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Abstract

A Matrix-less Method for Approximating the
Eigenvectors of Toeplitz-like Matrices

David Meadon

	Matrix-less methods (MLM) have successfully been used to efficiently approximate
the eigenvalues of certain classes of structured matrices. Specifically, the method has
been used to approximate the eigenvalues of Toeplitz and Toeplitz-like matrices. The
method exploits the inherent structure of the eigenvalues, which is maintained when
the matrix size changes, and thus can use the eigenvalues of a set of smaller matrices
to approximate the eigenvalues for much larger matrices.
		
	In this thesis, we investigate whether there exists a similar structure for the
eigenvectors for some of these matrices and if we can apply an MLM such that we can
efficiently approximate the eigenvectors of Toeplitz(-like) matrices. We here study
symmetric Toeplitz(-like) matrices generated by monotone symbols. Specifically, we
investigate the use of this method on four different types matrix sequences: the (1)
Laplacian matrix in one dimension, the closely related (2) bi-Laplacian matrix, (3)
Isogeometric analysis discretisation matrices and also (4) a `full' matrix related to the
discretisation of fractional diffusion.
	
	For the first three types of investigated matrix sequences, it is found that the
matrix-less method is able to well-approximate the eigenvectors, where as for the
fourth case (fractional derivative related matrix sequence) where it does not work,
we discuss some potential adjustments that may allow for MLM to work in that case
as well. We also discuss why the method cannot be immediately used for Toeplitz
matrices with non-monotone symbols. We conclude the thesis with suggestions for
future avenues of research including how to possibly deal with matrix sequences
generated by non-monotone symbols.
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I

Introduction

Consider the linear system

Av = λv λ ∈ C, v ∈ Cn, A ∈ Cn×n

which is generally known as the eigenvalue equation, where λ is an eigenvalue
of the matrix A and v is the associated eigenvector. The calculation of eigen-
values and their corresponding eigenvectors is an important area in many di�er-
ent �elds. For example they may be the solution to a physical problem (e.g. see
[5], [11], [34]) or used to evaluate the stability and convergence of di�erent numer-
ical methods [27] or to construct preconditioners for solving linear systems using
de�ation methods [10], [28]. Most uniform discretisations of partial di�erential
equations give rise to matrices of a speci�c form, namely Toeplitz and Toeplitz-
like matrices.

Substantial research has been done on the approximation of the eigenvalues
of Toeplitz(-like)matrices [21]–[23], [30], [33], wherewewill highlight the theory of
Generalized Locally Toeplitz (GLT) sequences. More speci�cally, the matrix-less
method (MLM) which is derived from the theory of GLT sequences and has been
shown to be an e�cient method for the approximation of the eigenvalues for dif-
ferent classes of Toeplitz-like matrices, e.g. [14], [16], [17], [19], [20]. Speci�cally,
MLM is able to use the eigenvalues for a few smaller matrices (e.g. 3 matrices of
sizeO(100)) to approximate the eigenvalues for a largermatrix in the samematrix
sequence.

Thus far, MLMhas only been used for the approximation of eigenvalues, how-
ever in this thesis, we will consider whether we can develop an MLM to approxi-
mate the eigenvectors of real symmetric Toeplitzmatrices, whichwill thus be real
and also have real associated eigenvalues λi ∈ R. That is, canwe use the structure
of the eigenvectors that is maintained in matrices in the same matrix sequence,
to use the eigenvectors of a few smaller matrices to approximate those of a larger
matrix, in the same matrix sequence.

In this �rst section we provide an overview of the before mentioned theory
on GLT sequences and MLM. Then we conclude the section by detailing why this
method which has so far been used to approximate eigenvalues, can also be used
to approximate eigenvectors and fully describing the problem we will investigate
in this thesis. In the second section we outline the results from the numerical
experiments onusing the derivedMLMfor four di�erentmatrix sequences. Then,
we discuss considerations about the results, before �nally concluding the report
with suggestions for future research.
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1.1 Generalized Locally Toeplitz (GLT) Sequences

The theory of GLT sequences is a well researched topic, e.g. [2], [3], [21]–[23]. We
begin by stating the de�nition of a Toeplitz matrix.

