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Summary

It is known that for a tridiagonal Toeplitz matrix, having on the main diago-
nal the constant a0 and on the two first off-diagonals the constants a1 (lower)
and a−1 (upper), which are all complex values, there exist closed form formu-
las, giving the eigenvalues of the matrix and a set of associated eigenvectors. For
example, for the 1D discrete Laplacian, this triple is (a0, a1, a−1) = (2,−1,−1).
In the first part of this article, we consider a tridiagonal Toeplitz matrix of
the same form (a0, a𝜔, a−𝜔), but where the two off-diagonals are positioned 𝜔
steps from the main diagonal instead of only one. We show that its eigenval-
ues and eigenvectors can also be identified in closed form and that interesting
connections with the standard Toeplitz symbol are identified. Furthermore, as
numerical evidences clearly suggest, it turns out that the eigenvalue behavior of
a general banded symmetric Toeplitz matrix with real entries can be described
qualitatively in terms of the symmetrically sparse tridiagonal case with real a0,
a𝜔 = a−𝜔, 𝜔 = 2, 3, … , and also quantitatively in terms of those having mono-
tone symbols. A discussion on the use of such results and on possible extensions
complements the paper.
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1 INTRODUCTION

Let An be a Toeplitz matrix of order n and let 𝜔 < n be a positive integer, as follows:

An =

⎡⎢⎢⎢⎢⎢⎣

a0 · · · a−𝜔
⋮ ⋱ ⋱

a𝜔 ⋱ ⋱
⋱ ⋱ a−𝜔

⋱ ⋱ ⋮
a𝜔 · · · a0

⎤⎥⎥⎥⎥⎥⎦
, (1)

with the coefficients ak, k = −𝜔, … , 𝜔, being complex numbers.
Let f ∈ L1(−𝜋, 𝜋) and let Tn( f ) be the Toeplitz matrix generated by f, that is, (Tn(𝑓 ))s,t = 𝑓s−t, s, t = 1, … ,n, with f

being the generating function of {Tn( f )} and with 𝑓k being the kth Fourier coefficient of f, that is,

𝑓k = 1
2𝜋∫

𝜋

−𝜋
𝑓 (𝜃) e−ik𝜃 d𝜃, i2 = −1, k ∈ Z. (2)
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If f is real valued, then several spectral properties are known (localization, extremal behavior, and collective distribution;
see other works1,2 and references therein), and f is also the spectral symbol of {Tn( f )} in the Weyl sense.1,3–5 If f is complex
valued, then the same type of information is transferred to the singular values, whereas the eigenvalues can have a “wild”
behavior6 in some cases. According to the notation above, our setting is very special because by direct computation, the
generating function of the Toeplitz matrix in (1) is the trigonometric polynomial 𝑓 (𝜃) =

∑𝜔
k=−𝜔 akeik𝜃 , that is, An = Tn( f ).

In this paper, we are interested in quantitative estimates of the eigenvalues of An. Indeed, in the the band symmetric
Toeplitz setting, quantitative estimates are already available in the relevant literature. In fact, using an embedding argu-
ment in the Tau algebra (the set of matrices diagonalized by a sine transform7), we are led to the conclusion that the jth
eigenvalue 𝜆j(An) = 𝜆j,n, An = Tn( f ), ak = a−k ∈ R, k = 1, … , 𝜔, can be approximated by the value f(𝜃𝜎( j),n), 𝜎 proper
permutation, with an error bounded by Kfh, where Kf is a constant depending on f, but independent of h and j (see other
works7–10 and references therein).

The following notation is used throughout this paper. Given a positive integer n and the grid points 𝜃𝑗,n = 𝑗𝜋

n+1
, j =

1, … ,n, the full grid is denoted by the following:

𝜃n = {𝜃𝑗,n ∶ 𝑗 = 1, … ,n}.

In the same manner, the new gridding defined in Section 2 is denoted by 𝜃n. When adding a third subscript r, we mean
the r:th repetition of j:th grid point, that is, 𝜃r, 𝑗,n is the same for all r with fixed j and n. More specifically, we will use grids
of the following form:

𝜃(s)n =
{
𝜃r, 𝑗,n ∶ 𝜃r, 𝑗,n = 𝜃𝑗,n, r = 1, … ,n∕𝛼s, 𝑗 = 1, … , 𝛼s

}
,

such that 𝛼s divides n and s = 1, 2. By 𝜆n, 𝜇n, 𝜈n, 𝜉n, we denote the ordered sets of eigenvalues in nondecreasing order, of
the unsorted eigenvalues using the new grid, of the unsorted eigenvalue approximations from the standard grid and the
standard symbol, and of the related approximations in nondecreasing order, respectively.

Here, taking into account the notation above, we furnish more precise estimates in some cases and discuss the general
setting, as explained in the following.

More specifically, in Section 2, we consider the special case where a0, a𝜔, a−𝜔 ∈ C, ak = 0 for k ≠ 0,±𝜔 (the nontrivial
setting is when a𝜔a−𝜔 ≠ 0). Under such assumptions, starting from the generating function f(𝜃) = a0 + a𝜔ei𝜔𝜃 + a−𝜔e−i𝜔𝜃

and from the grid 𝜃n = {𝜃𝑗,n ∶ 𝑗 = 1, … ,n} described in Section 2.1, we give the closed form expression of the eigenvalues
and eigenvectors in Section 2.2: a new simplified symbol emerges because the eigenvalues 𝜇n = {𝜇j,n}, where j = 1, … ,n,
are exactly given as 𝜇𝑗,n = g

(
𝜃𝑗,n

)
, with 𝜃n, a proper grid, on [0, 𝜋] and g(𝜃) = a0 + 2

√
a𝜔a−𝜔 cos(𝜃), where the new

symbol g(𝜃) is different from the generating function f(𝜃) = a0 +a𝜔ei𝜔𝜃 +a−𝜔e−i𝜔𝜃 and does not depend on 𝜔, whereas the
grid 𝜃n contains the information on 𝜔. Finally, in Section 2.3, we discuss few relationships between the symbol g and the
generating function f, in terms of the concepts of rearrangement (see, for example, other works11 and references therein)
and of spectral symbol in the Weyl sense.

In Section 3, we impose real symmetry to the matrices (1) and consider different cases. More in detail in Section 3.1,
we assume that the only nonzero real coefficients of (1) are a0 and a𝜔 = a−𝜔. We compare the true eigenvalues 𝜆j,n,
j = 1, … ,n, sorted in a nondecreasing order, with the generating function 𝑓 (𝜃) = a0 + 2a𝜔 cos(𝜔𝜃) evaluated at the grid
given by the points 𝑗𝜋

n+1
, which does not lead to an exact representation (except for 𝜔 = 1). A closed form symbol and grid

for the exact evaluation of the eigenvalues are reported in Theorem 1, and in comparison with the given representation,
the accuracy of the algorithm in the work of Ekström et al.9 is examined.

For any given sequence of indices n, where 𝛽 = mod(n, 𝜔), 𝛽 = 0, 1, … , 𝜔 − 1, we show numerically that 𝜔 different
“error modes” emerge, and hence, in total, 𝜔2 different “error modes” can be observed for a symbol of the type 𝑓 (𝜃) =
a0 + 2a𝜔 cos(𝜔𝜃).

We show that each error mode s = 0, … , 𝜔 − 1, of a given 𝛽, has the following form:

E{s}
𝑗𝜔,n𝜔+𝜂

= 𝜆𝑗s,n − 𝑓
(
𝜃𝜎n( 𝑗s),n

)
=

∞∑
k=1

ck,s
(
𝜃𝜎n( 𝑗s),n

)
hk, h = 1

n + 1

and present analytical and numerical results regarding ck,s(𝜃); see (45) and (46) for the formal definition of all variables.
On the other hand, when considering the finite-difference approximation of the operators (−1)q 𝜕2q

𝜕x2q , q ≥ 1,we obtain
Toeplitz matrices Tn( f ) with 𝑓 (𝜃) = (2 − 2 cos(𝜃))q (the case of q = 1 coincides with a0 = 2, a𝜔 = a−𝜔 = −1, 𝜔 = 1). In
such a case with q > 1, and more generally for monotone symbols f, the error below has the following form:

E𝑗,n = 𝜆𝑗,n − 𝑓
(
𝜃𝑗,n

)
=

∞∑
k=1

ck
(
𝜃𝑗,n

)
hk, h = 1

n + 1
, (3)
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with 𝜃j,n = j𝜋h, j = 1, … ,n, and ck(𝜃), k = 1, 2, … , higher order symbols (regarding (3), see the algorithmic propos-
als and related numerics in the work of Ekström et al.,9 the analysis in the work of Bogoya et al.,12 and extensions to
preconditioned and differential problems in other works13,14).

