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ABSTRACT
Bogoya, Böttcher, Grudsky, and Maximenko have recently obtained for the eigenvalues of a Toeplitz
matrix, under suitable assumptions on the generating function, the precise asymptotic expansion
as the matrix size goes to infinity. In this article we provide numerical evidence that some of these
assumptions can be relaxed. Moreover, based on the eigenvalue asymptotics, we devise an extrapo-
lation algorithm for computing the eigenvalues of banded symmetric Toeplitz matrices with a high
level of accuracy and a relatively low computational cost.

1. Introduction

A matrix of the form

[ai− j]ni, j=1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a−1 a−2 · · · · · · a−(n−1)

a1
. . . . . . . . .

...

a2
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . a−2
...

. . . . . . . . . a−1
an−1 · · · · · · a2 a1 a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

whose entries are constant along each diagonal, is called
a Toeplitz matrix. Given a function f : [−π, π] → C

belonging to L1([−π, π]), the nth Toeplitz matrix asso-
ciated with f is defined as

Tn( f ) = [ f̂i− j]ni, j=1,

where the numbers f̂k are the Fourier coefficients of f ,

f̂k = 1
2π

∫ π

−π

f (θ ) e−ikθdθ, k ∈ Z.

We refer to {Tn( f )}n as the Toeplitz sequence generated
by f , which in turn is called the generating function or
the symbol of {Tn( f )}n. In the case where f is real, all
the matrices Tn( f ) are Hermitian and much is known
about their spectral properties, from the localization of
the eigenvalues to the asymptotic spectral distribution in
the Weyl sense; see [Böttcher and Silbermann 99, Garoni
and Serra-Capizzano 17] and the references therein.
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The present article focuses on the case where f is a real
cosine trigonometric polynomial (RCTP), that is, a func-
tion of the form

f (θ ) = f̂0 + 2
m∑
k=1

f̂k cos(kθ ), f̂0, f̂1, . . . , f̂m ∈ R,

m ∈ N.

We say that the RCTP f is monotone if it is either increas-
ing or decreasing over the interval [0, π]. The nth Toeplitz
matrix generated by f is the real symmetric banded
matrix given by

Tn( f ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̂0 f̂1 · · · f̂m

f̂1
. . . . . . . . .

...
. . . . . . . . . . . .

f̂m
. . . . . . . . . . . .

. . . . . . . . . . . . . . .
f̂m · · · f̂1 f̂0 f̂1 · · · f̂m

. . . . . . . . . . . . . . .
. . . . . . . . . . . . f̂m

. . . . . . . . . . . .
...

. . . . . . . . . f̂1
f̂m · · · f̂1 f̂0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In [Bogoya et al. 15a, Bogoya et al. 17, Böttcher et al. 10]
it was proved that if the RCTP f is monotone and
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satisfies certain additional assumptions, which include
the requirements that f ′(θ ) �= 0 for θ ∈ (0, π ) and
f ′′(θ ) �= 0 for θ ∈ {0, π}, then, for every integer α ≥ 0,
every n and every j = 1, . . . , n, the following asymptotic
expansion holds:

λ j(Tn( f )) = f (θ j,n) +
α∑

k=1

ck(θ j,n)hk + Ej,n,α, (1–1)

where:
� The eigenvalues of Tn( f ) are arranged in non-
decreasing or non-increasing order, depending on
whether f is increasing or decreasing.

� {ck}k=1,2,... is a sequence of functions from [0, π] to
R which depends only on f .

� h = 1
n+1 and θ j,n = jπ

n+1 = jπh.
� Ej,n,α = O(hα+1) is the remainder (the error), which
satisfies the inequality |Ej,n,α| ≤ Cαhα+1 for some
constantCα depending only on α and f .

The symbols

fq(θ ) = (2 − 2 cos θ )q, q = 1, 2, . . . (1–2)

arise in the discretization of differential equations and are
therefore of particular interest. Unfortunately, for these
symbols the requirement that f ′′(0) �= 0 is not satisfied if
q ≥ 2. The first purpose of this article is to provide numer-
ical evidence that the higher-order approximation (1–1)
holds even in this “degenerate case.”Actually, based onour
numerical experiments, we conjecture that (1–1) holds for
all monotone RCTPs f .

In [Bogoya et al. 15a], the authors also briefly men-
tioned that the asymptotic expansion (1–1) can be used
to compute an accurate approximation of λ j(Tn( f )) for
very large n, provided the valuesλ j1 (Tn1 ( f )),λ j2 (Tn2 ( f )),
λ j3 (Tn3 ( f )) are available for moderately sized n1, n2, n3
with θ j1,n1 = θ j2,n2 = θ j3,n3 = θ j,n. The second and main
purpose of this article is to carry out this idea and to
support it by numerical experiments accompanied by
an appropriate error analysis. In particular, we devise
an algorithm to compute λ j(Tn( f )) with a high level of
accuracy and a relatively low computational cost. The
algorithm is completely analogous to the extrapolation
procedure which is employed in the context of Romberg
integration to obtain high precision approximations of
an integral from a few coarse trapezoidal approximations
[Stoer and Bulirsch 02, Section 3.4]. In this regard, the
asymptotic expansion (1–1) plays here the same role
as the Euler–Maclaurin summation formula [Stoer and
Bulirsch 02, Section 3.3].

In the case where the monotonicity assumption on f
is violated, a first-order asymptotic formula for the eigen-
values was established by Bogoya, Böttcher, Grudsky, and

Maximenko in [Bogoya et al. 15b]. In particular, follow-
ing the argument used for the proof of [Bogoya et al. 15b,
Theorem 1.6], one can show that for every RCTP f , every
n and every j = 1, . . . , n, we have

λρn( j)(Tn( f )) = f (θ j,n) + Ej,n,0, (1–3)

where:
� The eigenvalues of Tn( f ) are arranged in non-
decreasing order, λ1(Tn( f )) ≤ · · · ≤ λn(Tn( f )).

