛 + 1)(𝑑𝑛 + 𝑒𝑛 + 1)

(|||| 𝑒𝑛𝑑𝑛 − 1
||||+ 1 

𝑑𝑛

)
= 𝛼𝑛,

where 𝛼𝑛 depends only on 𝑛 and 𝛼𝑛 → 0 as 𝑛→∞ due to the assumptions that 𝑑𝑛 →∞ and 𝑒𝑛 ∼ 𝑑𝑛 as 𝑛→∞. Similarly, for 
𝑖 = 1,… ,min(𝑑𝑛, 𝑒𝑛),
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|𝜓𝑖,𝑛 − 𝜁2𝑖,𝑛| = (𝑏− 𝑎)
|||| 𝑖 
𝑒𝑛 + 1

− 2𝑖 
𝑑𝑛 + 𝑒𝑛 + 1

|||| = (𝑏− 𝑎)
|||| 𝑖(𝑑𝑛 − 𝑒𝑛) − 𝑖 
(𝑒𝑛 + 1)(𝑑𝑛 + 𝑒𝑛 + 1)

||||
≤ (𝑏− 𝑎)

𝑒𝑛|𝑑𝑛 − 𝑒𝑛|+ 𝑒𝑛

(𝑒𝑛 + 1)(𝑑𝑛 + 𝑒𝑛 + 1)
=

(𝑏− 𝑎)𝑒2
𝑛

(𝑒𝑛 + 1)(𝑑𝑛 + 𝑒𝑛 + 1)

(||||𝑑𝑛𝑒𝑛 − 1
||||+ 1 

𝑒𝑛

)
= 𝛽𝑛,

where 𝛽𝑛 depends only on 𝑛 and 𝛽𝑛 → 0 as 𝑛→∞ due to the assumptions that 𝑑𝑛 →∞ and 𝑒𝑛 ∼ 𝑑𝑛 as 𝑛→∞.

• If 𝑑𝑛 ≤ 𝑒𝑛 then, for every 𝑖 = 𝑑𝑛 + 1,… , 𝑒𝑛,

|𝜓𝑖,𝑛 − 𝜁2𝑑𝑛+(𝑖−𝑑𝑛),𝑛| = (𝑏− 𝑎)
|||| 𝑖 
𝑒𝑛 + 1

−
𝑑𝑛 + 𝑖 

𝑑𝑛 + 𝑒𝑛 + 1
|||| = (𝑏− 𝑎)

|||| 𝑑𝑛(𝑖− 𝑒𝑛) − 𝑑𝑛

(𝑒𝑛 + 1)(𝑑𝑛 + 𝑒𝑛 + 1)
||||

≤ (𝑏− 𝑎)
𝑑𝑛(𝑒𝑛 − 𝑑𝑛) + 𝑑𝑛

(𝑒𝑛 + 1)(𝑑𝑛 + 𝑒𝑛 + 1)
=

(𝑏− 𝑎)𝑑2
𝑛

(𝑒𝑛 + 1)(𝑑𝑛 + 𝑒𝑛 + 1)

(
𝑒𝑛

𝑑𝑛
− 1 + 1 

𝑑𝑛

)
= 𝛾𝑛,

where 𝛾𝑛 depends only on 𝑛 and 𝛾𝑛 → 0 as 𝑛→∞ due to the assumptions that 𝑑𝑛 →∞ and 𝑒𝑛 ∼ 𝑑𝑛 as 𝑛→∞. Similarly, if 𝑑𝑛 > 𝑒𝑛
then, for every 𝑖 = 𝑒𝑛 + 1,… , 𝑑𝑛,

|𝜉𝑖,𝑛 − 𝜁2𝑒𝑛+(𝑖−𝑒𝑛),𝑛| = (𝑏− 𝑎)
|||| 𝑖 
𝑑𝑛 + 1

−
𝑒𝑛 + 𝑖 

𝑑𝑛 + 𝑒𝑛 + 1
|||| = (𝑏− 𝑎)

|||| 𝑒𝑛(𝑖− 𝑑𝑛) − 𝑒𝑛

(𝑑𝑛 + 1)(𝑑𝑛 + 𝑒𝑛 + 1)
||||

≤ (𝑏− 𝑎)
𝑒𝑛(𝑑𝑛 − 𝑒𝑛) + 𝑒𝑛

(𝑑𝑛 + 1)(𝑑𝑛 + 𝑒𝑛 + 1)
=

(𝑏− 𝑎)𝑒2
𝑛

(𝑑𝑛 + 1)(𝑑𝑛 + 𝑒𝑛 + 1)

(
𝑑𝑛

𝑒𝑛
− 1 + 1 

𝑒𝑛

)
= 𝛿𝑛,

where 𝛿𝑛 depends only on 𝑛 and 𝛿𝑛 → 0 as 𝑛→∞ due to the assumptions that 𝑑𝑛 →∞ and 𝑒𝑛 ∼ 𝑑𝑛 as 𝑛→∞.

We now prove the lemma. For every 𝑖 = 1,… ,min(𝑑𝑛, 𝑒𝑛), we have||||𝑥𝑖,𝑛 − 𝜉𝑖,𝑛|− |𝑧2𝑖−1,𝑛 − 𝜁2𝑖−1,𝑛|||| = ||||𝑥𝑖,𝑛 − 𝜉𝑖,𝑛|− |𝑥𝑖,𝑛 − 𝜁2𝑖−1,𝑛|||| ≤ |𝜉𝑖,𝑛 − 𝜁2𝑖−1,𝑛| ≤ 𝛼𝑛,||||𝑦𝑖,𝑛 −𝜓𝑖,𝑛|− |𝑧2𝑖,𝑛 − 𝜁2𝑖,𝑛|||| = ||||𝑦𝑖,𝑛 −𝜓𝑖,𝑛|− |𝑦𝑖,𝑛 − 𝜁2𝑖,𝑛|||| ≤ |𝜓𝑖,𝑛 − 𝜁2𝑖,𝑛| ≤ 𝛽𝑛.

Moreover, if 𝑑𝑛 ≤ 𝑒𝑛 then, for every 𝑖 = 𝑑𝑛 + 1,… , 𝑒𝑛, we have||||𝑦𝑖,𝑛 −𝜓𝑖,𝑛|− |𝑧2𝑑𝑛+(𝑖−𝑑𝑛),𝑛 − 𝜁2𝑑𝑛+(𝑖−𝑑𝑛),𝑛|||| = ||||𝑦𝑖,𝑛 −𝜓𝑖,𝑛|− |𝑦𝑖,𝑛 − 𝜁2𝑑𝑛+(𝑖−𝑑𝑛),𝑛||||
≤ |𝜓𝑖,𝑛 − 𝜁2𝑑𝑛+(𝑖−𝑑𝑛),𝑛| ≤ 𝛾𝑛.

If instead 𝑑𝑛 > 𝑒𝑛 then, for every 𝑖 = 𝑒𝑛 + 1,… , 𝑑𝑛, we have||||𝑥𝑖,𝑛 − 𝜉𝑖,𝑛|− |𝑧2𝑒𝑛+(𝑖−𝑒𝑛),𝑛 − 𝜁2𝑒𝑛+(𝑖−𝑒𝑛),𝑛|||| = ||||𝑥𝑖,𝑛 − 𝜉𝑖,𝑛|− |𝑥𝑖,𝑛 − 𝜁2𝑒𝑛+(𝑖−𝑒𝑛),𝑛||||
≤ |𝜉𝑖,𝑛 − 𝜁2𝑒𝑛+(𝑖−𝑒𝑛),𝑛| ≤ 𝛿𝑛.

In any case, we have

||max(𝑚(𝑛),𝑚(𝑛)) −𝑚(𝑛)|| ≤max(𝛼𝑛, 𝛽𝑛, 𝛾𝑛, 𝛿𝑛).