The functions ck,s(𝜃) and ck(𝜃) can be approximated, and a scheme is presented for performing such computations.
When f is a cosine trigonometric polynomial monotone on [0, 𝜋], it is worthwhile to mention that in other works,15,16

expansions as in (3) are in part formally proven: however, one of the assumptions, that is, the positivity of the second
derivative at zero (see page 310, line 3, in the work of Bogoya et al.15), excludes the important case of finite-difference
approximations of (high-order) differential operators considered because 𝑓 (𝜃) = (2 − 2 cos(𝜃))q. However, even if some of
the functions ck can become discontinuous in this setting, as shown in the work of Ekström et al.,9 the given expansions
can be exploited for designing fast eigensolvers also for large matrix sizes.

In Section 3.2, we analyze the case of the general matrices in (1) with ak being real, ak = a−k, k = 1, … , 𝜔. We consider
the features and behavior of the error of the eigenvalue approximation using the symbol, because in this setting, a grid and
a function giving the exact eigenvalues are not known. However, we show numerically that the eigenvalue behavior of a
general banded symmetric Toeplitz matrix with real entries can be described, qualitatively in terms of the symmetrically
sparse tridiagonal case with real a0, a𝜔 = a−𝜔, 𝜔 = 2, 3, … , and also quantitatively in terms of those having monotone
symbols as those related to the classical finite-difference discretization of the operators (−1)q 𝜕2q

𝜕x2q , q ∈ N, q ≠ 0, 1.
Some conclusions and possible directions for extending the current results are given in Section 4.

2 EXACT EIGENVALUES AND EIGENVECTORS OF SYMMETRICALLY
SPARSE TRIDIAGONAL, COMPLEX-VALUED TOEPLITZ MATRICES
AND THE RELATED SYMBOLS

Let An be a Toeplitz matrix of order n and with the following nonzero structure:

𝜔−1
⏞⏞⏞⏞⏞

An =

⎡⎢⎢⎢⎢⎢⎢⎣

a0 0 · · · 0 a−𝜔
0 a0 ⋱ ⋱ ⋱ ⋱
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ a−𝜔
0 ⋱ ⋱ ⋱ ⋱ ⋱ 0

a𝜔 ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋱ ⋱ ⋱ ⋱ a0 0

a𝜔 0 · · · 0 a0

⎤⎥⎥⎥⎥⎥⎥⎦
,

(4)

and let the constant coefficients a0, a𝜔, a−𝜔 be either real or complex. The constants a𝜔 and a−𝜔 are located on the 𝜔,−𝜔
off-diagonals, respectively. The standard generating function of the matrix An = Tn( f ) is defined as follows:

𝑓 (𝜃) = a0 + a𝜔ei𝜔𝜃 + a−𝜔e−i𝜔𝜃, (5)

which is also the symbol of the sequence of matrices {An = Tn( f )} in the Weyl sense.1,3–5 Notably, when a𝜔a−𝜔 ≠ 0, the
matrix An can be symmetrized in the sense that there exists a diagonal invertible matrix Dn such that

𝜔−1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Asym
n = DnAnD−1

n =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 0 · · · 0
√

a𝜔a−𝜔
0 a0 ⋱ ⋱ ⋱ ⋱
⋮ ⋱ ⋱ ⋱ ⋱ ⋱

√
a𝜔a−𝜔

0 ⋱ ⋱ ⋱ ⋱ ⋱ 0√
a𝜔a−𝜔 ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋱ ⋱ ⋱ ⋱ a0 0√
a𝜔a−𝜔 0 · · · 0 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(6)

Therefore, An and As𝑦m
n are similar and share the same eigenvalues, where As𝑦m

n = Tn(g𝜔) with

g𝜔(𝜃) = a0 + 2
√

a𝜔a−𝜔 cos(𝜔𝜃). (7)
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For the particular case 𝜔 = 1, by defining the equidistant grid as follows:

𝜃𝑗,n = 𝑗𝜋

n + 1
= 𝑗𝜋h, 𝑗 = 1, … ,n, h = 1

n + 1
, (8)

the jth eigenvalue 𝜇j,n
7,17–21 of An is known in closed form and is expressed as follows:

𝜇𝑗,n = a0 + 2
√

a𝜔a−𝜔 cos
(
𝜃𝑗,n

)
, 𝑗 = 1, … ,n. (9)

We notice that 𝜇j,n = g(𝜃j,n) with g(𝜃) = g1(𝜃) = a0 + 2
√

a1a−1 cos(𝜃), for g𝜔 with 𝜔 = 1 given in Equation (7). Fur-
thermore, for the eigenvalue 𝜇j,n, a corresponding eigenvector x𝑗,n = [x( 𝑗,n)1 , … , x( 𝑗,n)n ]T has components given as follows:

x( 𝑗,n)k =
(√

a𝜔
a−𝜔

)k

sin
(

k𝜃𝑗,n
)
, k = 1, … ,n. (10)

It is worth noticing that the operations of square root mentioned above and used in the rest of the paper have to
be handled carefully: when we write

√
𝛼∕𝛽,

√
𝛼𝛽, we mean

√
𝜌(𝛼)∕𝜌(𝛽)ei 𝜔(𝛼)−𝜔(𝛽)

2 ,
√
𝜌(𝛼)𝜌(𝛽)ei 𝜔(𝛼)+𝜔(𝛽)

2 , respectively, with
𝛾 = 𝜌(𝛾)ei𝜔(𝛾), 𝛾 ∈ {𝛼, 𝛽}, 𝜌(𝛾) ≥ 0, 𝜔(𝛾) ∈ [0, 2𝜋). In this way, for instance,

√
(−1)(−1) = −1 and, for example, with-

out this formal convention, the formulae derived from Theorem 2.4 in the book by Böttcher et al.,17 for the association
eigenvalue–eigenvector, are simply false.

We introduce now a new sampling grid, 𝜃n, which gives the exact eigenvalues𝜇j,n for any a0, a𝜔, a−𝜔 ∈ C and𝜔 ∈ N, 𝜔 <

n, in (9), and we introduce a modified version of (10) for expressing the corresponding eigenvectors xj,n, j = 1, … ,n.

2.1 The new sampling grid
We start by introducing a new grid 𝜃n, defined in the subsequent scheme. We first define 𝛽 as the remainder of the
Euclidean division of n by 𝜔, that is,

𝛽 = n − 𝜔n𝜔, n𝜔 = n − 𝛽
𝜔

, 0 ≤ 𝛽 < n, n, 𝜔, 𝛽,n𝜔 ∈ N, (11)

or in other words, 𝛽 is the modulus operator applied to the pair (n, 𝜔), 𝛽 = mod(n, 𝜔), and n𝜔 is the quotient, which will
be used as a “new” n in the subsequent definition of the new grid. We construct two separate grids, each with a standard
equidistant sampling, expressed as follows:

𝜃𝑗1,n𝜔 = 𝑗1𝜋

n𝜔 + 1
, 𝑗1 = 1, … ,n𝜔, (12)

𝜃𝑗2,n𝜔+1 = 𝑗2𝜋

n𝜔 + 2
, 𝑗2 = 1, … ,n𝜔 + 1. (13)

We know that there might be multiple eigenvalues of multiplicity greater than one, and thus, we might need to repeat
the same grid point several times. More specifically, we set the following gridpoints:

𝜃(1)r1, 𝑗1,n𝜔(𝜔−𝛽)
= 𝜃𝑗1,n𝜔 , r1 = 1, … , 𝜔 − 𝛽, 𝑗1 = 1, … ,n𝜔, (14)

𝜃(2)r2, 𝑗2,(n𝜔+1)𝛽 = 𝜃𝑗2,n𝜔+1, r2 = 1, … , 𝛽, 𝑗2 = 1, … ,n𝜔 + 1, (15)

which is the same as writing that the grid points in (12) are repeated 𝜔 − 𝛽 times and the grid points in (13) are repeated
𝛽 times. Now, define the following two grids:

𝜃(1)n𝜔(𝜔−𝛽)
=
{{

𝜃(1)r1, 𝑗1,n𝜔(𝜔−𝛽)

}𝜔−𝛽

r1=1

}n𝜔

𝑗1=1
, (16)

𝜃(2)(n𝜔+1)𝛽 =
{{

𝜃(2)r2, 𝑗2,(n𝜔+1)𝛽

}𝛽

r2=1

}n𝜔+1

𝑗2=1
. (17)

The full sampling grid 𝜃n is finally given by the union of the two grids (16) and (17), that is,

𝜃n = 𝜃(1)n𝜔(𝜔−𝛽)

⋃
𝜃(2)(n𝜔+1)𝛽 . (18)

For examples of concrete constructions of these grids, refer to the work of Ekström et al.22



EKSTRÖM AND SERRA-CAPIZZANO 5 of 17

2.2 Eigenvalues and eigenvectors described by the new sampling grid
We start with the main results regarding symmetrically sparse tridiagonal (SST) Toeplitz matrices.