� ρn = σ−1
n , where σn is a permutation of {1, . . . , n}

such that f (θσn(1),n) ≤ · · · ≤ f (θσn(n),n).
� h = 1

n+1 and θ j,n = jπ
n+1 = jπh.

� Ej,n,0 = O(h) is the error, which satisfies the
inequality |Ej,n,0| ≤ C0h for some constant C0
depending only on f .

The third and last purpose of this article is to formulate,
on the basis of numerical experiments, a conjecture on the
higher-order asymptotics of the eigenvalues if the mono-
tonicity assumption on f is not in force. We also illustrate
how this conjecture can be used along with our extrapo-
lation algorithm in order to compute some of the eigen-
values of Tn( f ) in the case where f is non-monotone.

1.1. Ideas from numerical linear algebra

Before entering into the details of the article, we allow us
a digression. Our aim is to highlight that the first-order
expansion (1–3) may be proved by purely linear algebra
arguments in combination with the results about the so-
called quantile function obtained in [Bogoya et al. 15b,
Bogoya et al. 16]. Let us outline the schemeof a linear alge-
bra proof of this kind. We will make use of the so-called
τ matrices and the related properties [Bini and Capovani
83, Serra-Capizzano 96].

Let τn( f ) be the τ matrix of size n generated by f .
Then, τn( f ) is a real symmetric matrix with the follow-
ing properties:

� Tn( f ) = τn( f ) + R+
n + R−

n , where R+
n is a symmet-

ric nonnegative definite matrix of rank k+, R−
n is a

symmetric nonpositive definite matrix of rank k−,
and k+ + k− ≤ 2(m − 1), with m being the degree
of f .

� The eigenvalues of τn( f ) are f (θ j,n), j = 1, . . . , n.
Using a classical interlacing theorem for the eigenvalues
(see [Bhatia 97, Exercise III.2.4] or [Garoni and Serra-
Capizzano 17, Theorem 2.12]), we obtain

f (θσn( j−k−),n) ≤ λ j(Tn( f )) ≤ f (θσn( j+k+),n),

j = k− + 1, . . . , n − k+. (1–4)

Moreover, it is known that

λ j(Tn( f )) ∈ [mf ,Mf ], j = 1, . . . , n, (1–5)
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Figure . Example : Errors E j,n,0 and scaled errors E j,n,0/h versus θ j,n for j = 1, . . . , n and n = 100, 200, 400 in the case of the symbol
f (θ ) = (2 − 2 cos θ )2.

where mf = min f and Mf = max f ; see [Böttcher and
Silbermann 99, Garoni and Serra-Capizzano 17]. Consid-
ering that f is an RCTP and hence a Lipschitz continuous
function, the result (1–3) intuitively follows from (1–4)
and (1–5). For a formal derivation, however, it is necessary
to resort to the quantile function of f , which is monotone
and Lipschitz continuous whenever f is Lipschitz contin-
uous; see [Bogoya et al. 15b, Proposition 2.7].

The relation (1–4) is known in the numerical linear
algebra community since more than 30 years and was
used in [Serra-Capizzano 96] to study the asymptotics of
the extreme eigenvalues of Toeplitz matrices. In particu-
lar, if α ≥ 2 denotes the minimum order of the zeros of
f − min f , it was proved in [Serra-Capizzano 96] that the
errors Ej,n,0 corresponding to the smallest eigenvalues of
Tn( f ) areO(hα) andnot onlyO(h).More precisely, when-
ever j is constant with respect to n, we have |Ej,n,0| ≤ c jhα

for some constant c j depending only on f and j.

2. Numerical experiments in support of the
asymptotic expansion

We present in this section a few numerical examples, with
the purpose of supporting the conjecture that the asymp-
totic expansion (1–1) is satisfied for all monotone RCTPs
f , including those which do not meet the requirements
f ′(θ ) �= 0 for θ ∈ (0, π ) and f ′′(θ ) �= 0 for θ ∈ {0, π}.
Example 1. Let f be the monotone RCTP defined by
(1–2) for q = 2,

f (θ ) = f2(θ ) = (2 − 2 cos θ )2

= 6 − 8 cos θ + 2 cos(2θ ).

Note that f ′′(0) = 0. The expansion (1–1) with α = 1
would say that, for every n and every j = 1, . . . , n,

λ j(Tn( f )) − f (θ j,n) = Ej,n,0

= c1(θ j,n)h + Ej,n,1, (2–6)

where |Ej,n,1| ≤ C1h2 and both the function c1 : [0, π] →
R and the constant C1 depend only on f . In partic-
ular, the scaled errors Ej,n,0/h should be equal to the
equispaced samples c1(θ j,n) (and should therefore repro-
duce the graph of the function c1) in the limit where
n → ∞. In Figure 1 we plot the errors Ej,n,0 and the
scaled errors Ej,n,0/h versus θ j,n for j = 1, . . . , n and n =
100, 200, 400. It is clear that the scaled errors overlap per-
fectly, thus supporting the conjecture that the expansion
(2–6) holds despite the fact that f ′′(0) = 0. In particular,
the right pane of Figure 1 displays the graph of c1 over
[0, π].

Example 2. Let

f (θ ) = 1 + 24 cos θ − 12 cos(2θ ) + 8 cos(3θ )

−3 cos(4θ ).