This implies that 𝑛 is a.u. in [𝑎, 𝑏] if and only if both 𝑛 and 𝑛 are a.u. in [𝑎, 𝑏]. □

Theorem 3.2. Let 𝑓 ∶ [−𝜋,𝜋]→ℝ be even, bounded and continuous a.e. with (𝑓 ) = [inf [0,𝜋] 𝑓, sup[0,𝜋] 𝑓 ]. Then, for every 𝑛 and every 
a.u. grid {𝑥𝑖,𝑛}𝑖=1,…,𝑛 in [0, 𝜋], there exists a real unitary matrix 𝑉𝑛 such that (2.4)--(2.7) hold and

max 
𝑖=1,…,𝑛

|𝑓 (𝑥𝑖,𝑛) − 𝜆𝑖(𝑇𝑛(𝑓 ))|→ 0 as 𝑛→∞. (3.12)

Proof. By Theorem 3.1, for every 𝑛 there exists a real unitary matrix 𝑉𝑛 such that (2.4)--(2.7) are satisfied and

{Λ+
𝑛
}𝑛 ∼ 𝑓, Λ+

𝑛
= {𝜆2𝑖−1(𝐻𝑛(𝑓 ))}𝑖=1,…,⌈𝑛∕2⌉ = {𝜆2𝑖−1(𝑇𝑛(𝑓 ))}𝑖=1,…,⌈𝑛∕2⌉, (3.13)

{Λ−
𝑛
}𝑛 ∼ −𝑓, Λ−

𝑛
= {𝜆2𝑖(𝐻𝑛(𝑓 ))}𝑖=1,…,⌊𝑛∕2⌋ = {−𝜆2𝑖(𝑇𝑛(𝑓 ))}𝑖=1,…,⌊𝑛∕2⌋. (3.14)

Note that if we permute the columns of 𝑉𝑛 and the eigenvalues of 𝑇𝑛(𝑓 ) and 𝐻𝑛(𝑓 ) through the same permutation 𝜏 of {1,… , 𝑛}
such that 𝜏 maps odd indices to odd indices and even indices to even indices, then (2.4)--(2.7) continue to hold.

By (3.13)--(3.14), Theorem 2.4, and the assumptions on 𝑓 , the hypotheses of Theorem 2.1 are satisfied for 𝑓 and Λ+
𝑛

as well as 
for −𝑓 and Λ−

𝑛
. Hence, by Theorem 2.1 applied first with 𝑓 and Λ+

𝑛
and then with −𝑓 and Λ−

𝑛
, we infer that, for every pair of a.u. 

grids {𝑥+
𝑖,𝑛
}𝑖=1,…,⌈𝑛∕2⌉, {𝑥−𝑖,𝑛}𝑖=1,…,⌊𝑛∕2⌋ in [0, 𝜋], we have

min
𝜏

max 
𝑖=1,…,⌈𝑛∕2⌉ |𝑓 (𝑥+𝑖,𝑛) − 𝜆2𝜏(𝑖)−1(𝑇𝑛(𝑓 ))|→ 0 as 𝑛→∞, (3.15)
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min
𝜏

max 
𝑖=1,…,⌊𝑛∕2⌋ |− 𝑓 (𝑥−

𝑖,𝑛
) + 𝜆2𝜏(𝑖)(𝑇𝑛(𝑓 ))|→ 0 as 𝑛→∞, (3.16)

where the minima are taken over all permutations 𝜏 of {1,… ,⌈𝑛∕2⌉} and {1,… ,⌊𝑛∕2⌋}, respectively.

Now let {𝑥𝑖,𝑛}𝑖=1,…,𝑛 be an a.u. grid in [0, 𝜋]. The two subgrids {𝑥2𝑖−1,𝑛}𝑖=1,…,⌈𝑛∕2⌉, {𝑥2𝑖,𝑛}𝑖=1,…,⌊𝑛∕2⌋ are a.u. in [0, 𝜋] by Lemma 3.1. 
We can therefore use these subgrids in (3.15)--(3.16) and we obtain

min
𝜏

max 
𝑖=1,…,⌈𝑛∕2⌉ |𝑓 (𝑥2𝑖−1,𝑛) − 𝜆2𝜏(𝑖)−1(𝑇𝑛(𝑓 ))|→ 0 as 𝑛→∞, (3.17)

min
𝜏

max 
𝑖=1,…,⌊𝑛∕2⌋ |− 𝑓 (𝑥2𝑖,𝑛) + 𝜆2𝜏(𝑖)(𝑇𝑛(𝑓 ))|→ 0 as 𝑛→∞. (3.18)

For every 𝑛, we rearrange the eigenvalues of 𝐻𝑛(𝑓 ) and 𝑇𝑛(𝑓 ) as follows:

{𝜆1(𝐻𝑛(𝑓 )),… , 𝜆𝑛(𝐻𝑛(𝑓 ))} = {𝜆2𝜏+𝑛 (1)−1(𝐻𝑛(𝑓 )), 𝜆2𝜏−𝑛 (1)(𝐻𝑛(𝑓 )), 𝜆2𝜏+𝑛 (2)−1(𝐻𝑛(𝑓 )), 𝜆2𝜏−𝑛 (2)(𝐻𝑛(𝑓 )),…},

{𝜆1(𝑇𝑛(𝑓 )),… , 𝜆𝑛(𝑇𝑛(𝑓 ))} = {𝜆2𝜏+𝑛 (1)−1(𝑇𝑛(𝑓 )), 𝜆2𝜏−𝑛 (1)(𝑇𝑛(𝑓 )), 𝜆2𝜏+𝑛 (2)−1(𝑇𝑛(𝑓 )), 𝜆2𝜏−𝑛 (2)(𝑇𝑛(𝑓 )),…},

where 𝜏+
𝑛

and 𝜏−
𝑛

are two permutations for which the minima in (3.17)--(3.18) are attained. Then, (3.17)--(3.18) imply

max 
𝑖=1,…,𝑛

|𝑓 (𝑥𝑖,𝑛) − 𝜆𝑖(𝑇𝑛(𝑓 ))|→ 0 as 𝑛→∞,

which yields (3.12). Moreover, after the above rearrangement of the eigenvalues of 𝑇𝑛(𝑓 ) and 𝐻𝑛(𝑓 ), (2.4)--(2.7) continue to hold, 
because, by construction, the considered rearrangement is associated with a permutation 𝜏𝑛 of the columns of 𝑉𝑛 and the eigenvalues 
of 𝑇𝑛(𝑓 ) and 𝐻𝑛(𝑓 ) such that 𝜏𝑛 maps odd indices to odd indices and even indices to even indices. Of course, (2.4)--(2.7) continue 
to hold with a new matrix 𝑉𝑛 obtained by permuting the columns of the old 𝑉𝑛 through the permutation 𝜏𝑛. With abuse of notation, 
we denote again by 𝑉𝑛 the new matrix 𝑉𝑛, so that (2.4)--(2.7) hold unchanged. The thesis is proved. □

Theorem 3.3 is our third main result. It shows, among others, that, for a real even bounded function 𝑓 with a finite number of 
local maximum/minimum points and discontinuities, the alternating sign relationship (3.11) holds for a suitable a.u. grid {𝑥𝑖,𝑛}𝑖=1,…,𝑛

with 𝜀𝑖,𝑛 = 0 for every 𝑖 = 1,… , 𝑛 and every 𝑛.

Theorem 3.3. Let 𝑓 ∶ [−𝜋,𝜋]→ ℝ be even and bounded with a finite number of local maximum points, local minimum points, and dis

continuity points, and with (𝑓 ) = [inf [0,𝜋] 𝑓, sup[0,𝜋] 𝑓 ] and (inf [0,𝜋] 𝑓, sup[0,𝜋] 𝑓 ) ⊆ 𝑓 ([0, 𝜋]). Then, for every 𝑛, there exist an a.u. grid 
{𝑥𝑖,𝑛}𝑖=1,…,𝑛 in [0, 𝜋] and a real unitary matrix 𝑉𝑛 such that (2.4)--(2.7) hold and

𝜆𝑖(𝑇𝑛(𝑓 )) = 𝑓 (𝑥𝑖,𝑛), 𝑖 = 1,… , 𝑛. (3.19)

Proof. By Theorem 3.1, for every 𝑛 there exists a real unitary matrix 𝑉𝑛 such that (2.4)--(2.7) are satisfied and

{Λ+
𝑛
}𝑛 ∼ 𝑓, Λ+

𝑛
= {𝜆2𝑖−1(𝐻𝑛(𝑓 ))}𝑖=1,…,⌈𝑛∕2⌉ = {𝜆2𝑖−1(𝑇𝑛(𝑓 ))}𝑖=1,…,⌈𝑛∕2⌉, (3.20)

{Λ−
𝑛
}𝑛 ∼ −𝑓, Λ−

𝑛
= {𝜆2𝑖(𝐻𝑛(𝑓 ))}𝑖=1,…,⌊𝑛∕2⌋ = {−𝜆2𝑖(𝑇𝑛(𝑓 ))}𝑖=1,…,⌊𝑛∕2⌋. (3.21)

Note that if we permute the columns of 𝑉𝑛 and the eigenvalues of 𝑇𝑛(𝑓 ) and 𝐻𝑛(𝑓 ) through the same permutation 𝜏 of {1,… , 𝑛}
such that 𝜏 maps odd indices to odd indices and even indices to even indices, then (2.4)--(2.7) continue to hold.