Theorem 1. The eigenvalues of a SST Toeplitz matrix with center diagonal a0 and two off-diagonals a𝜔 and a−𝜔 at
off-diagonal −𝜔 and 𝜔, as in (4), are given by the following:

𝜇𝑗,n = g
(
𝜃𝑗,n

)
= a0 + 2

√
a𝜔a−𝜔 cos

(
𝜃𝑗,n

)
, 𝑗 = 1, … ,n, (19)

where 𝜃𝑗,n is the jth component of the grid 𝜃n defined in (18).

Remark 1. By 𝜇(1)
n and 𝜇(2)

n , we denote the set of eigenvalues given by the symbol evaluations of grids 𝜃(1)n𝜔(𝜔−𝛽)
and

𝜃(2)(n𝜔+1)𝛽 given in (16) and (17), respectively. Assume a𝜔a−𝜔 ≥ 0, so that g(·) is real valued; let 𝜆j,n be the eigenvalues
𝜇j,n in Theorem 1 sorted in a nondecreasing order, and let 𝜋n be a permutation of {1, … ,n}, which sorts the samples
g(𝜃1,n), … , g(𝜃n,n) in nondecreasing order, that is, g(𝜃𝜋n(1),n) ≤ · · · ≤ g(𝜃𝜋n(n),n). Then,

𝜆𝑗,n = g
(
𝜃𝜋n( 𝑗),n

)
𝑗 = 1, … ,n.

Theorem 2. Given a SST Toeplitz matrix with center diagonal a0 and two off-diagonals a𝜔 and a−𝜔 at off-diagonal −𝜔
and 𝜔, as in (4), the following statements concerning its eigenvalues and eigenvectors hold.

For each eigenvalue given by 𝜇(1)
r1, 𝑗1,n𝜔(𝜔−𝛽)

= g
(
𝜃(1)r1, 𝑗1,n𝜔(𝜔−𝛽)

)
= g(𝜃𝑗1,n𝜔 ) with j1 = 1, … ,n𝜔, and r1 = 1, … , 𝜔− 𝛽, we

define a corresponding eigenvector x(1)
r1, 𝑗1,n

=
[

x(r1, 𝑗1,n)
1 , · · ·, x(r1, 𝑗1,n)

n

]T
, with the following components:

x(r1, 𝑗1,n)
𝜔(k1−1)+r1+𝛽

=
(√

a𝜔
a−𝜔

)k1

sin
(

k1𝜃𝑗1,n𝜔
)
, k1 = 1, … ,n𝜔, (20)

and all nondefined components of xr1, 𝑗1,n equal to zero.
For each eigenvalue 𝜇(2)

r2, 𝑗2,(n𝜔+1)𝛽 = g
(
𝜃(2)r2, 𝑗2,(n𝜔+1)𝛽

)
= g(𝜃𝑗2,n𝜔+1) with j2 = 1, … ,n𝜔 + 1, and r2 = 1, … , 𝛽, we can

define a corresponding eigenvector x(2)
r2, 𝑗2,n

=
[

x(r2, 𝑗2,n)
1 , … , x(r2, 𝑗2,n)

n

]T
, where the components are as follows:

x(r2, 𝑗2,n)
𝜔(k2−1)+r2

=
(√

a𝜔
a−𝜔

)k2

sin
(

k2𝜃𝑗2,n𝜔+1
)
, k2 = 1, · · ·,n𝜔 + 1, (21)

and all nondefined components of xr2, 𝑗2,n are equal to zero.

Remark 2. To save memory and evaluations, taking into account (12) and (13), the steps to construct 𝜃n can be skipped,
as long as the information concerning multiple eigenvalues is stored. Note that if a grid is desired with all 𝜃 ∈ 𝜃n unique
in [0, 𝜋], one can modify the set 𝜃n in (18) as follows: take 𝜃 ∈ 𝜃n∕𝜔 and then shift each grid point by appropriate
multiples of 𝜋∕𝜔. Then, also the symbol reported in Theorem 1 has to be modified, and instead of g(𝜃) = g1(𝜃), we
use the generating function of the symmetrized matrix Asym

n , that is, g𝜔(𝜃) = a0 + 2
√

a𝜔a−𝜔 cos (𝜔𝜃).

Proof of Theorem 1 and Theorem 2. The proof for 𝜔 > 1 follows the same ideas as for the case 𝜔 = 1 presented in the
work of Böttcher et al.17 We start by observing that the matrix An in (4) has the standard symbol as follows:

𝑓 (𝜃) = a0 + a𝜔ei𝜔𝜃 + a−𝜔e−i𝜔𝜃.

By assuming a𝜔 ≠ 0 and a−𝜔 ≠ 0, and defining 𝛾 =
√

a−𝜔∕a𝜔, we consider the matrix Bn defined as follows:

𝜔−1
⏞⏞⏞⏞⏞

Bn =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 𝛾2

0 0 ⋱ ⋱ ⋱ ⋱
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 𝛾2

0 ⋱ ⋱ ⋱ ⋱ ⋱ 0
1 ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋱ ⋱ ⋱ ⋱ 0 0

1 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
.
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Thus, Bn has the following symbol:

𝑓B(𝜃) = ei𝜔𝜃 + 𝛾2e−i𝜔𝜃 = ei𝜔𝜃 + a−𝜔

a𝜔
e−i𝜔𝜃.

Following the general framework, because f(𝜃) = a0 + a𝜔fB(𝜃), it is sufficient to show that Bn has the eigenvalues as
follows:

𝜇(1)
r1, 𝑗1,n𝜔(𝜔−𝛽)

= 2𝛾 cos
(
𝜃𝑗1,n𝜔

)
, r1 = 1, … , 𝜔 − 𝛽, 𝑗1 = 1, … ,n𝜔, (22)

𝜇(2)
r2, 𝑗2,(n𝜔+1)𝛽 = 2𝛾 cos

(
𝜃𝑗2,n𝜔+1

)
, r2 = 1, … , 𝛽, 𝑗2 = 1, · · ·,n𝜔 + 1, (23)

and that the following corresponding eigenvectors:

x(1)
r1, 𝑗1,n

=
[

x(r1, 𝑗1,n)
1 , · · ·, x(r1, 𝑗1,n)

n

]T
, (24)

x(2)
r2, 𝑗2,n

=
[

x(r2, 𝑗2,n)
1 , … , x(r2, 𝑗2,n)

n

]T
, (25)

have components of the following form:

x(r1, 𝑗1,n)
𝜔(k1−1)+r1+𝛽

= 𝛾−k1 sin
(

k1𝜃𝑗1,n𝜔
)
, k1 = 1, … ,n𝜔, (26)

x(r2, 𝑗2,n)
𝜔(k2−1)+r2

= 𝛾−k2 sin
(

k2𝜃𝑗2,n𝜔+1
)
, k2 = 1, · · ·,n𝜔 + 1, (27)

respectively. Because Bnx = 𝜇x for a given eigenpair (𝜇, x), for all k relationships, (28)–(32) must hold true. For
𝜔 ≤ n∕2,

𝛾2x𝜔+k = 𝜇xk, k = 1, … , 𝜔, (28)

xk + 𝛾2x2𝜔+k = 𝜇x𝜔+k, k = 1, … ,n − 2𝜔, (29)

xn+1−(𝜔+k) = 𝜇xn+1−k, k = 1, … , 𝜔. (30)

For n∕2 < 𝜔 < n,
𝛾2x𝜔+k = 𝜇xk, k = 1, … ,n − 𝜔, (31)

xn+1−(𝜔+k) = 𝜇xn+1−k, k = 1, … ,n − 𝜔. (32)

First, we show that Equations (28) and (31) are satisfied. For x(1)
r1, 𝑗1,n

in (24), the nonzero components have indices of
the form𝜔(k1−1)+r1+𝛽, k1 = 1, … ,n𝜔 (as seen in (26)). For k1 = 1, we have r1+𝛽, and for k2 = 2, we have𝜔+r1+𝛽,
which are the only two nonzero components that match (28) and (31). More specifically, we observe the following:

x(r1, 𝑗1,n)
𝜔+r1+𝛽

= 𝜇(1)
r1, 𝑗1,n𝜔(𝜔−𝛽)

x(r1, 𝑗1,n)
r1+𝛽

, (33)

or, explicitly,
𝛾2𝛾−2 sin

(
2𝜃𝑗1,n𝜔

)
= 2𝛾 cos

(
𝜃𝑗1,n𝜔

)
𝛾−1 sin

(
𝜃𝑗1,n𝜔

)
, (34)

that is, sin
(
2𝜃𝑗1,n𝜔

)
= 2 cos

(
𝜃𝑗1,n𝜔

)
sin

(
𝜃𝑗1,n𝜔

)
, which is true, owing to the trigonometric identity as follows:

sin (2𝛾1) = 2 cos (𝛾1) sin (𝛾1) . (35)

For x(2)
r2, 𝑗2,n

in (25), we observe the same behavior as for x(1)
r1, 𝑗1,n

in (24) above, but the relation analogous to (33) is
now as follows:

x(r2, 𝑗2,n)
𝜔+r2

= 𝜇(2)
r2, 𝑗2,(n𝜔+1)𝛽x(r2, 𝑗2,n)

r2
.