The function f is a monotone decreasing RCTP such that
f ′(π/2) = f ′′(π/2) = f ′′(0) = 0. Figure 2 is obtained in
the same way as Figure 1. Again, we see that the scaled
errors overlap perfectly, thus supporting the conjecture
that the expansion (2–6) holds even for this function
f , despite the fact that f violates both the conditions
f ′(θ ) �= 0 for θ ∈ (0, π ) and f ′′(θ ) �= 0 for θ ∈ {0, π}.
Example 3. Let f be the same as in Example 2. The expan-
sion (1–1) with α = 2 would say that, for every n and

Figure . Example : Errors E j,n,0 and scaled errors E j,n,0/h versus θ j,n for j = 1, . . . , n and n = 100, 200, 400 in the case of the symbol
f (θ ) = 1 + 24 cos θ − 12 cos(2θ ) + 8 cos(3θ ) − 3 cos(4θ ).
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every j = 1, . . . , n,

λ j(Tn( f )) − f (θ j,n) − c1(θ j,n)h = Ej,n,1

= c2(θ j,n)h2 + Ej,n,2,

(2–7)

where |Ej,n,2| ≤ C2h3 and both the function c2 : [0, π] →
R and the constant C2 depend only on f . In particular,
the scaled errors Ej,n,1/h2 should be equal to the equis-
paced samples c2(θ j,n) (and should therefore reproduce
the graph of the function c2) in the limit where n → ∞.
Unfortunately, the values Ej,n,1 are not available, because
the function c1 is unknown. Towork around this problem,
we fix n′ 	 n such that (n′ + 1) is a multiple of (n + 1)
and we approximate Ej,n,1 by

Ẽ j,n,1 = λ j(Tn( f )) − f (θ j,n) − c̃1(θ j,n)h,

where c̃1 is the approximation of c1 obtained from the
scaled errors Ej′,n′,0/h′ corresponding to the fine param-
eter n′. In other words, c̃1 is defined at every point θ j′,n′

as

c̃1(θ j′,n′ ) = Ej′,n′,0

h′ = λ j′ (Tn′ ( f )) − f (θ j′,n′ )

h′

= c1(θ j′,n′ ) + Ej′,n′,1

h′ , j′ = 1, . . . , n′, h′ = 1
n′ + 1

.

Note that c̃1 is also defined at every point θ j,n, because
(n′ + 1) is a multiple of (n + 1) and hence every θ j,n is
equal to some θ j′,n′ (indeed, θ j,n = θ j′,n′ for j′ = j n

′+1
n+1 ).

When approximating c2(θ j,n) by Ẽ j,n,1/h2 instead of
Ej,n,1/h2, the error can be estimated as follows:∣∣∣∣∣ Ẽ j,n,1

h2
− c2(θ j,n)

∣∣∣∣∣
=

∣∣∣∣∣Ej,n,1 + h
[
c̃1(θ j,n) − c1(θ j,n)

]
h2

− c2(θ j,n)

∣∣∣∣∣
≤

∣∣∣∣Ej,n,1

h2
− c2(θ j,n)

∣∣∣∣ + 1
h
∣∣c̃1(θ j,n) − c1(θ j,n)

∣∣
=

∣∣∣∣Ej,n,2

h2

∣∣∣∣ + 1
h
∣∣c̃1(θ j′,n′ ) − c1(θ j′,n′ )

∣∣
(here j′ = j n

′+1
n+1 so that θ j′,n′ = θ j,n)

=
∣∣∣∣Ej,n,2

h2

∣∣∣∣ + 1
h

∣∣∣∣Ej′,n′,1

h′

∣∣∣∣
≤ C2h +C1

h′

h
.

We may then expect that the errors |Ẽ j,n,1/h2 − c2(θ j,n)|
are of the same order as the errors |Ej,n,1/h2 − c2(θ j,n)| =
|Ej,n,2/h2| provided that h′ = O(h2). In Figure 3 we plot
the approximated errors Ẽ j,n,1 and the approximated
scaled errors Ẽ j,n,1/h2 versus θ j,n for j = 1, . . . , n and
n = 100, 200, 400, with n′ = 
 n+1

12 �(n + 1) − 1. With
this choice of n′, we ensure that (n′ + 1) is a multiple of
(n + 1) and h′ ≈ 12h2 for all n. The figure reveals that
the approximated scaled errors converge to a limit func-
tion c2, thus supporting the conjecture that the expansion
(2–7) holds despite the fact that f violates both the con-
ditions f ′(θ ) �= 0 for θ ∈ (0, π ) and f ′′(θ ) �= 0 for θ ∈
{0, π}.

3. Algorithm for computing the eigenvalues
with high accuracy

In Section 2 we showed through numerical examples
that the asymptotic expansion (1–1) is likely to be satis-
fied for every monotone RCTP f . We now illustrate how
(1–1) can be used to compute an accurate approximation
of λ j(Tn( f )) for large n.