By (3.20)--(3.21), Theorem 2.4, and the assumptions on 𝑓 , the hypotheses of Theorem 2.2 are satisfied for 𝑓 and Λ+
𝑛

as well as for 
−𝑓 and Λ−

𝑛
. Hence, by Theorem 2.2 applied first with 𝑓 and Λ+

𝑛
and then with −𝑓 and Λ−

𝑛
, we infer the existence of two a.u. grids 

{𝑥+
𝑖,𝑛
}𝑖=1,…,⌈𝑛∕2⌉, {𝑥−𝑖,𝑛}𝑖=1,…,⌊𝑛∕2⌋ in [0, 𝜋] and two permutations 𝜏+

𝑛
of {1,… ,⌈𝑛∕2⌉} and 𝜏−

𝑛
of {1,… ,⌊𝑛∕2⌋} such that, for every 𝑛,

𝜆2𝜏+𝑛 (𝑖)−1(𝑇𝑛(𝑓 )) = 𝑓 (𝑥+
𝑖,𝑛
), 𝑖 = 1,… ,⌈𝑛∕2⌉, (3.22)

−𝜆2𝜏−𝑛 (𝑖)(𝑇𝑛(𝑓 )) = −𝑓 (𝑥−
𝑖,𝑛
), 𝑖 = 1,… ,⌊𝑛∕2⌋. (3.23)

Define

{𝑥1,𝑛,… , 𝑥𝑛,𝑛} = {𝑥+1,𝑛, 𝑥
−
1,𝑛, 𝑥

+
2,𝑛, 𝑥

−
2,𝑛,…}

and rearrange the eigenvalues of 𝐻𝑛(𝑓 ) and 𝑇𝑛(𝑓 ) as follows:

{𝜆1(𝐻𝑛(𝑓 )),… , 𝜆𝑛(𝐻𝑛(𝑓 ))} = {𝜆2𝜏+𝑛 (1)−1(𝐻𝑛(𝑓 )), 𝜆2𝜏−𝑛 (1)(𝐻𝑛(𝑓 )), 𝜆2𝜏+𝑛 (2)−1(𝐻𝑛(𝑓 )), 𝜆2𝜏−𝑛 (2)(𝐻𝑛(𝑓 )),…},

{𝜆1(𝑇𝑛(𝑓 )),… , 𝜆𝑛(𝑇𝑛(𝑓 ))} = {𝜆2𝜏+𝑛 (1)−1(𝑇𝑛(𝑓 )), 𝜆2𝜏−𝑛 (1)(𝑇𝑛(𝑓 )), 𝜆2𝜏+𝑛 (2)−1(𝑇𝑛(𝑓 )), 𝜆2𝜏−𝑛 (2)(𝑇𝑛(𝑓 )),…}.

Note that {𝑥𝑖,𝑛}𝑖=1,…,𝑛 is an a.u. grid in [0, 𝜋] by Lemma 3.1. Moreover, after the above rearrangement of the eigenvalues of 𝑇𝑛(𝑓 )
and 𝐻𝑛(𝑓 ), by (3.22)--(3.23) we have

𝜆𝑖(𝑇𝑛(𝑓 )) = 𝑓 (𝑥𝑖,𝑛), 𝑖 = 1,… , 𝑛,
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which is (3.19). In addition, (2.4)--(2.7) continue to hold, because, by construction, the considered rearrangement is associated with 
a permutation 𝜏𝑛 of the columns of 𝑉𝑛 and the eigenvalues of 𝑇𝑛(𝑓 ) and 𝐻𝑛(𝑓 ) such that 𝜏𝑛 maps odd indices to odd indices and 
even indices to even indices. Of course, (2.4)--(2.7) continue to hold with a new matrix 𝑉𝑛 obtained by permuting the columns of 
the old 𝑉𝑛 through the permutation 𝜏𝑛. With abuse of notation, we denote again by 𝑉𝑛 the new matrix 𝑉𝑛, so that (2.4)--(2.7) hold 
unchanged. The thesis is proved. □

Theorem 3.4 is our fourth main result. It is an extension of Corollary 2.1 to the case where 𝑓 ∈ 𝐿1([−𝜋,𝜋]) is only assumed to 
have real Fourier coefficients. In this case, the moduli of the eigenvalues of 𝐻𝑛(𝑓 ) coincide with the singular values of 𝑇𝑛(𝑓 ), as 
shown by the following remark.

Remark 3.1. For every matrix 𝐴 ∈ℂ𝑛×𝑛, the singular values of 𝐴 and 𝑌𝑛𝐴 coincide because 𝑌𝑛 is a unitary (permutation) matrix. In 
particular, for every 𝑓 ∈𝐿1([−𝜋,𝜋]), the singular values of 𝑇𝑛(𝑓 ) and 𝐻𝑛(𝑓 ) coincide. In the case where 𝑇𝑛(𝑓 ) is real, which happens 
whenever the Fourier coefficients of 𝑓 are real, the matrix 𝐻𝑛(𝑓 ) is real and symmetric, and so the singular values of 𝐻𝑛(𝑓 ), i.e., the 
singular values of 𝑇𝑛(𝑓 ), coincide with the moduli of the eigenvalues of 𝐻𝑛(𝑓 ).

Theorem 3.4. Suppose that the Fourier coefficients of 𝑓 ∈𝐿1([−𝜋,𝜋]) are real. For every 𝑛, let

𝑇𝑛(𝑓 ) =𝑈𝑛Σ𝑛𝑉
∗
𝑛
, Σ𝑛 = diag 

𝑖=1,…,𝑛

𝜎𝑖(𝑇𝑛(𝑓 )),

be a singular value decomposition of 𝑇𝑛(𝑓 ). Then, for every 𝑛, we can arrange the eigenvalues of 𝐻𝑛(𝑓 ) so that

|𝜆𝑖(𝐻𝑛(𝑓 ))| = 𝜎𝑖(𝑇𝑛(𝑓 )), 𝑖 = 1,… , 𝑛, (3.24)

𝐻𝑛(𝑓 )2 = 𝑉𝑛Σ2
𝑛
𝑉 ∗
𝑛
, (3.25)

𝐻𝑛(𝑓 )2 = 𝑌𝑛𝑈𝑛Σ2
𝑛
(𝑌𝑛𝑈𝑛)∗. (3.26)

In particular, the columns of 𝑉𝑛 (right singular vectors of 𝑇𝑛(𝑓 )) and the columns of 𝑌𝑛𝑈𝑛 (flipped left singular vectors of 𝑇𝑛(𝑓 )) are 
orthonormal bases of ℂ𝑛 consisting of eigenvectors of 𝐻𝑛(𝑓 )2.

Proof. This proof of Theorem 3.4 is simpler than the original one proposed by the authors and is due to an anonymous reviewer. 
We know from Remark 3.1 that the eigenvalues of 𝐻𝑛(𝑓 ) can be arranged so that (3.24) holds. (3.25)--(3.26) follow from (3.24) by 
taking into account the singular value decomposition 𝑇𝑛(𝑓 ) =𝑈𝑛Σ𝑛𝑉

∗
𝑛

and the fact that 𝐻𝑛(𝑓 ) = 𝑌𝑛𝑇𝑛(𝑓 ) is real and symmetric:

𝐻𝑛(𝑓 )2 =𝐻𝑛(𝑓 )∗𝐻𝑛(𝑓 ) = 𝑇𝑛(𝑓 )∗𝑇𝑛(𝑓 ) = 𝑉𝑛Σ2
𝑛
𝑉 ∗
𝑛
,

𝐻𝑛(𝑓 )2 =𝐻𝑛(𝑓 )𝐻𝑛(𝑓 )∗ = 𝑌𝑛𝑇𝑛(𝑓 )𝑇𝑛(𝑓 )∗𝑌𝑛 = 𝑌𝑛𝑈𝑛Σ2
𝑛
(𝑌𝑛𝑈𝑛)∗. □

Remark 3.2. For every diagonalizable matrix 𝐴 ∈ℂ𝑛×𝑛, the eigenvectors of 𝐴 and 𝐴2 coincide whenever the eigenvalues of 𝐴2 (i.e., 
the squares of the eigenvalues of 𝐴) are distinct. More precisely, in this case we have that 𝒗 is an eigenvector of 𝐴 associated with 
the eigenvalue 𝜆 if and only if 𝒗 is an eigenvector of 𝐴2 associated with 𝜆2. It follows that, in Theorem 3.4, we can replace (3.25) with 
𝐻𝑛(𝑓 ) = 𝑉𝑛

[
diag𝑖=1,…,𝑛 𝜆𝑖(𝐻𝑛(𝑓 ))

]
𝑉 ∗
𝑛

and (3.26) with 𝐻𝑛(𝑓 ) = 𝑌𝑛𝑈𝑛

[
diag𝑖=1,…,𝑛 𝜆𝑖(𝐻𝑛(𝑓 ))

]
(𝑌𝑛𝑈𝑛)∗ whenever the eigenvalues of 𝐻𝑛(𝑓 )2

are distinct.