Namely, it is the same as (34), except for the fact that 𝜃𝑗2,n𝜔+1 replaces 𝜃𝑗1,n𝜔 .
Secondly, we show that (29) is true. For x(1)

r1, 𝑗1,n
in (24), the nonzero components have indices of the form𝜔(k1 −1)+

r1+𝛽, k1 = 1, … ,n𝜔 (as seen in (26)). For k1, k1+1, k1+2, with k1 = 1, … , kr1, 𝑗1
max , where kr1, 𝑗1

max ≤ (n−r1−𝛽−𝜔)∕𝜔, k
r1, 𝑗1
max ∈

N, we find all nonzero terms of (29) expressed as follows:

x(r1, 𝑗1,n)
𝜔(k1−1)+r1+𝛽

+ 𝛾2x(r1, 𝑗1,n)
𝜔(k1+1)+r1+𝛽

= 𝜇(1)
r1, 𝑗1,n𝜔(𝜔−𝛽)

x(r1, 𝑗1,n)
𝜔k1+r1+𝛽

.
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Explicitly, we deduce the following:

𝛾−(𝜔(k1−1)+r1+𝛽) sin
(
(𝜔(k1 − 1) + r1 + 𝛽) 𝜃𝑗1,n𝜔

)
+ 𝛾2𝛾−(𝜔(k1+1)+r1+𝛽) sin

(
(𝜔(k1 + 1) + r1 + 𝛽) 𝜃𝑗1,n𝜔

)
= 2𝛾 cos

(
𝜃𝑗1,n𝜔

)
𝛾−(𝜔k1+r1+𝛽) sin

(
(𝜔k1 + r1 + 𝛽) 𝜃𝑗1,n𝜔

)
,

or

sin
(
(𝜔(k1 − 1) + r1 + 𝛽) 𝜃𝑗1,n𝜔

)
+ sin

(
(𝜔(k1 + 1) + r1 + 𝛽) 𝜃𝑗1,n𝜔

)
= 2 cos

(
𝜃𝑗1,n𝜔

)
sin

(
(𝜔k1 + r1 + 𝛽) 𝜃𝑗1,n𝜔

)
,

which is satisfied because of the trigonometric identity as follows:

sin (𝛾1) + sin (𝛾2) = 2 cos
(𝛾1 − 𝛾2

2

)
sin

(𝛾1 + 𝛾2

2

)
.

For x(2)
r2, 𝑗2,n

in (25), for k2 = 1, · · ·, kr2, 𝑗2
max , where kr2, 𝑗2

max ≤ (n − r2 − 𝜔)∕𝜔, k
r2, 𝑗2
max ∈ N, taking into account (29), we find the

following:

x(r2, 𝑗2,n)
𝜔(k2−1)+r2

+ 𝛾2x(r2, 𝑗2,n)
𝜔(k2+1)+r1

= 𝜇(2)
r2, 𝑗2,(n𝜔+1)𝛽x(r2, 𝑗2,n)

𝜔k2+r2
,

and this is proven for the case 𝜇(1)
r1, 𝑗1,n𝜔(𝜔−𝛽)

and x(1)
r1, 𝑗1,n

described above.
As last step, we show that the relationships in (30) and (32) are true. For x(1)

r1, 𝑗1,n
in (24), the nonzero components

have indices of the form 𝜔(k1 − 1) + r1 + 𝛽, k1 = 1, … ,n𝜔 (as seen in (26)). For k1 = n𝜔, we find n + r1 − 𝜔, and for
k2 = n𝜔 − 1, we have n + r1 − 2𝜔, which are the only two nonzero components that match (30) and (32), namely,

x(r1, 𝑗1,n)
n+r1−2𝜔 = 𝜇(1)

r1, 𝑗1,n𝜔(𝜔−𝛽)
x(r1, 𝑗1,n)

n+r1−𝜔 . (36)

More in detail, we infer that

𝛾−(n𝜔−1) sin
(
(n𝜔 − 1)𝜃𝑗1,n𝜔

)
= 2𝛾 cos

(
𝜃𝑗1,n𝜔

)
𝛾−n𝜔 sin

(
n𝜔𝜃𝑗1,n𝜔

)
,

sin
(
(n𝜔 − 1)𝜃𝑗1,n𝜔

)
= 2 cos

(
𝜃𝑗1,n𝜔

)
sin

(
n𝜔𝜃𝑗1,n𝜔

)
,

sin
(
(n𝜔 − 1) 𝑗1𝜋

n𝜔 + 1

)
= 2 cos

(
𝑗1𝜋

n𝜔 + 1

)
sin

(
n𝜔

𝑗1𝜋

n𝜔 + 1

)
. (37)

Furthermore, because

sin
(
(n𝜔 − 1) 𝑗1𝜋

n𝜔 + 1

)
= sin

(
𝑗1𝜋 − 2 𝑗1𝜋

n𝜔 + 1

)
= (−1)𝑗1+1 sin

(
2 𝑗1𝜋

n𝜔 + 1

)
,

sin
(

n𝜔
𝑗1𝜋

n𝜔 + 1

)
= sin

(
𝑗1𝜋 − 𝑗1𝜋

n𝜔 + 1

)
= (−1)𝑗1+1 sin

(
𝑗1𝜋

n𝜔 + 1

)
,

we deduce that relation (37) is equivalent to sin
(
2𝜃𝑗1,n𝜔

)
= 2 cos

(
𝜃𝑗1,n𝜔

)
sin

(
𝜃𝑗1,n𝜔

)
, which is an identity, because of

the basic relation in (35). Equivalently, the latter is true for 𝜇(2)
r2, 𝑗2,(n𝜔+1)𝛽 in (23) and for x(2)

r2, 𝑗2,n
in (25).

2.3 The real symmetric SST Toeplitz case: the generating function and a simplified
distribution function
We now consider the previous results from the point of view of spectral distributions in the sense of Weyl. First, we
introduce some notations and definitions concerning the general sequences of matrices. For any function F defined on
the complex field and for any matrix An of size dn, by the symbol Σ𝜆(F,An), we denote the following means:

1
dn

dn∑
𝑗=1

F
[
𝜆𝑗(An)

]
.

Moreover, given a sequence {An} of matrices of size dn with dn < dn+1 and given a Lebesgue-measurable function 𝜓

defined over a measurable set K ⊂ R𝜈 , 𝜈 ∈ N+, of finite e positive Lebesgue measure 𝜇(K ), we say that {An} is distributed
as (𝜓,K ) in the sense of the eigenvalues if for any continuous F with bounded support, the following limit relation holds:

lim
n→∞

Σ𝜆(F,An) =
1

𝜇(K) ∫K
F(𝜓)d𝜇. (38)
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In this case, we write in short {An} ∼𝜆 (𝜓,K). In Remark 3, we provide an informal meaning of the notion of eigenvalue
distribution.

Remark 3. The informal meaning behind the above definition is the following. If 𝜓 is continuous, n is large enough,
and {

x(mn)
𝑗 , 𝑗 = 1, … , dn

}
is an equispaced grid on K, then a suitable ordering 𝜆j(An), j = 1, … , dn, of the eigenvalues of An is such that the pairs{(

x(dn)
𝑗 , 𝜆𝑗(An)

)
, 𝑗 = 1, · · ·,mn

}
reconstruct approximately the hypersurface as follows:

{(x, 𝜓(x)) , x ∈ K} .

In other words, the spectrum of An “behaves” like a uniform sampling of 𝜓 over K. For instance, if 𝜈 = 1, dn = n, and
K = [a, b], then the eigenvalues of An are approximately equal to 𝜓(a + j(b − a)∕n), j = 1, … ,n, for n large enough.
Analogously, if 𝜈 = 2, dn = n2, and K = [a1, b1] × [a2, b2], then the eigenvalues of An are approximately equal to
𝜓(a1 + j(b1 − a1)∕n, a2 + k(b2 − a2)∕n), j, k = 1, … ,n, for n large enough.