Let f be a monotone RCTP, fix n ∈ N and
j ∈ {1, . . . , n}. Suppose λ j1 (Tn1 ( f )), . . . , λ jm (Tnm ( f ))
are available for some ( j1, n1), . . . , ( jm, nm) such that
j1h1 = · · · = jmhm = jh, where h1 = 1

n1+1 , . . . , hm =
1

nm+1 , h = 1
n+1 . In this situation we have

θ j1,n1 = · · · = θ jm,nm = θ j,n = θ̄ for some θ̄ ∈ (0, π ),
and the application of (1–1) with α = m yields

Eji,ni,0 = λ ji (Tni ( f )) − f (θ̄ )

=
m∑
k=1

ck(θ̄ )hki + Eji,ni,m, i = 1, . . . ,m, (3–8)

Ej,n,0 = λ j(Tn( f )) − f (θ̄ )

=
m∑
k=1

ck(θ̄ )hk + Ej,n,m, (3–9)

Figure . Example : Approximated errors Ẽ j,n,1 and approximated scaled errors Ẽ j,n,1/h
2 versus θ j,n for j = 1, . . . , n and n =

100, 200, 400 in the case of the symbol f (θ ) = 1 + 24 cos θ − 12 cos(2θ ) + 8 cos(3θ ) − 3 cos(4θ ).
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where

|Eji,ni,m| ≤ Cmhm+1
i , i = 1, . . . ,m, (3–10)

|Ej,n,m| ≤ Cmhm+1. (3–11)

We are interested in a linear combination of the errors
Eji,ni,0 which “reconstructs” as much as possible the error
Ej,n,0. More precisely, we look for a linear combination

m∑
i=1

aiE ji,ni,0 =
m∑
k=1

ck(θ̄ )

m∑
i=1

aihki +
m∑
i=1

aiE ji,ni,m

(3–12)
such that

m∑
i=1

aihki = hk, k = 1, . . . ,m. (3–13)

If [â1, . . . , âm] is a vector satisfying the conditions (3–13),
then

m∑
i=1

âiE ji,ni,0 = Ej,n,0 +
m∑
i=1

âiE ji,ni,m − Ej,n,m, (3–14)

and in view of (3–10) and (3–11) the linear combination∑m
i=1 âiE ji,ni,0 is supposed to be an accurate reconstruc-

tion of Ej,n,0. This immediately yields the following high
precision approximation for λ j(Tn( f )):

λ j(Tn( f )) = f (θ̄ ) + Ej,n,0 ≈ f (θ̄ ) +
m∑
i=1

âiE ji,ni,0.

(3–15)
By (3–10), (3–11), and (3–14), an estimate for the error of
this approximation is given by∣∣∣∣∣λ j(Tn( f )) − f (θ̄ ) −

m∑
i=1

âiE ji,ni,0

∣∣∣∣∣
=

∣∣∣∣∣Ej,n,0 −
m∑
i=1

âiE ji,ni,0

∣∣∣∣∣ =
∣∣∣∣∣

m∑
i=1

âiE ji,ni,m − Ej,n,m

∣∣∣∣∣
≤ Cm

[ m∑
i=1

|âi|hm+1
i + hm+1

]
. (3–16)

Theorem 1. There exists a unique vector [â1, . . . , âm] ∈
R

m satisfying the conditions (3–13) and, moreover, the
special linear combination

∑m
i=1 âiE ji,ni,0 coincides with

hp(h), where p(x) is the interpolation polynomial for the
data (h1,Ej1,n1,0/h1), . . . , (hm,Ejm,nm,0/hm).

Proof. Let V (h1, . . . , hm) be the Vandermonde matrix
corresponding to the nodes h1, . . . , hm:

V (h1, . . . , hm) =

⎡
⎢⎢⎢⎣
1 h1 · · · hm−1

1
1 h2 · · · hm−1

2
...

...
...

1 hm · · · hm−1
m

⎤
⎥⎥⎥⎦ .

We recall two properties of V (h1, . . . , hm) that can
be found, e.g., in [Bevilacqua et al. 92, Chapter 5]
or [Davis 75, Chapter II]. First, since it is implicitly
assumed that n1, . . . , nm (and hence also h1, . . . , hm)
are all distinct, the matrix V (h1, . . . , hm) is invertible.
Second, for any y = [y1, . . . , ym]T ∈ R

m, the vector q =
[V (h1, . . . , hm)]−1y = [q1, . . . , qm]T is such that q(x) =
q1 + q2x + · · · + qmxm−1 is the interpolation polynomial
for the data (h1, y1), . . . , (hm, ym).

The conditions (3–13) can be rewritten as
⎡
⎢⎢⎢⎣
h1 h2 · · · hm
h21 h22 · · · h2m
...

...
...

hm1 hm2 · · · hmm

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
a1
a2
...
am

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

h
h2
...
hm

⎤
⎥⎥⎥⎦ . (3–17)

If we define

D =

⎡
⎢⎢⎢⎣
h1

h2
. . .

hm

⎤
⎥⎥⎥⎦ ,

then the matrix A of the linear system (3–17) satisfies

A = AD−1D = [V (h1, . . . , hm)]TD.

It follows that A is invertible and so the linear system
(3–17) has a unique solution [â1, . . . , âm]T . Moreover, we
have

A

⎡
⎢⎢⎢⎣
â1
â2
...
âm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

h
h2
...
hm

⎤
⎥⎥⎥⎦

⇐⇒ [â1, â2, . . . , âm]AT = [h, h2, . . . , hm]
⇐⇒ [â1, â2, . . . , âm] = h[1, h, . . . , hm−1]A−T .

If we denote by p(x) = p1 + p2x + · · · + pmxm−1 the
interpolation polynomial for the data (h1,Ej1,n1,0/h1),
. . . , (hm,Ejm,nm,0/hm), then

m∑
i=1

âiE ji,ni,0

= [â1, â2, . . . , âm]

⎡
⎢⎢⎢⎢⎣

Ej1,n1,0

Ej2,n2,0
...

Ejm,nm,0

⎤
⎥⎥⎥⎥⎦

= h[1, h, . . . , hm−1]A−T

⎡
⎢⎢⎢⎢⎣

Ej1,n1,0

Ej2,n2,0
...

Ejm,nm,0

⎤
⎥⎥⎥⎥⎦
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= h[1, h, . . . , hm−1][V (h1, . . . , hm)]−1D−1

⎡
⎢⎢⎢⎢⎣

Ej1,n1,0

Ej2,n2,0
...