Theorem 3.5 is our fifth main result. It provides localization results for the eigenvalues of 𝐻𝑛(𝑓 ) under different assumptions on 
the function 𝑓 . To prove Theorem 3.5, we need two auxiliary lemmas. The first one is a plain extension of Widom’s Lemma 2.2. The 
second one combines a few classical results on Toeplitz matrices [13].

Lemma 3.2. Let 𝑓 ∈ 𝐿1([−𝜋,𝜋]) and let 𝑑𝑓 be the distance of 0 from Co((𝑓 )) in ℂ. Suppose that |𝑓 | is not a.e. constant. Then, the 
singular values of 𝑇𝑛(𝑓 ) lie in [𝑑𝑓 ,𝑀|𝑓 |) for all 𝑛, where 𝑀|𝑓 | = ess sup[−𝜋,𝜋] |𝑓 |.
Proof. By Widom’s Lemma 2.2, the singular values of 𝑇𝑛(𝑓 ) lie in [𝑑𝑓 ,𝑀|𝑓 |] for all 𝑛. We show that no singular value of 𝑇𝑛(𝑓 ) can be 
equal to 𝑀|𝑓 |, i.e., ‖𝑇𝑛(𝑓 )‖ <𝑀|𝑓 |, where ‖𝑇𝑛(𝑓 )‖ is the spectral (or Euclidean) norm of 𝑇𝑛(𝑓 ) (the largest singular value of 𝑇𝑛(𝑓 )). 
It is known that ‖𝑇𝑛(𝑓 )‖ ≤ ‖𝑇𝑛(|𝑓 |)‖; see, e.g., [13, Lemma 6.3] applied with 𝑝 =∞. By Theorem 2.4 and the assumption that |𝑓 |
is not a.e. constant, we infer that 𝑇𝑛(|𝑓 |) is a Hermitian positive definite matrix whose eigenvalues lie in (𝑚|𝑓 |,𝑀|𝑓 |) ⊆ (0,𝑀|𝑓 |). In 
particular, the largest eigenvalue of 𝑇𝑛(|𝑓 |) coincides with ‖𝑇𝑛(|𝑓 |)‖ and is smaller than 𝑀|𝑓 |. Thus, ‖𝑇𝑛(𝑓 )‖ ≤ ‖𝑇𝑛(|𝑓 |)‖ <𝑀|𝑓 |. □

Lemma 3.3. Let 𝑓 (𝜃) =
∑𝑟

𝑘=−𝑟 𝑓𝑘e
i𝑘𝜃 be a trigonometric polynomial of degree 𝑟, and let

𝑚|𝑓 | = min 
[−𝜋,𝜋]

|𝑓 |, 𝑀|𝑓 | = max 
[−𝜋,𝜋]

|𝑓 |.
Then, for every 𝑛, the singular values of 𝑇𝑛(𝑓 ) lie in [𝑚|𝑓 |,𝑀|𝑓 |] except for at most 2𝑟 outliers.
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Proof. The thesis is obvious for 𝑛 ≤ 2𝑟. Suppose that 𝑛 ≥ 2𝑟+1. Let 𝐶𝑛(𝑓 ) be the circulant matrix defined in [13, p. 109]. By the first 
inequality in [13, p. 110], we have

rank(𝑇𝑛(𝑓 ) −𝐶𝑛(𝑓 )) ≤ 2𝑟.

Hence, by the interlacing theorem for singular values [13, Theorem 2.11], the singular values of 𝑇𝑛(𝑓 ) lie between 𝜎min(𝐶𝑛(𝑓 ))
and 𝜎max(𝐶𝑛(𝑓 )), except for at most 2𝑟 singular values smaller than 𝜎min(𝐶𝑛(𝑓 )) and 2𝑟 singular values larger than 𝜎max(𝐶𝑛(𝑓 )). 
The singular values of 𝑇𝑛(𝑓 ) larger than 𝜎max(𝐶𝑛(𝑓 )), if any, are anyway ≤ 𝑀|𝑓 | by Lemma 2.2. Moreover, we know from [13, 
Theorem 6.4] that 𝜎min(𝐶𝑛(𝑓 )) and 𝜎max(𝐶𝑛(𝑓 )) lie between [𝑚|𝑓 |,𝑀|𝑓 |]. Thus, all the singular values of 𝑇𝑛(𝑓 ) lie in [𝑚|𝑓 |,𝑀|𝑓 |]
except for at most 2𝑟 outliers (smaller than 𝑚|𝑓 |). □

Theorem 3.5. Suppose that the Fourier coefficients of 𝑓 ∈𝐿1([−𝜋,𝜋]) are real, and let

𝑑𝑓 = distance of 0 from Co((𝑓 )) in ℂ,

𝑚|𝑓 | = ess inf
[−𝜋,𝜋] |𝑓 |, 𝑀|𝑓 | = ess sup

[−𝜋,𝜋] 
|𝑓 |.

Then, for every 𝑛, the following properties hold.

1. The eigenvalues of 𝐻𝑛(𝑓 ) lie in [−𝑀|𝑓 |,−𝑑𝑓 ] ∪ [𝑑𝑓 ,𝑀|𝑓 |].
2. Assume that |𝑓 | is not a.e. constant. Then, the eigenvalues of 𝐻𝑛(𝑓 ) lie in (−𝑀|𝑓 |,−𝑑𝑓 ] ∪ [𝑑𝑓 ,𝑀|𝑓 |).
3. Assume that |𝑓 | ≠𝑚|𝑓 | a.e. and |𝑓 | ≠𝑀|𝑓 | a.e. Then, the eigenvalues of 𝐻𝑛(𝑓 ) lie in (−𝑀|𝑓 |,−𝑚|𝑓 |] ∪ [𝑚|𝑓 |,𝑀|𝑓 |) except for at most 

𝑜(𝑛) outliers lying in (−𝑚|𝑓 |,𝑚|𝑓 |).
4. Assume that 𝑓 (𝜃) =

∑𝑟

𝑘=−𝑟 𝑓𝑘e
i𝑘𝜃 is a trigonometric polynomial of degree 𝑟. Then, the eigenvalues of 𝐻𝑛(𝑓 ) lie in [−𝑀|𝑓 |,−𝑚|𝑓 |] ∪

[𝑚|𝑓 |,𝑀|𝑓 |] except for at most 2𝑟 outliers lying in (−𝑚|𝑓 |,𝑚|𝑓 |).
5. Assume that 𝑓 belongs to the Krein algebra. Then, for every 𝜀 > 0 there exists a constant 𝐶𝜀 such that the eigenvalues of 𝐻𝑛(𝑓 ) lie in 

[−𝑀|𝑓 |,−𝑚|𝑓 | + 𝜀) ∪ (𝑚|𝑓 | − 𝜀,𝑀|𝑓 |] except for at most 𝐶𝜀 outliers.

Proof. We know that |𝜆𝑖(𝐻𝑛(𝑓 ))| = 𝜎𝑖(𝑇𝑛(𝑓 )), 𝑖 = 1,… , 𝑛. Hence, item 1 follows from Lemma 2.2; item 2 follows from Lemma 3.2; 
item 3 follows from item 2 and the asymptotic singular value distribution {𝑇𝑛(𝑓 )}𝑛 ∼𝜎 𝑓 in Theorem 2.3, which implies that the 
number of singular values of 𝑇𝑛(𝑓 ) lying outside (|𝑓 |) ⊆ [𝑚|𝑓 |,𝑀|𝑓 |] is 𝑜(𝑛) by [3, Theorem 4.7]; item 4 follows from item 1 and 
Lemma 3.3; and, finally, item 5 follows from item 1 and Lemma 2.3. □

Our last main result (Theorem 3.6) is more an observation than a ``main result'', but we decided anyway to state it here, in the 
section of main results, as it completes our spectral study of flipped Toeplitz matrices. To prove Theorem 3.6, we need the following 
basic lemmas, which can be seen as corollaries of [15, Proposition 3.1.2]; see also [30, Exercise 4.5]. For the reader’s convenience, 
we include the short proofs.