Let f be a complex-valued (Lebesgue) integrable function, defined over Q = (−𝜋, 𝜋), and let us consider the sequence
{Tn( f )}with Tn(𝑓 ) =

(
𝑓𝑗−k

)n
𝑗,k=1, 𝑓s, s ∈ Z being the Fourier coefficients of f defined as in (2). The asymptotic distribution

of eigenvalues and singular values of a sequence of Toeplitz matrices has been thoroughly studied in the last century (for
example, see other works1,23 and the references reported therein). The starting point of this theory, which contains many
extensions and other results, is a famous theorem of Szegő,3 which we report in the version given by Tyrtyshnikov et al.23

Theorem 3. If f is integrable over Q, and if {Tn( f)} is the sequence of Toeplitz matrices generated by f, it then holds that

{T∗
n(𝑓 )Tn(𝑓 )} ∼𝜆

(|𝑓 |2,Q)
. (39)

Moreover, if f is also real valued, then each matrix Tn( f ) is Hermitian and

{Tn(𝑓 )} ∼𝜆(𝑓,Q). (40)

However, a simple remark has to be added. The symbol in the Weyl sense is far from unique, and in fact, any rearrange-
ment is still a symbol. A simple case is given by standard Toeplitz sequences {Tn( f )}, with f real valued, and even that is
f(𝜃) = f(−𝜃) almost everywhere, 𝜃 ∈ Q. In that case, relation (40) has the following form:

lim
n→∞

Σ𝜆 (F,Tn(𝑓 )) =
1

2𝜋∫
𝜋

−𝜋
F(𝑓 (𝜃))d𝜃 = 1

𝜋∫
𝜋

0
F (𝑓 (𝜃)) d𝜃, (41)

due to the even character of f, and hence, {Tn( f )} ∼𝜆 ( f,Q+), Q+ = (0, 𝜋). In fact, the grid points are not searched in the
big interval Q but in the restricted interval Q+ (see Remark 3).

However, formula (19) in Theorem 1 seems to be confusing, because the generating function is g𝜔(𝜃) = a0+2a𝜔 cos(𝜔𝜃),
whereas the eigenvalues result in an equispaced sampling of the function a0 + 2|a𝜔| cos(𝜃). Because Theorem 3 tells one
that {Tn(g𝜔)} ∼𝜆 (g𝜔,Q), whereas our explicit computation implies {Tn(g𝜔)} ∼𝜆 (g1,Q+), it follows that g1 on Q+ is a
rearrangement of g𝜔 on Q. Indeed, the latter is true, as demonstrated in the following simple derivations:

∫
𝜋

−𝜋
F (g𝜔(𝜃)) d𝜃 = ∫

2𝜋

0
F (g𝜔(𝜃)) d𝜃

= 𝜔∫
2𝜋∕𝜔

0
F (g𝜔(𝜃)) d𝜃

= 𝜔∫
2𝜋

0
F (g𝜔(s∕𝜔)) ds∕𝜔

= ∫
2𝜋

0
F (g1(s)) ds = 2∫

𝜋

0
F (g1(s)) ds.

By the way, the fact that g1 has exactly two branches, one monotonically increasing on (0, 𝜋∕2) and the other monotonically
decreasing on (𝜋∕2, 𝜋), represents a qualitative confirmation of the fact that the grid 𝜃n in (18), for the exact eigenvalue
formulae, is obtained by the merging of exactly two distinct grids, 𝜃(1)n𝜔(𝜔−𝛽)

and 𝜃(2)(n𝜔+1)𝛽 , independently of the parameter 𝜔.
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3 THE REAL SYMMETRIC SST CASE AND ITS USE IN THE GENERAL
SYMMETRIC BANDED TOEPLITZ CASE

Let An be a Toeplitz matrix of order n and let 𝜔̂ < n be a positive integer as follows:

An =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 · · · a𝜔̂
a1 a0 ⋱ ⋱
⋮ ⋱ ⋱ ⋱ ⋱

a𝜔̂ ⋱ ⋱ ⋱ ⋱
⋱ ⋱ ⋱ ⋱ a𝜔̂

⋱ ⋱ ⋱ ⋱ ⋮
⋱ ⋱ a0 a1

a𝜔̂ · · · a1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (42)

where the coefficients ak, k = 0, … , 𝜔̂, are real numbers.
We now show that the behavior of the spectrum of such matrices can be qualitatively described via the spectral behavior

of two different types of matrices: matrices of the form in (4) with different 𝜔 = 2, … , 𝜔̂ and with a0, a𝜔 = a−𝜔, real
numbers, and matrices of the form (42) with monotone generating function f on [0, 𝜋], as the case of 𝑓 (𝜃) = (2 − 2 cos(𝜃))2.
We observe that the case 𝑓 (𝜃) = (2 − 2 cos(𝜃))2 corresponds to the choice of q = 2 with a0 = 6, a1 = −4, a2 = 1 and that for
such a case, an expansion similar to that in (3) holds. We remind that expansions as in (3) are observed in other works9,15

(and formally proven under mild assumptions15) for the general case, in which the generating function is a monotone
cosine polynomial in [0, 𝜋].

In Section 3.1, we compare the generating function g𝜔(𝜃) = 2 − 2 cos(𝜔𝜃) with the spectrum of matrices of the form in
(4) with different 𝜔 = 2, … , q and with a0, a𝜔 = a−𝜔, real numbers, by proving the expansions in (44).

In Section 3.2, for a general matrix of the form (42), we show numerical evidences that a qualitative comparison between
the eigenvalues and the generating function is described either by an expansion like (3), characterizing the monotone
case, or by an expansion like (44), characterizing the purely oscillatory case as g𝜔(𝜃) = 2−2 cos(𝜔𝜃),𝜔 = 2, … , q. From a
computational viewpoint, as explained by Ekström et al.,9 the crucial observation is that such a qualitative behavior turns
out to be the theoretical key for designing fast extrapolation-type algorithms for computing eigenvalues of large matrices
of the form reported in (42).

3.1 The real symmetric SST Toeplitz case: eigenvalues and generating function
Typically, a correct symbol and grid combination, which together exactly samples the eigenvalues of a given matrix, is not
known, but the error can be reconstructed in some cases; see the work of Ekström et al.9

When approximating the eigenvalues for the standard nonmonotone symbol as follows:

𝑓 (𝜃) = g𝜔(𝜃) = 2 − 2 cos(𝜔𝜃), (43)

with 1 < 𝜔 fixed with respect to n, and sampling g𝜔(·) at the standard equispaced grid of (8), we obtain the exact eigenval-
ues plus an error. This error can be expressed analytically, because the eigenvalues are given by Theorem 1. Subsequently,
we furnish an expression for the expansion of such an error (refer also to the work of Ekström et al.9 for similar expansions
in the monotone case).

We begin by defining the permutations 𝜋n, 𝜎n ∶ {1, … ,n} → {1, … ,n} such that g(𝜃𝜋n(1),n) ≤ · · · ≤ g(𝜃𝜋n(n),n),
𝑓 (𝜃𝜎n(1),n) ≤ · · · ≤ 𝑓 (𝜃𝜎n(n),n). We denote 𝜇𝑗,n = g(𝜃𝑗,n), 𝜆𝑗,n = g(𝜃𝜋n( 𝑗),n), and 𝜈j,n = f(𝜃j,n), 𝜉𝑗,n = g(𝜃𝜎n( 𝑗),n).

The error for (43) with sampling grid (8) to approximate the eigenvalues after sorting is thus

E𝑗,n = g
(
𝜃𝜋n( 𝑗),n

)
− 𝑓

(
𝜃𝜎n( 𝑗),n

)
= 𝜆𝑗,n − 𝜉𝑗,n. (44)

This error is shown, for example, in Figure 1(a)–(c) in light gray for 𝜔 = 3. At first glance, this error can seem chaotic,
but it is clear numerically that in this case, and for any 1 < 𝜔 < n, there will be 𝜔2 different “error modes”; 𝜔 different
modes for any fixed 𝛽 = mod(n, 𝜔) ∈ {0, … , 𝜔 − 1}. Indeed, for each 𝛽, we will denote the different error modes by
s = 0, … , 𝜔 − 1. In Figure 1(a)–(c), these modes are shown for 𝛽 = 0, 1, 2, s = 0 yellow (dotted), s = 1 blue (solid),
and s = 2 red (dashed). Each error mode for a given n and 𝛽 is given by the indices js ∈ Is, s = 0, … , 𝜔 − 1, where
Is = {s, s + 𝜔, s + 2𝜔, …} (except for s = 0 where I0 = {𝜔, 2𝜔, …}), and the union of all Is is the whole set of indices
{1, … ,n}. In other words, s = mod(j, 𝜔) for j = 1, … ,n, and for s = 0, we have j0 = j𝜔𝜔, j𝜔 = 1, … ,n𝜔 and s > 0,
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FIGURE 1 Errors for eigenvalue approximations for matrices of different sizes with standard symbol g3(𝜃) = 2 − 2 cos(3𝜃) and grids
𝜃j,n = j𝜋h, j = 1, … ,n, h = 1∕(n + 1). For each 𝛽 = mod(n, 𝜔) = mod(n, 3), there exist 𝜔 = 3 different error modes E{i}

n𝜔+𝜂 , i = 0, 1, 2,
represented in yellow (dotted), blue (solid), and red (dashed). In gray, we show the errors not separated into different error modes. In panel
(d), the error reduction for g3(𝜃) = 2 − 2 cos(3𝜃) for 𝜃̄ = 𝜋∕10 is reported, by using the algorithm presented by Ekström et al.9 (a) n = 159, 𝛽 =
0. (b) n = 160, 𝛽 = 1. (c) n = 161, 𝛽 = 2. (d) Estimation of ck,0, k = 1, 2, 3; 𝜃̄ = 𝜋∕10, 𝛽 = 0

js = s+( j𝜔−1)𝜔, j𝜔 = 1, … n𝜔+ 𝜂, where n𝜔 = (n− 𝛽)∕𝜔 and 𝜂 = 1 for s = 1, … , 𝛽, and otherwise, 𝜂 = 0. In this setting,
there exist functions ck,s(·), s = 0, 1, … , 𝜔 − 1, k ≥ 1 for which the following error:

E𝑗s,n = g
(
𝜃𝜋n( 𝑗s),n

)
− 𝑓

(
𝜃𝜎n( 𝑗s),n

)
= 𝜆𝑗s,n − 𝜉𝑗s,n = 𝜆{s}

𝑗𝜔,n𝜔+𝜂
− 𝜉{s}

𝑗𝜔,n𝜔+𝜂
= E{s}

𝑗𝜔,n𝜔+𝜂
(45)

has the following form:

E{s}
𝑗𝜔,n𝜔+𝜂

=
∞∑

k=1
ck,s

(
𝜃𝜎n( 𝑗s),n

)
hk, h 1

n + 1
. (46)

We will refer to the functions ck,s(𝜃), k = 1, 2, … , s = 0, 1, … , 𝜔 − 1 as higher order symbols.

Example 1. As a demonstrative example, we will look at the symbol 𝑓3(𝜃) = 2 − 2 cos(3𝜃). We have n = 12, and
because 𝜔 = 3, we have 𝛽 = 0 and n𝜔 = 4. Because 𝛽 = 0 is the simplest case where 𝜃n = 𝜃(1)n , which consists of
𝜃n𝜔 = 𝜃4 repeated 𝜔 − 𝛽 = 3 times, we have the following:

𝜃𝑗1,n𝜔 = 𝑗1𝜋

n𝜔 + 1
𝑗1 = 1, … ,n𝜔, 𝜃𝑗,n = 𝑗𝜋

n + 1
, 𝑗 = 1, … ,n.

In the following table, the different evaluations are reported.
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FIGURE 2 Eigenvalues, symbol, and errors for matrices with standard symbol 𝑓 (𝜃) = 2 − 2 cos(𝜃) − 2 cos(2𝜃) and grids
𝜃j,n = j𝜋h, j = 1, … ,n, h = 1∕(n + 1). (a) True eigenvalues (sorted, solid in red). Sampling of the symbol (unsorted, dashed in black).
(b) Errors for different n. Reduction of error for 𝜃̄ = 𝜋∕10. (c) Errors for n 200 (solid) and n = 202 (dashed). (d) Errors for n = 500

Sorting the evaluations of g(𝜃𝑗,n) in nondecreasing order, that is, g(𝜃𝜋n( 𝑗),n), we will have the true eigenvalues as
follows:

𝜆12 =
{
𝜇4,4, 𝜇4,4, 𝜇4,4, 𝜇3,4, 𝜇3,4, 𝜇3,4, 𝜇2,4, 𝜇2,4, 𝜇2,4, 𝜇1,4, 𝜇1,4, 𝜇1,4

}
.

By splitting the eigenvalues by the different indices in order to separate the error modes, we obtain the following:

𝜆{0}
4 =

{
𝜇4,4, 𝜇3,4, 𝜇2,4, 𝜇1,4

}
=
{
𝜆𝑗0,12

}
, 𝑗0 = 3, 6, 9, 12, s = mod(𝑗0, 𝜔) = 0,

𝜆{1}
4 =

{
𝜇4,4, 𝜇3,4, 𝜇2,4, 𝜇1,4

}
=
{
𝜆𝑗1,12

}
, 𝑗1 = 1, 4, 7, 10, s = mod(𝑗1, 𝜔) = 1,

𝜆{2}
4 =

{
𝜇4,4, 𝜇3,4, 𝜇2,4, 𝜇1,4

}
=
{
𝜆𝑗2,12

}
, 𝑗2 = 2, 5, 8, 11, s = mod(𝑗2, 𝜔) = 2.

Sorting the evaluations of f(𝜃j,n) in a nondecreasing order, that is, 𝑓 (𝜃𝜎n( 𝑗),n), we will have the approximations of the
eigenvalues as follows:

𝜉12 =
{
𝜈9,12, 𝜈8,12, 𝜈1,12, 𝜈10,12, 𝜈7,12, 𝜈2,12, 𝜈11,12, 𝜈6,12, 𝜈3,12, 𝜈12,12, 𝜈5,12, 𝜈4,12

}
.

By splitting the approximations of the eigenvalues by the different indices for separating the error modes, we find the
following:

𝜉{0}
4 =

{
𝜈1,12, 𝜈2,12, 𝜈3,12, 𝜈4,12

}
=
{
𝜉𝑗0,12

}
, 𝑗0 = 3, 6, 9, 12, s = mod(𝑗0, 𝜔) = 0,

𝜉{1}
4 =

{
𝜈9,12, 𝜈10,12, 𝜈11,12, 𝜈12,12

}
=
{
𝜉𝑗1,12

}
, 𝑗1 = 1, 4, 7, 10, s = mod(𝑗1, 𝜔) = 1,

𝜉{2}
4 =

{
𝜈8,12, 𝜈7,12, 𝜈6,12, 𝜈5,12

}
=
{
𝜉𝑗2,12

}
, 𝑗2 = 2, 5, 8, 11, s = mod(𝑗2, 𝜔) = 2.
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FIGURE 3 Eigenvalues, symbol, and errors for a matrix with standard symbol 𝑓 (𝜃) = 2 − 2 cos(3𝜃) − 2 cos(4𝜃) and grids
𝜃j,n = j𝜋h, j = 1, … ,n, h = 1∕(n + 1). (a) True eigenvalues (sorted, solid in red). Sampling of the symbol (unsorted, dashed in black).
(b) Errors for n = 1000

Hence, we have 𝜔 different error modes for 𝜔 = 3 and 𝛽 = 0, which are given by the following:

E{0}
𝑗𝜔,n𝜔

= g
(
𝜃n𝜔+1−𝑗𝜔,n𝜔

)
− 𝑓3

(
𝜃𝑗𝜔,n

)
= g

(
𝜃5−𝑗𝜔,4

)
− 𝑓3

(
𝜃𝑗𝜔,12

)
, 𝑗𝜔 = 1, … , 4, (47)

E{1}
𝑗𝜔,n𝜔

= g
(
𝜃n𝜔+1−𝑗𝜔,n𝜔

)
− 𝑓3

(
𝜃𝑗𝜔+2n𝜔,n

)
= g

(
𝜃5−𝑗𝜔,4

)
− 𝑓3

(
𝜃𝑗𝜔+8,12

)
, 𝑗𝜔 = 1, … , 4, (48)

E{2}
𝑗𝜔,n𝜔

= g(𝜃n𝜔+1−𝑗𝜔,n𝜔 ) − 𝑓3(𝜃2n𝜔+1−𝑗𝜔,n) = g(𝜃5−𝑗𝜔,4) − 𝑓3(𝜃9−𝑗𝜔,12), 𝑗𝜔 = 1, … , 4, (49)

because 𝜂 = 0 in (46) for all s = 0, 1, 2, and because 𝛽 = 0. Using the algorithm presented by Ekström et al.,9 we
look at a specific eigenvalue of interest 𝜃̄ = 𝜋∕10. By this, we mean that for a matrix of size n, the index of the
eigenvalue of interest, when they are sorted in nondecreasing order, 𝑗, is found by 𝜋∕10 = 𝑗𝜋∕(n+1). The error is then
specifically E𝑗,n = 𝜆𝑗,n−𝜉𝑗,n or E{1}

𝑗𝜔,n𝜔
because 𝛽 = 0 for all n of interest in this example. We look specifically at the pairs

( j1,n1) = (16, 159), ( j2,n2) = (19, 189), ( j3,n3) = (22, 219), and ( j,n) = (100, 999), which are presented in Figure 1(d).
The light green background indicates that the derivative of the symbol changes sign two times in the region. Other
examples of a different number of sign changes are presented in Figures 2 and 3. Because s = mod( j, 𝜔) = 1, the error
will have the following expression:

E{1}
𝑗𝜔,n𝜔

= g
(
𝜃n𝜔+1−𝑗𝜔,n𝜔

)
− 𝑓3

(
𝜃𝑗𝜔+2n𝜔,n

)
, 𝑗𝜔 = 1, … ,n𝜔, (50)

given by (48). We now look at a specific j𝜔, namely 𝑗𝜔 = (n𝜔 + 7)∕10. Hence, the pairs for each error mode are instead
(𝑗𝜔,n𝜔), that is, (6, 53), (7, 63), (8, 73), and (34, 333). Explicitly, we obtain the following:

E{1}
𝑗𝜔,n𝜔

= g
(
𝜃n𝜔+1−𝑗𝜔,n𝜔

)
− 𝑓3

(
𝜃𝑗𝜔+2n𝜔,n

)
=

∞∑
k=1

ck,1
(
𝜃̄
)

hk, h = 1
n + 1

, (51)

and we can analytically express the constants ck,1(𝜃̄). More in detail, we have the following:

E{1}
𝑗𝜔,n𝜔

= g
(
𝜃n𝜔+1−𝑗𝜔,n𝜔

)
− 𝑓3

(
𝜃𝑗𝜔+2n𝜔,n

)
= g

(
3𝜋
10

3n𝜔 + 1
n𝜔 + 1

)
− 𝑓3

(7𝜋
10

)
= 2 cos

(
𝜋

10

)
− 2 cos

(
𝜋

𝑗𝜔
n𝜔 + 1

)
. (52)

Explicitly, the errors in this example in Figure 1(d), denoted by black circles, are as follows:

E{1}
6,53 = 2 cos

(
𝜋

10

)
− 2 cos

(6𝜋
54

)
, E{1}

7,63 = 2 cos
(
𝜋

10

)
− 2 cos

(7𝜋
64

)
,

E{1}
8,73 = 2 cos

(
𝜋

10

)
− 2 cos

(8𝜋
74

)
, E{1}

34,333 = 2 cos
(
𝜋

10

)
− 2 cos

(34𝜋
334

)
,
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and the latter relations are verified numerically to machine precision. The red circle in Figure 1(d) shows the error
after applying the algorithm of Ekström et al.9: it reduces from 3.518 · 10−3 to −2.826 · 10−8. By reformulating (52), we
deduce the following:

E{1}
𝑗𝜔,n𝜔

= 2 cos
(
𝜋

10

)
− 2 cos

(
𝜋

10
+ 9𝜋h

5(1 + 2h)

)
, (53)

and by the Taylor expansion of the error (53), we derive exactly the constants ck,1 in (51), that is,

E{1}
𝑗𝜔,n𝜔

= 2 cos
(
𝜋

10

)
−

(
2 cos

(
𝜋

10

)
+ 2

∞∑
k=1

cos(k)(𝜋∕10)
k!

(
9𝜋h

5(1 + 2h)

)k
)

= −2
∞∑

k=1

cos(k)(𝜋∕10)
k!

(9𝜋
5

)k
hk
( 1

1 + 2h

)k

= −2
∞∑

k=1

cos(k)(𝜋∕10)
k!

(9𝜋
5

)k
hk

( ∞∑
l=0

(−2h)l

)k

= −2
∞∑

k=1

cos(k)(𝜋∕10)
k!

(9𝜋
5

)k
( ∞∑

l=0
(−2)lhl+1

)k

= 2 sin(𝜋∕10)
(9𝜋

5

) ∞∑
l=0

(−2)lhl+1+

+ cos(𝜋∕10)
(9𝜋

5

)2
( ∞∑

l=0
(−2)lhl+1

)2

−

−
sin(𝜋∕10)

3

(9𝜋
5

)3
( ∞∑

l=0
(−2)lhl+1

)3

−

− 2
∞∑

k=4

cos(k)(𝜋∕10)
k!

(9𝜋
5

)k
( ∞∑

l=0
(−2)lhl+1

)k

.

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(h4)

(54)

By expanding the expression in (53) up to a (h4) term, we deduce precise representations for ck,1, k = 1, 2, 3, that is,

E{1}
𝑗𝜔,n𝜔

= 2 sin(𝜋∕10)
(9𝜋

5

)(
h − 2h2 + 4h3 +

∞∑
l=3

(−2)lhl+1

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

h−2h2+4h3+(h4)

+

= + cos(𝜋∕10)
(9𝜋

5

)2
(

h − 2h2 +
∞∑

l=3
(−2)lhl+1

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
h2−4h3+(h4)

−

−
sin(𝜋∕10)

3

(9𝜋
5

)3
(

h +
∞∑

l=2
(−2)lhl+1

)3

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
h3+(h4)

+ (h4).
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TABLE 1 Analytical ck,1(𝜃̄), and the corresponding approximation c̃k,1(𝜃̄), for m different coarse matrices in algorithm from
Ekström et al.9 for g3(𝜃) = 2 − 2 cos(3𝜃), 𝜃̄ = 𝜋∕10

m = 1 m = 2 m = 3 m = 4
159 159,189 159,189,219 159,189,219,249

c1,1(𝜃̄) 3.49489987 3.49489987 3.49489987 3.49489987
c̃1,1(𝜃̄) 3.63644656 3.49891734 3.49495321 3.49490028
c2,1(𝜃̄) 23.42262738 23.42262738 23.42262738
c̃2,1(𝜃̄) 22.00467555 23.39212062 23.42229454
c3,1(𝜃̄) −126.29647972 −126.29647972
c̃3,1(𝜃̄) −120.50951417 −126.19491717
E{1}

34,333 3.51819657 · 10−3 3.51819657 · 10−3 3.51819657 · 10−3 3.51819657 · 10−3∑m
k=1 c̃k,1(𝜃̄)hk 3.63644656 · 10−3 3.52092202 · 10−3 3.51822482 · 10−3 3.51819673 · 10−3

E{1}
34,333 −

∑m
k=1 c̃k,1(𝜃̄)hk −1.18249995 · 10−4 −2.72544868 · 10−6 −2.82554797 · 10−8 −0.16133076 · 10−9

Thus, we have the following:

E{1}
𝑗𝜔,n𝜔

= 2 sin(𝜋∕10)
(9𝜋

5

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

c1,1(𝜃̄)≈3.49489987

h +
(
−4 sin(𝜋∕10)

(9𝜋
5

)
+ cos(𝜋∕10)

(9𝜋
5

)2)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

c2,1(𝜃̄)≈23.42262738

h2+

+
(

8 sin(𝜋∕10)
(9𝜋

5

)
− 4 cos(𝜋∕10)

(9𝜋
5

)2
−

sin(𝜋∕10)
3

(9𝜋
5

)3)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

c3,1(𝜃̄)≈−126.29647972

h3 +
∞∑

k=4
ck,1(𝜃̄)hk. (55)

Note that the explicit expressions of (55) can be derived for any combination of n, 𝜔, and 𝜃̄, but the computation
will be more complicated if 𝛽 > 0 because also 𝜃(2) has to be considered.

In Table 1, we show the results using the algorithm of Ekström et al.9 to approximate m different constants ck,1(𝜃̄)
with the same number of different coarse matrices. As m increases, c̃k,1(𝜃̄) converges to ck,1(𝜃̄) as expected. Using the
analytical expression of ck,1(𝜃̄) in (55), we have

∑3
k=1 ck,1(𝜃̄)hk = 3.51819620 · 10−3, and thus, the error after the error

reduction is E{1}
34,333 −

∑m
k=1 ck,1(𝜃̄)hk = 3.67020511 · 10−10.

In Table 2, we show the results obtained when using the algorithm by Ekström et al.9 for nonmonotone cases
g𝜔(𝜃) = 2− 2 cos(𝜔𝜃) for 𝜔 = 2, 3, 4: the goal is to reduce the error of the eigenvalue approximation when considering
the largest matrix. The errors for m = 0, 1, 2, 3 different coarse matrices used to approximate the constants ck,1(𝜃̄),
k = 1, … ,m, are presented. For g2(𝜃), the coarse matrices have sizes belonging to {149, 189, 209}, and the largest
size is n = 9999; for g3(𝜃), the coarse matrices have sizes belonging to {159, 189, 219} and n = 10009; for g4(𝜃), the
coarse matrices have sizes belonging to {169, 209, 249} and n = 10009. The errors behave as expected, and hence, the
algorithm taken from the work of Ekström et al.9 can also be used for these specific nonmonotone examples, although
in this setting, a numerical computation is not necessary because the exact eigenvalues can be evaluated exactly by
exploiting the symbol and sampling the grid described in Section 2.