Ejm,nm,0

⎤
⎥⎥⎥⎥⎦

= h[1, h, . . . , hm−1][V (h1, . . . , hm)]−1

⎡
⎢⎢⎢⎢⎣

Ej1,n1,0/h1
Ej2,n2,0/h2

...
Ejm,nm,0/hm

⎤
⎥⎥⎥⎥⎦

= h[1, h, . . . , hm−1]

⎡
⎢⎢⎢⎢⎣

p1
p2
...
pm

⎤
⎥⎥⎥⎥⎦ = h

m∑
i=1

pihi−1 = hp(h).

�

We remark that n is normally much larger than
n1, . . . , nm. Indeed, the idea behind the algorithm we
are describing here is to obtain a high precision approx-
imation of λ j(Tn( f )) at the sole price of comput-
ing a few eigenvalues λ j1 (Tn1 ( f )), . . . , λ jm (Tnm ( f )) with
n1, . . . , nm � n. Due to the moderate sizes n1, . . . , nm,
the latter eigenvalues can be efficiently computed by a
standard eigensolver, and the desired approximation of
λ j(Tn( f )) is then obtained via equation (3–15) with the
âi given by Theorem 1, i.e.,

λ j(Tn( f )) = f (θ̄ ) + Ej,n,0 ≈ f (θ̄ ) +
m∑
i=1

âiE ji,ni,0

= f (θ̄ ) + hp(h). (3–18)

An estimate for the error of this approximation is given by
(3–16): ∣∣λ j(Tn( f )) − f (θ̄ ) − hp(h)

∣∣
≤ Cm

[ m∑
i=1

|âi|hm+1
i + hm+1

]
. (3–19)

The procedure of evaluating the interpolation polyno-
mial p(x) at x = h is referred to as extrapolation, because
p(x) is evaluated at a point which lies outside the con-
vex hull of the interpolation nodes h1, . . . , hm. A com-
pletely analogous extrapolation procedure is employed in
the context of Romberg integration to obtain high pre-
cision approximations of an integral from a few coarse
trapezoidal approximations; see [Stoer and Bulirsch 02,
Section 3.4]. For more details on extrapolation methods,
we refer the reader to [Brezinski and Redivo Zaglia 91].

Algorithm 1. With the notation of this article, given f
and m + 1 pairs ( j1, n1), . . . , ( jm, nm), ( j, n) such that
j1h1 = · · · = jmhm = jh, we compute a high precision
approximation of λ j(Tn( f )) as follows:

� Compute the eigenvalues λ j1 (Tn1 ( f )), . . . ,
λ jm (Tnm ( f )) using a standard eigensolver.

� Compute the errors Eji,ni,0 = λ ji (Tni ( f )) − f (θ̄ ) for
i = 1, . . . ,m, where θ̄ = θ j,n = jπh.

� Compute p(h), where p(x) is the interpolation poly-
nomial for the data (hi,Eji,ni,0/hi), i = 1, . . . ,m.

� Return f (θ̄ ) + hp(h).

Example 4. As in Examples 2 and 3, let f be themonotone
decreasing RCTP defined by

f (θ ) = 1 + 24 cos θ − 12 cos(2θ ) + 8 cos(3θ )

−3 cos(4θ ).

Suppose we are interested in the jth largest eigenvalue
λ j(Tn( f )) for ( j, n + 1) = (100, 1000). Note that n is
not dramatically large in this case, so we may compute
λ j(Tn( f )) by a standard eigensolver, thus obtaining

λ j(Tn( f )) = 17.89119035373482 . . . (3–20)

Let us now compute the approximation of λ j(Tn( f ))
given by Algorithm 1 with ( j1, n1 + 1) = (4, 40),
( j2, n2 + 1) = (5, 50), ( j3, n3 + 1) = (10, 100). We
follow the algorithm step by step.

� Due to the small size of n1, n2, n3, the eigenvalues
λ j1 (Tn1 ( f )), λ j2 (Tn2 ( f )), λ j3 (Tn3 ( f )) can be effi-
ciently computed by, say, theMatlab eig function,
which yields the values

λ j1 (Tn1 ( f )) = 17.86119786677332 . . .

λ j2 (Tn2 ( f )) = 17.86764984932256 . . .

λ j3 (Tn3 ( f )) = 17.88024043750535 . . .

� In this example we have θ̄ = θ j,n = π/10, and the
errors Ej1,n1,0, Ej2,n2,0, Ej3,n3,0 are given by

Ej1,n1,0 = λ j1 (Tn1 ( f )) − f (θ̄ )

= −0.03118562702593 . . .

Ej2,n2,0 = λ j2 (Tn2 ( f )) − f (θ̄ )

= −0.02473364447669 . . .

Ej3,n3,0 = λ j3 (Tn3 ( f )) − f (θ̄ )

= −0.01214305629390 . . .