Lemma 3.4. Let 𝑓 ∈𝐿1([−𝜋,𝜋]). Then, the following are equivalent.

1. 𝑓 is real and even a.e. in [−𝜋,𝜋], i.e., 𝑓 (−𝑥) = 𝑓 (𝑥) ∈ℝ for a.e. 𝑥∈ [−𝜋,𝜋].
2. The Fourier coefficients of 𝑓 are real and even, i.e., 𝑓−𝑘 = 𝑓𝑘 ∈ℝ for all 𝑘 ∈ℤ.

Proof. (1 ⟹ 2) Suppose that 𝑓 (−𝑥) = 𝑓 (𝑥) ∈ℝ for almost every 𝑥 ∈ [−𝜋,𝜋]. Then, for every 𝑘 ∈ℤ,

𝑓−𝑘 =
1 
2𝜋

𝜋

∫
−𝜋 

𝑓 (𝑥)ei𝑘𝑥d𝑥 = 1 
2𝜋

𝜋

∫
−𝜋 

𝑓 (−𝑡)e−i𝑘𝑡d𝑡 = 1 
2𝜋

𝜋

∫
−𝜋 

𝑓 (𝑡)e−i𝑘𝑡d𝑡 = 𝑓𝑘

and 𝑓𝑘 is real, because

𝑓𝑘 =
1
2
(𝑓−𝑘 + 𝑓𝑘) =

1
2

⎛⎜⎜⎝ 1 
2𝜋

𝜋

∫
−𝜋 

𝑓 (𝑥)ei𝑘𝑥d𝑥+ 1 
2𝜋

𝜋

∫
−𝜋 

𝑓 (𝑥)e−i𝑘𝑥d𝑥
⎞⎟⎟⎠ = 1 

2𝜋

𝜋

∫
−𝜋 

𝑓 (𝑥) cos(𝑘𝑥)d𝑥.

(2 ⟹ 1) Suppose that the Fourier coefficients of 𝑓 are real and even. In order to prove that 𝑓 is real and even a.e. in [−𝜋,𝜋], it 
suffices to prove that the three functions 𝑓 (−𝑥), 𝑓 (𝑥), 𝑓 (𝑥) have the same Fourier coefficients, which means that they coincide a.e. 
[27, Theorem 5.15]. Let {𝑎𝑘}𝑘∈ℤ (resp., {𝑏𝑘}𝑘∈ℤ, {𝑓𝑘}𝑘∈ℤ) be the sequence of Fourier coefficients of 𝑓 (−𝑥) (resp., 𝑓 (𝑥), 𝑓 (𝑥)). Then, 
taking into account that the Fourier coefficients of 𝑓 are real and even, for every 𝑘 ∈ℤ we have

𝑏𝑘 =
1 
2𝜋

𝜋

∫
−𝜋 

𝑓 (𝑥)e−i𝑘𝑥d𝑥 = 1 
2𝜋

𝜋

∫
−𝜋 

𝑓 (𝑥)ei𝑘𝑥d𝑥 = 𝑓−𝑘 = 𝑓−𝑘 =
1 
2𝜋

𝜋

∫
−𝜋 

𝑓 (𝑥)ei𝑘𝑥d𝑥 = 1 
2𝜋

𝜋

∫
−𝜋 

𝑓 (−𝑡)e−i𝑘𝑡d𝑡 = 𝑎𝑘,
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hence 𝑏𝑘 = 𝑎𝑘 = 𝑓−𝑘 = 𝑓𝑘. □

Lemma 3.5. Suppose that the Fourier coefficients of 𝑓 ∈𝐿1([−𝜋,𝜋]) are real. Then, 𝑓 (−𝑥) = 𝑓 (𝑥) for almost every 𝑥∈ [−𝜋,𝜋].

Proof. It suffices to prove that the two functions 𝑓 (−𝑥) and 𝑓 (𝑥) have the same Fourier coefficients, which means that they coincide 
a.e. [27, Theorem 5.15]. Let {𝑎𝑘}𝑘∈ℤ (resp., {𝑏𝑘}𝑘∈ℤ, {𝑓𝑘}𝑘∈ℤ) be the sequence of Fourier coefficients of 𝑓 (−𝑥) (resp., 𝑓 (𝑥), 𝑓 (𝑥)). 
Then, taking into account that the Fourier coefficients of 𝑓 are real, for every 𝑘 ∈ℤ we have

𝑏𝑘 =
1 
2𝜋

𝜋

∫
−𝜋 

𝑓 (𝑥)e−i𝑘𝑥d𝑥 = 1 
2𝜋

𝜋

∫
−𝜋 

𝑓 (𝑥)ei𝑘𝑥d𝑥 = 𝑓−𝑘 = 𝑓−𝑘 =
1 
2𝜋

𝜋

∫
−𝜋 

𝑓 (𝑥)ei𝑘𝑥d𝑥 = 1 
2𝜋

𝜋

∫
−𝜋 

𝑓 (−𝑡)e−i𝑘𝑡d𝑡 = 𝑎𝑘,

hence 𝑏𝑘 = 𝑎𝑘. □

To simplify the statement of Theorem 3.6, we borrow a notation from [9]: for every 𝑔 ∶ [0, 𝜋] → ℂ, we define the function 
𝜓𝑔 ∶ [0,2𝜋]→ℂ by setting

𝜓𝑔(𝑥) =

{
𝑔(𝑥), 𝑥 ∈ [0, 𝜋],

− 𝑔(𝑥− 𝜋), 𝑥 ∈ (𝜋,2𝜋].

Moreover, for every 𝑓 ∶ [−𝜋,𝜋]→ℂ, we denote by 𝑓 |[0,𝜋] the restriction of 𝑓 to the interval [0, 𝜋].

Theorem 3.6. Let 𝑓 ∈𝐿1([−𝜋,𝜋]). Then, the following properties hold.

1. Suppose that the Fourier coefficients of 𝑓 are real. Then,

{𝑇𝑛(𝑓 )}𝑛 ∼𝜎 𝑓 |[0,𝜋], {𝐻𝑛(𝑓 )}𝑛 ∼𝜎 𝑓 |[0,𝜋].
2. Suppose that the Fourier coefficients of 𝑓 are real and even. Then,

{𝑇𝑛(𝑓 )}𝑛 ∼𝜆 𝑓 |[0,𝜋], {𝐻𝑛(𝑓 )}𝑛 ∼𝜆 𝜓|𝑓 |[0,𝜋]|, {𝐻𝑛(𝑓 )}𝑛 ∼𝜆 𝜓𝑓 |[0,𝜋] .
Proof. 1. By Lemma 3.5, we have 𝑓 (−𝑥) = 𝑓 (𝑥) for almost every 𝑥 ∈ [−𝜋,𝜋], hence |𝑓 (−𝑥)| = |𝑓 (𝑥)| for almost every 𝑥 ∈ [−𝜋,𝜋]. 

Thus, the relation {𝑇𝑛(𝑓 )}𝑛 ∼𝜎 𝑓 |[0,𝜋] is a consequence of the relation {𝑇𝑛(𝑓 )}𝑛 ∼𝜎 𝑓 (which holds by Theorem 2.4) and the 
definition of asymptotic singular value distribution. The relation {𝐻𝑛(𝑓 )}𝑛 ∼𝜎 𝑓 |[0,𝜋] follows immediately from {𝑇𝑛(𝑓 )}𝑛 ∼𝜎

𝑓 |[0,𝜋] and the fact that the singular values of 𝐻𝑛(𝑓 ) and 𝑇𝑛(𝑓 ) coincide; see Remark 3.1.