3.2 The general symmetric banded case: conjectures and numerics
As we have seen in the previous subsection, given a positive integer 𝜔 ≥ 2 and the nonmonotone symbol 𝑓 (𝜃) = g𝜔(𝜃) =
2 − 2 cos(𝜔𝜃), and evaluating it at a equidistant grid such as 𝜃j,n = j𝜋h, j = 1, … ,n, h = 1∕(n + 1), numerical tests show
that the error En = 𝜆n − 𝜉n can be separated into 𝜔 different types of error modes for each 𝛽 = mod(n, 𝜔). That is, for
each 𝛽 = mod(n, 𝜔), there are 𝜔 disjoint subgrids of the original grid (see Figure 1 for 𝜔 = 3 and the related caption). For
a given n and 𝛽, each error mode is obtained by the indices j ∈ Is, s = 0, … , 𝜔 − 1, where I0 = {𝜔, 2𝜔, 3𝜔, …} and for
s > 0, Is = {s, s + 𝜔, s + 2𝜔, …}, and the union of all Is forms the whole set of indices {1, … ,n}.
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TABLE 2 Errors for eigenvalue approximations for matrices with standard symbol
g𝜔(𝜃) = 2 − 2cos(𝜔𝜃), 𝜃̄ = 𝜋∕10

E{1}
j̄𝝎 ,n𝝎

−∑m
k =𝟏 c̃k , 𝟏(𝜽̄)hk

g𝝎(𝜽) E{𝟏}
j̄𝝎 ,n𝝎

m = 1 m = 2 m = 3

g2(𝜃) −3.88581714·10−5 4.32478954·10−6 −5.21177503 · 10−8 −1.12193334 · 10−9

g3(𝜃) 34.97240870·10−5 −13.92056931 · 10−6 −38.76938472 · 10−8 −5.03491210 · 10−9

g4(𝜃) 65.96546126·10−5 −7.93740842 · 10−6 −127.70747416 · 10−8 −50.14789443 · 10−9

The latter remark induces the conjecture that the number of the different expansions is related to the number of sign
changes of the derivative of the generating function in the basic interval (0, 𝜋), that is, a formula of the type as follows:

𝜆𝑗,n = 𝑓 (𝜃𝜎n( 𝑗),n) +
m∑

k=1
ck,s

(
𝜃𝜎n( 𝑗),n

)
hk + O(hm+1), 𝑗 ∈ Is, s = 0, … , 𝜔 − 1, (56)

may hold. In Figure 2, we see a clarifying example of the nonmonotone error given by the function 𝑓 (𝜃) = 2 − 2 cos(𝜃) −
2 cos(2𝜃).

In Figure 2(a), we show the true eigenvalues (sorted, solid in red) and the sampling of the symbol (unsorted, dashed
in black). The two different regions displayed in light colors (red on bottom and yellow on top) represent the different
number of sign changes in the derivative of the symbol f(𝜃) inside the region (zero and one). These different regions will
give rise to different features in the behavior of the errors.

The approximation error of the function possesses the same monotone behavior as the one observed for (2 − 2 cos(𝜃))2,
when using, for example, the grid ( j − 1)𝜋∕(n − 1) instead of the exact j𝜋∕(n + 1), in the interval [0, 𝜋∕3] with f(𝜋∕3) = 2,
and almost the behavior typical of 2− 2 cos(2𝜃) in the interval [𝜋∕3, 𝜋] with f(𝜋∕3) = f(𝜋) = 2. Indeed, for the eigenvalues
belonging to (−2, 2], −2 = 𝑓 (0) = min 𝑓 , 2 = f(𝜋∕3), as represented in the light red regions of Figure 2, the behavior of
the error is like the one related with a monotone function that (56) with 𝜔 = 1 holds. For the eigenvalues belonging to
(2, 17∕4), 2 = f(𝜋∕3) = f(𝜋), 17∕4 = max 𝑓 , as represented in the light yellow regions in Figure 2, the behavior of the error
behaves almost like the one displayed in (56) with 𝜔 = 2, because the sign of the derivative changes once.

In Figure 2(b), we present a visualization of error reduction for 𝑓 (𝜃) = 2 − 2 cos(𝜃) − 2 cos(2𝜃), 𝜃̄ = 𝜋∕10 with the
algorithm presented by Ekström et al.9 The largest matrix dimension is n = 669, whereas the coarse grids have sizes
belonging to {109, 129, 149}. The black circles represent the error of symbol approximation on the corresponding grids,
and the red circle is the error on the fine grid after reduction using the coarse errors. The error is reduced from−7.899·10−4

to −9.959 ·10−11. Note that here, the x-axis is ordered by the size of the true eigenvalues. The error on the left region (light
red) behaves like a monotone symbol, whereas the right region (light yellow) behaves, in general terms, as a symbol of
the form g𝜔 but with a slight shift.

As seen in Figures 2(c)–(d), the local change is somewhat drastic with a small change of n, but the general structure
of the error remains as n increases. In Figure 2(c), we see the errors for n = 200 (solid) and n = 202 (dashed). Assuming
two error modes for each n, note the rather large “shift” of the error curve just increasing n by a factor two. Note also
that the x-axis is ordered by n and not by the size of the true eigenvalues. In Figure 2(d), we see the errors for n = 500
assuming two error modes. Note that the general regularity of the error in the large eigenvalues (right part of the figure)
is comparable to n = 200 and n = 202 shown in Figure 2(c). In other words, the global error behavior is still regular in a
weaker sense and should be investigated formally.

In Figure 3, we report the case of the error using the standard grid on the symbol 𝑓 (𝜃) = 2 − 2 cos(3𝜃) − 2 cos(4𝜃). In
Figure 3(a), the true eigenvalues (sorted, solid red) and the sampling of the symbol (unsorted, dashed black) are shown.
Clearly, four different regions are present, colored in light red, green, blue, and yellow, depending on the number of sign
changes of the derivative of the symbol in the region (zero, two, three, and one). These different regions will give rise to
different characteristics of the behavior of the errors.

The error E𝑗,n = 𝜆𝑗,n − 𝑓 (𝜃𝜎n𝑗,n), for n = 1000, was plotted as if there are two error modes, that is, j1 = 1, 3, 5, … (blue)
and j2 = 2, 4, 6, … (red). The light red ( first) region shows the error behaving as in the monotone case, that is, the error
can be reconstructed in the manner presented by Ekström et al.9 The light yellow ( fourth) part shows a clear regularity
when representing the error in two sets (blue and red). On the other hand, when increasing n, we do not only decrease
the error in the region but also maintain the error function, and we also change the number of “peaks”, as previously
demonstrated in Figure 2. In the light red region, the error behaves like a monotone symbol, and the error can be efficiently
reconstructed by the same techniques as described in Section 3.1 and in Figures 1 and 2. The light green (second) and
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blue (third) regions show “chaotic” behavior, resulting from the “naive” ordering of the approximated eigenvalues. Again,
this behavior deserves a further study.

4 CONCLUSIONS AND FUTURE WORK

The paper contains two types of theoretical results and a numerical part.
The first result concerns the fact that for the SST Toeplitz matrices as in (4), with a0, a𝜔, a−𝜔 ∈ C, 0 < 𝜔 < n, the

eigenvalues and the eigenvectors have a closed form expression. In particular, the formula for the eigenvalues 𝜇j,n in
Theorem 1 is expressed in an elegant and compact way, because there exist a grid 𝜃n, the one defined in (18), and the
simple function g(𝜃) = a0 + 2

√
a𝜔a−𝜔 cos(𝜃) such that

𝜇𝑗,n = g
(
𝜃𝑗,n

)
, 𝑗 = 1, … ,n.

Furthermore, using basic changes of variable in the integral representation of the distribution results, we show clear
relationships between the symbol g and the standard generating functions of the matrices An, As𝑦m

n , that is, f𝜔(𝜃) =
a0 + a𝜔ei𝜔𝜃 + a−𝜔e−i𝜔𝜃 , g𝜔(𝜃) = a0 + 2

√
a𝜔a−𝜔 cos (𝜔𝜃), respectively. Also, a closed form formula for the corresponding

eigenvectors is presented in Theorem 2.
The second result regards three banded Toeplitz matrices (4), with a0, a𝜔, a−𝜔 ∈ R, 0 < 𝜔 < n: here, we show that an

asymptotic expansion of the eigenvalues holds, with respect to the standard generating function and the usual grid (see
formula (44)). The latter extends a similar asymptotic expansion holding for the eigenvalues of general symmetric real
Toeplitz matrices, having polynomial cosine generating function, which is monotone on [0, 𝜋] (see formula (3) and other
works9,15,16): an important example of such matrices is represented by the finite-difference discretization of the operators
(−1)q𝜕2q∕𝜕x2q, whose generating function is (2 − 2 cos(𝜃))q, q ≥ 1.

The final part concerns a conjecture supported by numerical tests in which it is shown that for a generic banded real
symmetric Toeplitz matrix, the eigenvalue 𝜆j,n compared with 𝑓

(
𝜃𝜎n𝑗,n

)
either shows an expansion similar to formula (44)

if 𝜆j,n ∈ [m,M] and f
′
(𝜃) has 𝜔 changes of sign for f(𝜃) ∈ [m,M] or shows an expansion like formula (3) if 𝜆j,n ∈ [m,M]

and f(𝜃) ∈ [m,M] is monotone.
The latter gives the ground for extrapolation techniques24 for computing the eigenvalues of large banded real symmet-

ric Toeplitz matrices in a fast way. Of course, also the multidimensional and the block cases should be considered and
explored in future works, owing to their importance in the numerical approximation of (systems of) partial differential
equations.
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