� Let p(x) be the interpolation polynomial for the data
(h1,Ej1,n1,0/h1), (h2,Ej2,n2,0/h2), (h3,Ej3,n3,0/h3).
The value p(h) can be computed from the Lagrange
form of p(x):

p(h) = Ej1,n1,0

h1
(h − h2)(h − h3)

(h1 − h2)(h1 − h3)

+Ej2,n2,0

h2
(h − h1)(h − h3)

(h2 − h1)(h2 − h3)

+Ej3,n3,0

h3
(h − h1)(h − h2)

(h3 − h1)(h3 − h2)
= −1.19315109114712 . . .
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Table . Example : Comparison between λ j(Tn(f )) and f (θ̄ ) + hp(h) for several RCTPs f .

f λ j (Tn(f )) f (θ̄ ) + hp(h) Error
∣∣λ j (Tn(f )) − f (θ̄ ) − hp(h)

∣∣ Error EstimateC3
[∑3

i=1 |âi|h4i + h4
]

f2 . . 9.94 · 10−11 C3 · 9.47 · 10−10

f3 . . 1.25 · 10−9 C3 · 9.47 · 10−10

f4 . . 4.05 · 10−8 C3 · 9.47 · 10−10

� The approximation of λ j(Tn( f )) returned by the
algorithm is

λ j(Tn( f )) ≈ f (θ̄ ) + hp(h)

= 17.89119034270811 . . . (3–21)

A direct comparison between (3–20) and (3–21)
shows that |λ j(Tn( f )) − f (θ̄ ) − hp(h)| ≈ 1.10 · 10−8(!).
Assuming we have no information about the exact value
(3–20), we can estimate the error |λ j(Tn( f )) − f (θ̄ ) −
hp(h)| via (3–19). The coefficients â1, â2, â3 are easily
computed by solving the linear system (3–17), which in
this case becomes⎡

⎢⎣
h1 h2 h3
h21 h22 h23
h31 h32 h33

⎤
⎥⎦

⎡
⎢⎣
â1
â2
â3

⎤
⎥⎦ =

⎡
⎢⎣

h
h2

h3

⎤
⎥⎦

⇐⇒

⎡
⎢⎣
â1
â2
â3

⎤
⎥⎦ =

⎡
⎢⎣

0.0912
−0.216
0.304

⎤
⎥⎦ .

By (3–19),

|λ j(Tn( f )) − f (θ̄ ) − hp(h)| ≤ C3 · 7.33 · 10−8,

whereC3 is a constant depending only on f .

Example 5. In this example, for several RCTPs f and
for the fixed pair ( j, n) = (1700, 5000), we compare
λ j(Tn( f )) to its approximation f (θ̄ ) + hp(h) provided
by Algorithm 1 with ( j1, n1 + 1) = (17, 50), ( j2, n2 +
1) = (34, 100), ( j3, n3 + 1) = (68, 200). The results of
this comparison are collected in Table 1 for f = fq and
q = 2, 3, 4, where fq is defined in (1–2). Note that the
error estimate in the last column seems to be the same
in all cases, but it must be recalled that the constant C3
depends on f .

4. Numerical experiments and a conjecture for
the non-monotone case

Consider the non-monotone RCTP f (θ ) = 2 +
2 cos θ − 2 cos(2θ ), whose graph over [0, π] is depicted
in Figure 4. Note that f restricted to the interval
I = (2π/3, π] is monotone and f−1( f (I)) = I, where
f (I) = { f (θ ) : θ ∈ I} = [−2, 2) and f−1( f (I)) = {θ ∈
[0, π] : f (θ ) ∈ f (I)}. Let λ1(Tn( f )), . . . , λn(Tn( f )) be

the eigenvalues of Tn( f ) arranged in non-decreasing
order, and let σn be a permutation of {1, . . . , n}
which sorts the samples f (θ1,n), . . . , f (θn,n) in non-
decreasing order, i.e., f (θσn(1),n) ≤ · · · ≤ f (θσn(n),n).
Note that the inverse permutation ρn = σ−1

n is supposed
to sort the eigenvalues λ1(Tn( f )), . . . , λn(Tn( f )) so
that they match the samples f (θ1,n), . . . , f (θn,n), i.e.,
λρn( j)(Tn( f )) should be approximately equal to f (θ j,n)

for all j = 1, . . . , n. In Figure 5 we plot the errors

Ej,n,0 = λρn( j)(Tn( f )) − f (θ j,n) (4–22)

and the scaled errors Ej,n,0/h versus θ j,n for j = 1, . . . , n
and n = 100, 200, 400. The fundamental observation is
that, as long as θ j,n ∈ I, the errors Ej,n,0 draw a smooth
curve and the scaled errors Ej,n,0/h overlap perfectly,
just as in the case of monotone RCTPs (see Figures 1
and 2). We may therefore conjecture that the asymp-
totic expansion (1–1) holds for the eigenvalues of Tn( f )
corresponding in (4–22) to the samples f (θ j,n) with
θ j,n ∈ I. These are essentially the eigenvalues belonging
to f (I) = [−2, 2). The precise statement of our con-
jecture is reported below along with a further example
supporting it.

Conjecture 1. Let f be an RCTP such that f restricted
to the interval I ⊆ [0, π] is monotone and f−1( f (I)) =
I. Then, for every integer α ≥ 0, every n and every
j = 1, . . . , n such that θ j,n ∈ I, the following asymptotic
expansion holds:

λρn( j)(Tn( f )) = f (θ j,n) +
α∑

k=1

ck(θ j,n)hk + Ej,n,α,

(4–23)
where:

Figure . Graph of f (θ ) = 2 + 2 cos θ − 2 cos(2θ ) over [0, π ].
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Figure . Errors E j,n,0 and scaled errors E j,n,0/h versus θ j,n for j = 1, . . . , n and n = 100, 200, 400 in the case of the symbol f (θ ) =
2 + 2 cos θ − 2 cos(2θ ).

Figure . Example : Graph of f (θ ) = 2 − cos θ − cos(3θ ) over
[0, π ].

� The eigenvalues of Tn( f ) are arranged in non-
decreasing order, λ1(Tn( f )) ≤ · · · ≤ λn(Tn( f )).

� ρn = σ−1
n , where σn is a permutation of {1, . . . , n}

such that f (θσn(1),n) ≤ · · · ≤ f (θσn(n),n).
� {ck}k=1,2,... is a sequence of functions from I to R

which depends only on f .
� h = 1

n+1 and θ j,n = jπ
n+1 = jπh.