2. By Lemma 3.4, 𝑓 is real and even a.e. Thus, the relation {𝑇𝑛(𝑓 )}𝑛 ∼𝜆 𝑓 |[0,𝜋] is a consequence of the relation {𝑇𝑛(𝑓 )}𝑛 ∼𝜆 𝑓 (which 
holds by Theorem 2.4) and the definition of asymptotic spectral distribution. The relation {𝐻𝑛(𝑓 )}𝑛 ∼𝜆 𝜓|𝑓 |[0,𝜋]| is a consequence 
of the relation

{𝐻𝑛(𝑓 )}𝑛 ∼𝜆 diag(|𝑓 (𝑥)|,−|𝑓 (𝑥)|), 𝑥 ∈ [0, 𝜋], (3.27)

(which holds by Theorem 2.5 and the evenness of 𝑓 ) and Lemma 2.1 applied with [𝛼, 𝛽] = [0,2𝜋]. Finally, the relation 
{𝐻𝑛(𝑓 )}𝑛 ∼𝜆 𝜓𝑓 |[0,𝜋] is a consequence of the relation {𝐻𝑛(𝑓 )}𝑛 ∼𝜆 𝜓|𝑓 |[0,𝜋]| and the definition of asymptotic spectral distribu

tion, taking into account the 𝑓 is real a.e. □

4. Numerical experiments

We present in Examples 4.1--4.3 a few numerical experiments that illustrate Theorems 3.2 and 3.3. Note that the thesis of The

orem 3.3 is stronger than the thesis of Theorem 3.2, because the existence of an a.u. grid {𝑥𝑖,𝑛}𝑖=1,…,𝑛 in [0, 𝜋] such that (3.19) is 
satisfied implies that (3.12) is satisfied for every a.u. grid {𝑥𝑖,𝑛}𝑖=1,…,𝑛 in [0, 𝜋]. Thus, for functions 𝑓 satisfying the hypotheses of 
both Theorems 3.2 and 3.3, we just illustrate Theorem 3.3.

Example 4.1. Let 𝑓 ∶ [−𝜋,𝜋]→ℝ,

𝑓 (𝜃) =
⎧⎪⎨⎪⎩
1, 0 ≤ 𝜃 < 𝜋∕2,

𝜃 + 1 − 𝜋∕2, 𝜋∕2 ≤ 𝜃 ≤ 𝜋,

𝑓 (−𝜃), −𝜋 ≤ 𝜃 < 0.

(4.1)

Fig. 4.1 shows the graph of 𝑓 over the interval [0, 𝜋]. The function 𝑓 satisfies the hypotheses of Theorem 3.2. Hence, by Theorem 3.2, 
for every 𝑛 and every a.u. grid {𝑥𝑖,𝑛}𝑖=1,…,𝑛 in [0, 𝜋], there exists a real unitary matrix 𝑉𝑛 such that (2.4)--(2.7) hold and
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Fig. 4.1. Example 4.1: Graph on the interval [0, 𝜋] of the function 𝑓 (𝜃) defined in 
(4.1).

Table 4.1

Example 4.1: Computation of 𝑀𝑛

for increasing values of 𝑛.

𝑛 𝑀𝑛

8 0.0851 
16 0.0632 
32 0.0454 
64 0.0312 
128 0.0206 
256 0.0132 
512 0.0082 
1024 0.0050 

Fig. 4.2. Example 4.2: Graph on the interval [0, 𝜋] of the function 𝑓 (𝜃) defined in 
(4.3).

Table 4.2

Example 4.2: Computation of 𝑚(𝑛)
for increasing values of 𝑛.

𝑛 𝑚(𝑛)

8 0.2475 
16 0.1304 
32 0.0753 
64 0.0403 
128 0.0328 
256 0.0245 
512 0.0119 
1024 0.0060 

𝑀𝑛 = max 
𝑖=1,…,𝑛

|𝑓 (𝑥𝑖,𝑛) − 𝜆𝑖(𝑇𝑛(𝑓 ))|→ 0 as 𝑛→∞. (4.2)

To provide numerical evidence of this, for the values of 𝑛 considered in Table 4.1, we arranged the eigenvalues of 𝑇𝑛(𝑓 ) so that 
(2.4)--(2.7) are satisfied. In other words, we arranged the eigenvalues of 𝑇𝑛(𝑓 ) so that the eigenvector associated with the 𝑖th 
eigenvalue 𝜆𝑖(𝑇𝑛(𝑓 )) is either symmetric or skew-symmetric depending on whether 𝑖 is odd or even. Then, we computed 𝑀𝑛

in the case of the a.u. grid 𝑥𝑖,𝑛 = 𝑖𝜋 
𝑛+1 , 𝑖 = 1,… , 𝑛. We see from the table that 𝑀𝑛 → 0 as 𝑛 → ∞, though the convergence is 

slow.

Now we observe that 𝑓 does not satisfy the hypotheses of Theorem 3.3. Actually, 𝑓 satisfies all the hypotheses of Theorem 3.3

except for the assumption that 𝑓 has a finite number of local maximum/minimum points. Indeed, 𝑓 is constant on [0, 𝜋∕2] and so 
all points in [0, 𝜋∕2) are both local maximum and local minimum points for 𝑓 according to our Definition 2.3. We observe that, in 
fact, the thesis of Theorem 3.3 does not hold in this case, because there is no a.u. grid {𝑥𝑖,𝑛}𝑖=1,…,𝑛 in [0, 𝜋] such that, for every 
𝑛,

𝜆𝑖(𝑇𝑛(𝑓 )) = 𝑓 (𝑥𝑖,𝑛), 𝑖 = 1,… , 𝑛,

for a suitable ordering of the eigenvalues of 𝑇𝑛(𝑓 ). Indeed, the eigenvalues of 𝑇𝑛(𝑓 ) are contained in (1,1+𝜋∕2) by Theorem 2.4 and 
so any grid {𝑥𝑖,𝑛}𝑖=1,…,𝑛 ⊂ [0, 𝜋] satisfying the previous condition must be contained in (𝜋∕2, 𝜋), which implies that it cannot be a.u. 
in [0, 𝜋]. 

Example 4.2. This example is suggested by the cubic B-spline Galerkin discretization of second-order eigenvalue (and Poisson) 
problems [14, Section 2.4.1]. Let 𝑓 ∶ [−𝜋,𝜋]→ℝ,

𝑓 (𝜃) = 2
3
− 1

4
cos(𝜃) − 2

5
cos(2𝜃) − 1 

60
cos(3𝜃). (4.3)

Fig. 4.2 shows the graph of 𝑓 over the interval [0, 𝜋]. The function 𝑓 satisfies the hypotheses of Theorem 3.3. Hence, by Theorem 3.3, 
for every 𝑛 there exist an a.u. grid {𝑥𝑖,𝑛}𝑖=1,…,𝑛 in [0, 𝜋] and a real unitary matrix 𝑉𝑛 such that (2.4)--(2.7) hold and

𝜆𝑖(𝑇𝑛(𝑓 )) = 𝑓 (𝑥𝑖,𝑛), 𝑖 = 1,… , 𝑛. (4.4)

To provide numerical evidence of this, for the values of 𝑛 considered in Table 4.2, we arranged the eigenvalues of 𝑇𝑛(𝑓 ) so that 
(2.4)--(2.7) are satisfied. In other words, we arranged the eigenvalues of 𝑇𝑛(𝑓 ) so that the eigenvector associated with the 𝑖th 
eigenvalue 𝜆𝑖(𝑇𝑛(𝑓 )) is either symmetric or skew-symmetric depending on whether 𝑖 is odd or even. Then, we computed a grid 
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Fig. 4.3. Example 4.3: Graph on the interval [0, 𝜋] of the function 𝑓 (𝜃) defined in 
(4.5).

Table 4.3

Example 4.3: Computation of 𝑚(𝑛)
for increasing values of 𝑛.

𝑛 𝑚(𝑛)

8 0.5771 
16 0.4633 
32 0.2421 
64 0.2082 
128 0.1127 
256 0.0812 
512 0.0336 
1024 0.0183 

𝑛 = {𝑥𝑖,𝑛}𝑖=1,…,𝑛 satisfying (4.4) and we reported in Table 4.2 its uniformity measure 𝑚(𝑛). We see from the table that 𝑚(𝑛)→ 0
as 𝑛→∞, meaning that 𝑛 is a.u. in [0, 𝜋], though the convergence to 0 of 𝑚(𝑛) is slow.

Example 4.3. In this example, we consider a discontinuous function. Let 𝑓 ∶ [−𝜋,𝜋]→ℝ,

𝑓 (𝜃) =
⎧⎪⎨⎪⎩
cos(2𝜃) + cos(3𝜃), 0 ≤ 𝜃 < 𝜋∕2,

𝜃, 𝜋∕2 ≤ 𝜃 ≤ 𝜋,

𝑓 (−𝜃), −𝜋 ≤ 𝜃 < 0.

(4.5)

Fig. 4.3 shows the graph of 𝑓 over the interval [0, 𝜋]. The function 𝑓 satisfies the hypotheses of Theorem 3.3 just as the function 𝑓 of 
Example 4.2. Hence, we proceeded exactly as in Example 4.2. The results are collected in Table 4.3, which is the version of Table 4.2

for this example.

In Examples 4.4--4.6, we show how the spectral localization results in Theorem 3.5 can be used to predict the MINRES performance 
on linear systems with coefficient matrix 𝐻𝑛(𝑓 ). We recall that the interest behind solving linear systems with coefficient matrix 
𝐻𝑛(𝑓 ) lies in the fact that solving 𝐻𝑛(𝑓 )𝒙 = 𝑌𝑛𝒃 is equivalent to solving the Toeplitz linear system 𝑇𝑛(𝑓 )𝒙 = 𝒃. We also recall that 
the convergence bounds for CG and MINRES are formally identical and rely only on the eigenvalues of the system matrix; cf. [8, 
Eqs. (2.12) and (6.50)]. In particular, a fast convergence of both methods is usually observed when the eigenvalues of the system 
matrix are clustered at a small subset of ℝ bounded away from 0. For more details on this subject, see [8, Sections 2.1.1 and 2.2] for 
CG and [8, Sections 6.1 and 6.2.4] for MINRES. In what follows, we denote by 𝟏𝑛 the vector of all ones in ℝ𝑛.

Example 4.4. Let 𝑓 ∶ [−𝜋,𝜋]→ℂ,

𝑓 (𝜃) = −ei𝜃 + 3
2
+ e−i𝜃 + e−2i𝜃 + e−3i𝜃. (4.6)

The Fourier coefficients of 𝑓 are real as in the hypotheses of Theorem 3.5. A direct computation shows that the values 𝑑𝑓 , 𝑚|𝑓 |, 𝑀|𝑓 |
in the statement of Theorem 3.5 are given by

𝑑𝑓 = 0, 𝑚|𝑓 | ≈ 1.11, 𝑀|𝑓 | ≈ 3.53.

In particular, 0 lies inside the convex hull Co((𝑓 )); see also Fig. 4.4. By items 2 and 4 in Theorem 3.5, for every 𝑛, the eigenvalues 
of 𝐻𝑛(𝑓 ) are contained in (−3.53,3.53) and, moreover, at most 6 eigenvalues can lie outside (−3.53,−1.11] ∪ [1.11,3.53). Therefore, 
even if 𝑑𝑓 = 0, we can predict a fast convergence of MINRES for linear systems with coefficient matrix 𝐻𝑛(𝑓 ), due to the clustering 
of the eigenvalues of 𝐻𝑛(𝑓 ) at (−3.53,−1.11] ∪ [1.11,3.53), which is the union of two intervals sufficiently bounded away from 
0. This prediction is confirmed by Table 4.4, which shows that the number of MINRES iterations for solving the linear system 
𝐻𝑛(𝑓 )𝒙 = 𝟏𝑛 up to a precision of 10−6 is essentially independent of the matrix size 𝑛. In this sense, the MINRES convergence is 
optimal with respect to 𝑛. Table 4.4 also reports for each 𝑛 the number of outliers, i.e., the number of eigenvalues of 𝐻𝑛(𝑓 ) lying 
outside (−3.53,−1.11] ∪ [1.11,3.53). As expected, the number of outliers is smaller than 6 (actually, equal to 0) for all the considered 
values of 𝑛.

Example 4.5. Let 𝑓 ∶ [−𝜋,𝜋]→ℂ,

𝑓 (𝜃) = − 1 
10

+ e−i𝜃∕2. (4.7)

The Fourier coefficients of 𝑓 are real as in the hypotheses of Theorem 3.5; they are explicitly given by
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Fig. 4.4. Example 4.4: (Essential) range of the function 𝑓 (𝜃) defined in (4.6) and 
its convex hull. The value 𝑚|𝑓 | is also indicated.

Table 4.4

Example 4.4: Number of outliers and number of MINRES 
iterations for solving the linear system 𝐻𝑛(𝑓 )𝒙 = 𝟏𝑛 up 
to a precision of 10−6 for increasing values of 𝑛.

𝑛 Outliers MINRES iterations 
32 0 28 
64 0 35 
128 0 37 
256 0 35 
512 0 35 
1024 0 33 
2048 0 33 
4096 0 31 

Fig. 4.5. Example 4.5: (Essential) range of the function 𝑓 (𝜃) defined in (4.7) and 
its convex hull. The value 𝑚|𝑓 | is also indicated.

Table 4.5

Example 4.5: Number of outliers and number of MINRES 
iterations for solving the linear system 𝐻𝑛(𝑓 )𝒙 = 𝟏𝑛 up 
to a precision of 10−6 for increasing values of 𝑛.

𝑛 Outliers MINRES iterations 
32 2 11 
64 2 10 
128 3 11 
256 3 11 
512 3 10 
1024 3 10 
2048 3 10 
4096 4 12 

𝑓𝑘 =
⎧⎪⎨⎪⎩
− 1 

10
+ 2 

𝜋
, if 𝑘 = 0,

2(−1)𝑘

𝜋(2𝑘+ 1)
, if 𝑘 ≠ 0.

A direct computation shows that the values 𝑑𝑓 , 𝑚|𝑓 |, 𝑀|𝑓 | in the statement of Theorem 3.5 are given by

𝑑𝑓 = 0, 𝑚|𝑓 | = 0.9, 𝑀|𝑓 | ≈ 1.00.

In particular, 0 lies inside the convex hull Co((𝑓 )); see also Fig. 4.5. Note that 𝑓 does not belong to the Krein algebra, because∑
𝑘∈ℤ

|𝑘| |𝑓𝑘|2 = ∑
𝑘∈ℤ

4|𝑘| 
𝜋2(2𝑘+ 1)2

=∞.

In particular, we are not in the hypotheses of item 5 of Theorem 3.5. Nevertheless, we are in the hypotheses of item 3 of Theorem 3.5, 
because

|𝑓 (𝜃)| = 1 
10

√
101 − 2cos

(
𝜃

2 

)
cannot be equal to 𝑚|𝑓 | or 𝑀|𝑓 | on a set of positive measure. By items 2 and 3 in Theorem 3.5, for every 𝑛, the eigenvalues of 
𝐻𝑛(𝑓 ) are contained in (−1.00,1.00) and, moreover, the number of eigenvalues lying outside (−1.00,−0.9] ∪ [0.9,1.00) is at most 
𝑜(𝑛). Therefore, even if 𝑑𝑓 = 0, we can predict a fast convergence of MINRES for linear systems with coefficient matrix 𝐻𝑛(𝑓 ), due 
to the clustering of the eigenvalues of 𝐻𝑛(𝑓 ) at (−1.00,−0.9] ∪ [0.9,1.00), which is the union of two intervals sufficiently bounded 
away from 0. This prediction is confirmed by Table 4.5, which shows that the number of MINRES iterations for solving the linear 
system 𝐻𝑛(𝑓 )𝒙 = 𝟏𝑛 up to a precision of 10−6 is essentially independent of the matrix size 𝑛. In this sense, the MINRES convergence 
is optimal with respect to 𝑛. Table 4.5 also reports for each 𝑛 the number of outliers, i.e., the number of eigenvalues of 𝐻𝑛(𝑓 ) lying 
outside (−1.00,−0.9] ∪ [0.9,1.00). As expected, the number of outliers is small compared to the matrix size 𝑛 for all the considered 
values of 𝑛.
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Fig. 4.6. Example 4.6: (Essential) range of the function 𝑓 (𝜃) defined in (4.8) and 
its convex hull. The value 𝑚|𝑓 | is also indicated.

Table 4.6

Example 4.6: Number of outliers and number of MINRES and PMINRES 
iterations for solving the linear system 𝐻𝑛(𝑓 )𝒙 = 𝟏𝑛 up to a precision 
of 10−6 for increasing values of 𝑛.