� Ej,n,α = O(hα+1) is the error, which satisfies the
inequality |Ej,n,α| ≤ Cαhα+1 for some constant Cα

depending only on α and f .
Forα = 0, this conjecture is the same as Bogoya, Böttcher,
Grudsky, and Maximenko’s result (1–3).

Example 6. Let

f (θ ) = 2 − cos θ − cos(3θ ).

The graph of f is depicted in Figure 6. The hypotheses
of Conjecture 1 are satisfied with either I = [0, θ̂ ) or I =

(π − θ̂ , π], where θ̂ = 0.61547970867038 . . . . To fix the
ideas, let I = [0, θ̂ ). Conjecture 1 with α = 1 would say
that, for everyn and every j = 1, . . . , n such that θ j,n ∈ I,

λρn( j)(Tn( f )) − f (θ j,n) = Ej,n,0 = c1(θ j,n) + Ej,n,1,

where |Ej,n,1| ≤ C1h2 and both the function c1 : I → R

and the constant C1 depend only on f . In particular, the
scaled errors Ej,n,0/h corresponding to the points θ j,n
in I should be equal to the equispaced samples c1(θ j,n)

(and should therefore reproduce the graph of c1) in the
limit where n → ∞. In Figure 7 we plot the errors and
the scaled errors versus θ j,n for j = 1, . . . , n and n =
100, 200, 400. Clearly, the scaled errors overlap perfectly
over I, thus supporting Conjecture 1. We remark that
nothing would have changed in the reasoning if we had
chosen I = (π − θ̂ , π].

Assuming Conjecture 1, we can follow the derivation
of Section 3 to work out an algorithm, analogous to
Algorithm 1, for computing a high precision approx-
imation of λρn( j)(Tn( f )) from λρn1 ( j1)(Tn1 ( f )), . . . ,
λρnm ( jm)(Tnm ( f )), provided the corresponding point
θ j1,n1 = · · · = θ jm,nm = θ j,n = θ̄ belongs to an interval
I ⊆ [0, π] such that f|I is monotone and f−1( f (I)) = I.
We report here the algorithm for the reader’s conve-
nience.

Algorithm 2. With the notation of this article, given f
and m + 1 pairs ( j1, n1), . . . , ( jm, nm), ( j, n) such that
j1h1 = · · · = jmhm = jh, we compute a high precision
approximation of λρn( j)(Tn( f )) as follows:

Figure . Example : Errors E j,n,0 and scaled errors E j,n,0/h versus θ j,n for j = 1, . . . , n and n = 100, 200, 400 in the case of the symbol
f (θ ) = 2 − cos θ − cos(3θ ).
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Table . Example : Comparison between λ j(Tn(f )) and f (θ̄ ) + hp(h) form = 1, . . . , 5.

m λ j (Tn(f )) f (θ̄ ) + hp(h) Error
∣∣λ j (Tn(f )) − f (θ̄ ) − hp(h)

∣∣ Error estimateCm
[∑m

i=1 |âi|hm+1
i + hm+1

]

 . . 7.61 · 10−6 C1 · 3.34 · 10−6

 . . 2.94 · 10−7 C2 · 2.65 · 10−7

 . . 8.76 · 10−9 C3 · 1.08 · 10−8

 . . 2.13 · 10−10 C4 · 3.01 · 10−10

 . . 8.27 · 10−12 C5 · 6.39 · 10−12

� Compute the eigenvalues λρn1 ( j1)(Tn1 ( f )), . . . ,
λρnm ( jm)(Tnm ( f )) using a standard eigensolver.

� Compute the errors Eji,ni,0 = λρni ( ji)(Tni ( f )) −
f (θ̄ ) for i = 1, . . . ,m, where θ̄ = θ j,n = jπh.

� Compute p(h), where p(x) is the interpolation poly-
nomial for the data (hi,Eji,ni,0/hi), i = 1, . . . ,m.

� Return f (θ̄ ) + hp(h).

Example 7. Let f be the same as in Example 6.
Suppose we are interested in the jth smallest eigen-
value λ j(Tn( f )) for ( j, n + 1) = (1000, 10000). The
point θ̄ = θ j,n = π/10 lies in I = [0, θ̂ ), f|I is mono-
tone and f−1( f (I)) = I (see Figure 6). Moreover, it
is clear that the permutation σn which sorts the sam-
ples f (θ1,n), . . . , f (θn,n) in non-decreasing order is
such that σn(	) = 	 for all 	 = 1, 2, . . . , 	̂, where 	̂

is the first index such that θ
	̂+1,n ≥ θ̂ . As a conse-

quence, ρn( j) = j. In Table 2 we compare λ j(Tn( f ))
to its approximations f (θ̄ ) + hp(h) provided by Algo-
rithm 2 with m = 1, . . . , 5 and ( j1, n1 + 1) = (3, 30),
( j2, n2 + 1) = (5, 50), ( j3, n3 + 1) = (7, 70), ( j4, n4 +
1) = (9, 90), ( j5, n5 + 1) = (11, 110). Note that, for the
same reasoning as above, ρnm ( jm) = jm for all m =
1, . . . , 5.

5. Conclusions and perspectives

After supporting through numerical experiments
the conjecture that the higher-order approximation
(1–1) holds for all monotone RCTPs f , we illustrated
how (1–1) can be used along with an extrapolation pro-
cedure to compute high precision approximations of the
eigenvalues of Tn( f ) for large n. Moreover, based on
numerical experiments, we formulated a conjecture on
the eigenvalue asymptotics of Tn( f ) in the case where
f is non-monotone, and we showed how the conjecture
can be used, again in combination with an extrapolation
procedure, to compute high precision approximations of
some eigenvalues of Tn( f ) for large n.

We conclude this work with a list of possible future
lines of research.

� Conjecture 1 does not say anything about “fully non-
monotone” symbols such as f (θ ) = 2 − 2 cos(ωθ ),
where ω ≥ 2 is an integer. However, based on

numerical experiments, it seems that even in this
case a “regular” asymptotics is available for the eigen-
values of Tn( f ). For more insights into this topic we
refer the reader to papers [Barrera and Grudsky 17]
and [Ekström and Serra-Capizzano].

� A noteworthy theoretical objective would be to
obtain a precise analytic expression for the error of
Algorithm 1, namely |λ j(Tn( f )) − f (θ̄ ) − hp(h)|.
A way to achieve this goal could be to exploit
the information about the functions ck provided in
[Bogoya et al. 15a, Bogoya et al. 17, Böttcher et al.
10] and follow the steps in the derivation of the ana-
lytic expression for the error of Romberg integration
[Bauer 61, Bauer et al. 63].

� With any multi-index n = (n1, . . . , nd ) ∈ N
d

and any multivariate matrix-valued function
f : [−π, π]d → C

s×s whose components fi j belong
to L1([−π, π]d ), we associate the so-called multi-
level block Toeplitz matrix Tn( f ), which is defined,
e.g., in [Tilli 98]. In view of the design of fast
extrapolation algorithms for the computation of
the eigenvalues, it would be interesting to know
whether an asymptotic expansion such as (1–1) or
(4–23) holds even for this kind of matrices. Numer-
ical evidence indicates that the answer should be
affirmative if

f (θ1, . . . , θd ) =
d∑
i=1

fq(θi), q = 1, 2, . . . (5–24)

where fq is given by (1–2). The d-variate function
f is especially interesting as it arises in the dis-
cretization of partial differential equations over d-
dimensional domains. For this function, however,
we do not need any asymptotic expansion to effi-
ciently compute the eigenvalues of Tn( f ). Indeed,
due to the specific structure of f , it can be shown
that

Tn( f ) =
d∑
i=1

In1 ⊗ · · · ⊗ Ini−1 ⊗ Tni ( fq)

⊗ Ini+1 ⊗ · · · ⊗ Ind ,

where Im is them × m identitymatrix and⊗ denotes
the (Kronecker) tensor product of matrices. By the
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properties of tensor products, the eigenvalues of
Tn( f ) are given by

λ j(Tn( f )) =
d∑
i=1

λ ji (Tni ( fq)),

1 ≤ j1 ≤ n1, . . . , 1 ≤ jd ≤ nd,

and their computation reduces to the computation
of the eigenvalues of the unilevel Toeplitz matrices
Tm( fq), which can be performed through Algorithm
1. For functions f more general than (5–24), the
reduction to the unilevel setting is not possible. In
this case, an extrapolation algorithm for the com-
putation of the eigenvalues of Tn( f ) should directly
rely on the asymptotic expansion, and establishing
whether the latter exists or not is an interesting sub-
ject for future research.

Funding

Sven-Erik Ekström is a PhD student at TDB (Division of Sci-
entific Computing, Uppsala University); his research is cofi-
nanced by the ADIGMA Project, the Graduate School in Math-
ematics and Computing (FMB), and Uppsala University. Carlo
Garoni is a Marie-Curie fellow of the Italian INdAM (Istituto
Nazionale di Alta Matematica); his research is cofinanced by
INdAM and the European “Marie-Curie Actions” Programme
through the Grant PCOFUND-GA-2012-600198. The research
of Stefano Serra-Capizzano is partially financed by the INdAM
GNCS (Gruppo Nazionale per il Calcolo Scientifico).

ORCID

Sven-Erik Ekström http://orcid.org/0000-0002-7875-7543
Carlo Garoni http://orcid.org/0000-0001-9720-092X
Stefano Serra-Capizzano http://orcid.org/0000-0001-9477-
109X

References

[Barrera and Grudsky 17] M. Barrera and S. M. Grudsky.
“Asymptotics of Eigenvalues for Pentadiagonal Symmetric
Toeplitz Matrices.”Oper. Theory Adv. Appl. 259 (2017), 51–
77.

[Bauer 61] F. L. Bauer. “La méthode d’intégration numérique
de Romberg.” Colloque sur l’analyse numérique , Librairie
Universitaire, Louvain, 22–24 Mars 1961 à Mons, 119–129,
1961.

[Bauer et al. 63] F. L. Bauer, H. Rutishauser, and E. Stiefel. “New
Aspects in Numerical Quadrature.” Proc. Symp. Appl. Math.
15 (1963), 199–218.

[Bevilacqua et al. 92] R. Bevilacqua, D. Bini, M. Capovani,
and O.Menchi.Metodi Numerici. Bologna, Italy: Zanichelli,
1992.

[Bhatia 97] R. Bhatia. Matrix Analysis. New York: Springer,
1997.

[Bini and Capovani 83] D. Bini and M. Capovani. “Spec-
tral and Computational Properties of Band Symmetric
Toeplitz Matrices.” Linear Algebra Appl. 52–53 (1983),
99–126.

[Bogoya et al. 15a] J. M. Bogoya, A. Böttcher, S. M. Grudsky,
and E. A. Maximenko. “Eigenvalues of Hermitian Toeplitz
Matrices with Smooth Simple-loop Symbols.” J. Math. Anal.
Appl. 422 (2015), 1308–1334.

[Bogoya et al. 15b] J. M. Bogoya, A. Böttcher, S. M. Grudsky,
and E. A. Maximenko. “Maximum Norm Versions of the
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