𝑛 Outliers MINRES iterations PMINRES iterations 
32 0 31 14 
64 0 62 13 
128 0 118 13 
256 0 163 11 
512 0 225 11 
1024 0 237 11 
2048 0 233 11 
4096 0 225 10 

Example 4.6. Let 𝑓 ∶ [−𝜋,𝜋]→ℂ,

𝑓 (𝜃) = 9 
20

+ 𝜃2

𝜋2 (−e
i𝜃 + e2i𝜃 − e3i𝜃). (4.8)

The Fourier coefficients of 𝑓 are real as in the hypotheses of Theorem 3.5; they are explicitly given by

𝑓𝑘 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

9 
20

+ 49 
18𝜋2 , if 𝑘 = 0,

− 1
3
− 5 

2𝜋2 , if 𝑘 = 1,3,

1
3
+ 4 

𝜋2 , if 𝑘 = 2,

6(−1)𝑘
(
𝑘4 − 8𝑘3 + 24𝑘2 − 32𝑘+ 49

3 

)
𝜋2(𝑘− 1)2(𝑘− 2)2(𝑘− 3)2

, if 𝑘 ≠ 0,1,2,3.

A direct computation shows that the values 𝑑𝑓 , 𝑚|𝑓 |, 𝑀|𝑓 | in the statement of Theorem 3.5 are given by

𝑑𝑓 = 0, 𝑚|𝑓 | ≈ 0.13, 𝑀|𝑓 | = 3.45.

In particular, 0 lies inside the convex hull Co((𝑓 )); see also Fig. 4.6. Note that 𝑓 does not belong to the Krein algebra, because

∑
𝑘∈ℤ

|𝑘| |𝑓𝑘|2 = |𝑓1|2 + 2|𝑓2|2 + 3|𝑓3|2 + ∑
𝑘∈ℤ⧵{0,1,2,3}

6 |𝑘| ||||𝑘4 − 8𝑘3 + 24𝑘2 − 32𝑘+ 49
3 
||||

𝜋2(𝑘− 1)2(𝑘− 2)2(𝑘− 3)2
=∞.

In particular, we are not in the hypotheses of item 5 of Theorem 3.5. Nevertheless, we are in the hypotheses of item 3 of Theorem 3.5, 
because

|𝑓 (𝜃)| = √
81𝜋4 + 1200 𝜃4 − (360𝜋2 + 1600 𝜃2) 𝜃2 cos(𝜃) + (360𝜋2 + 800 𝜃2) 𝜃2 cos(2𝜃) − 360𝜋2𝜃2 cos(3𝜃)

20𝜋2

cannot be equal to 𝑚|𝑓 | or 𝑀|𝑓 | on a set of positive measure. By items 2 and 3 in Theorem 3.5, for every 𝑛, the eigenvalues of 𝐻𝑛(𝑓 )
are contained in (−3.45,3.45) and, moreover, the number of eigenvalues lying outside (−3.45,−0.13] ∪ [0.13,3.45) is at most 𝑜(𝑛). 
Therefore, even if 𝑑𝑓 = 0, we can (in principle) predict a fast convergence of MINRES for linear systems with coefficient matrix 𝐻𝑛(𝑓 ), 
due to the clustering of the eigenvalues of 𝐻𝑛(𝑓 ) at (−3.45,−0.13] ∪ [0.13,3.45). This prediction is confirmed by Table 4.6, which 
shows that the number of MINRES iterations for solving the linear system 𝐻𝑛(𝑓 )𝒙 = 𝟏𝑛 up to a precision of 10−6 is bounded by a 
constant independent of the matrix size 𝑛. In this sense, the MINRES convergence is optimal with respect to 𝑛. Table 4.6 also reports 
for each 𝑛 the number of outliers, i.e., the number of eigenvalues of 𝐻𝑛(𝑓 ) lying outside (−3.45,−0.13] ∪ [0.13,3.45). As expected, 
the number of outliers is small (actually, equal to 0) for all the considered values of 𝑛.

The only unpleasant aspect of Table 4.6 is that the number of MINRES iterations, although optimal with respect to 𝑛, is not so 
small for large 𝑛. This is due to the fact that the clustering set for the eigenvalues of 𝐻𝑛(𝑓 ), i.e., (−3.45,−0.13] ∪ [0.13,3.45), is not so 
bounded away from 0, because 0.13 is close to 0. In order to improve the number of MINRES iterations, we can use preconditioning. 
This is shown in the last column of Table 4.6, which reports the number of preconditioned MINRES (PMINRES) iterations for solving 
the linear system 𝐻𝑛(𝑓 )𝒙 = 𝟏𝑛 up to a precision of 10−6. The chosen preconditioner is

|𝐶𝑛| = (𝐶∗
𝑛
𝐶𝑛)1∕2,

where 𝐶𝑛 is the Frobenius optimal circulant preconditioner for 𝑇𝑛(𝑓 ) first introduced by Chan in [6]. The efficiency of the precon

ditioner |𝐶𝑛| observed in Table 4.6 could have been predicted on the basis of the clustering results in [26, Proposition 4.1] and [9, 
Theorem 3.6], which essentially say that the eigenvalues of |𝐶𝑛|−1𝐻𝑛(𝑓 ) are clustered ``around'' the two points 1 and −1. However, a 
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spectral localization for the eigenvalues of |𝐶𝑛|−1𝐻𝑛(𝑓 ) analogous to Theorem 3.5 is not available in the literature and, consequently, 
a mathematically rigorous justification of the efficiency of the preconditioner |𝐶𝑛| is missing. Providing a spectral localization result 
for |𝐶𝑛|−1𝐻𝑛(𝑓 ) analogous to Theorem 3.5 may represent an interesting topic for future research.

5. Conclusions

We have studied the spectral properties of flipped Toeplitz matrices of the form 𝐻𝑛(𝑓 ) = 𝑌𝑛𝑇𝑛(𝑓 ), where 𝑇𝑛(𝑓 ) is the 𝑛×𝑛 Toeplitz 
matrix generated by 𝑓 and 𝑌𝑛 is the exchange (flip) matrix in (1.2). Our spectral results are collected in Theorems 3.1--3.6. The spectral 
properties obtained in this paper can be used in the convergence analysis of MINRES for the solution of real non-symmetric Toeplitz 
linear systems of the form 𝑇𝑛(𝑓 )𝐱 = 𝐛 after pre-multiplication of both sides by 𝑌𝑛 , as suggested by Pestana and Wathen [26]. This 
has been illustrated through numerical experiments in Section 4. We conclude this paper by mentioning two possible future lines of 
research.

1. Extend the spectral localizations in Theorem 3.5 to preconditioned matrices of the form 𝑃−1
𝑛

𝐻𝑛(𝑓 ), where 𝑃𝑛 is either the 
preconditioner |𝐶𝑛| in Example 4.6 or the Toeplitz matrix 𝑇𝑛(|𝑓 |) generated by |𝑓 |. The first step in this direction could be the 
spectral analysis of 𝑇𝑛(|𝑓 |)−1𝐻𝑛(𝑓 ), taking into account the following results.

• By the theory of GLT sequences [13], we have {𝑇𝑛(|𝑓 |) − |𝐶𝑛|}𝑛 ∼𝜎 0, where 0 is the identically zero function. This implies 
that the singular values of 𝑇𝑛(|𝑓 |) − |𝐶𝑛| are clustered ``around'' 0.

• Suppose that 𝑓 is real, 𝑓 ≠ 0 a.e., and 𝑓 has non-constant sign. By the theory of GLT sequences [13], we have 
{𝑇𝑛(|𝑓 |)−1𝑇𝑛(𝑓 )}𝑛 ∼𝜆 |𝑓 |−1𝑓 = sgn(𝑓 ), which implies that the eigenvalues of 𝑇𝑛(|𝑓 |)−1𝑇𝑛(𝑓 ) are clustered ``around'' the two 
points 1 and −1.

• Suppose that 𝑓 is as in the previous item. By the localization result in [28, Theorem 2.1], the eigenvalues of 𝑇𝑛(|𝑓 |)−1𝑇𝑛(𝑓 )
belong to the open interval (−1,1).

2. Extend the main results of this paper (Theorems 3.1--3.6) to flipped multilevel (block) Toeplitz matrices, also in view of possible 
applications to evolutionary partial differential equations in multidimensional domains. This extension presents some challenges. 
In particular, one of the starting points of the analysis carried out herein is Corollary 2.1, which is deeply connected to [5, 
Theorem 5]. It would therefore be necessary to first generalize [5, Theorem 5] to the multilevel case. Then, Theorems 3.1--3.3

should be reformulated accordingly, using the multi-index language typical of the multilevel setting and taking into account that 
𝑓 is now a multivariate function. Concerning the generalization to the multilevel case of the localization Theorem 3.5, this might 
be achieved by exploiting/extending the ``multilevel results'' in [29, Section 2].
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