De�nition 1.1. A matrix An ∈ Cn×n is called Toeplitz if it has constant diagonals,
that is,

An =


a0 a−1 · · · a−(n−1)

a1
. . . . . . ...

... . . . . . . a−1

an−1 · · · a1 a0


.

Furthermore, for each Toeplitz matrix An we can associate a function f(θ),
called a symbol.

De�nition 1.2. Consider a function f ∈ L1(−π, π), where its Fourier coe�cients
are given by:

f̂k =
1

2π

∫ π

−π
f(θ)e−ikθdθ, k ∈ Z, i2 = −1.

Then the Toeplitz matrix of size n associated with f is given by,

Tn(f) =
[
f̂i−j

]n
i,j=1

=



f̂0 f̂−1 · · · f̂−(n−1)

f̂1
. . . . . . ...

... . . . . . . f̂−1

f̂n−1 · · · f̂1 f̂0


.

We may then consider {Tn(f)}n which is the sequence of Toeplitz matrices of
di�erence sizes nwhich are all associated with the function f . We then call f the
symbol of Tn(f) which generates the Toeplitz matrix sequence {Tn(f)}n.

Note. If the Toeplitz matrix is banded, deriving the symbol is straight forward.
However, if the Toeplitz matrix is not banded, the symbol may o�en be derived
by the study of the Fourier coe�cients, given by the generated matrices in the
sequence; e.g., see numerical example 4. If the symbol is known though, then
the matrix of any size in the matrix sequence associated with the symbol can be
generated.

We now provide two examples of banded Toeplitz matrices as well as their
associated symbols.
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Example 1.1.1. Consider the discrete Laplacian matrix in one dimension of size
n:

Tn(f) =



2 −1

−1 2 −1

−1
. . . . . .
. . . . . . −1

−1 2


=



f̂0 f̂−1

f̂1 f̂0 f̂−1

f̂1
. . . . . .
. . . . . . f̂−1

f̂1 f̂0


,

where we have that f̂1 = −1, f̂0 = 2, f̂−1 = −1 and f̂k = 0 for all other k, thus this
matrix will have associated symbol:

f(θ) =
∞∑

k=−∞
f̂ke

kiθ

= −e−iθ + 2− eiθ

= 2− 2 cos(θ).

Example 1.1.2. The bi-Laplacianmatrix of size n:

Tn(f) =


6 −4 1

−4 6 −4
. . .

1 −4
. . . . . . 1

. . . . . . . . . −4
1 −4 6

 =


f̂0 f̂−1 f̂−2

f̂1 f̂0 f̂−1
. . .

f̂2 f̂1
. . . . . . f̂−2

. . . . . . . . . f̂−1
f̂2 f̂1 f̂0

 ,

is a discretisation of the fourth derivative and in this casewe have that f̂2 = 1, f̂1 =
−4, f̂0 = 6, f̂−1 = −4, f̂−2 = 1 and f̂k = 0 for all other k, meaning the associated
symbol is:

f(θ) =
∞∑

k=−∞
f̂ke

kiθ

= e−2iθ − 4e−iθ + 6− 4eiθ + e2iθ

= 6− 8 cos(θ) + 2 cos(2θ)

= (2− 2 cos(θ))2 .

Note. The symbols of these matrices are related to the asymptotic behaviour of
thematrix sequence and as such they will also be the symbols for matrices which
have been perturbed in the corners, for example by boundary conditions. These
matrices are called Toeplitz-like and are discussed further at the end of the sec-
tion. It is also important to note that the relation between symbols and matrices
is two sided, such that you may begin with a symbol and then generate a matrix
from that symbol or we may (as in Example 1.1.1 and Example 1.1.2) describe a
symbol from the matrix.

The spectral behaviour of these matrix sequences can be described by the
theory of GLT sequences; see [21]–[23]. If {An}n is a GLT sequence with symbol

3



f , denoted by {An}n ∼GLT f , then the singular values (except possibly o(n) out-
liers) σj(An), can be approximated by |f(θj,n)| where θj,n is an equispaced grid in
[−π, π].

That is,
σj(An) = |f(θj,n)|+ Ej,n,0,

where typically Ej,n,0 = O(h) is an error term.
If f is real-valued, which means that An is a Hermitian Toeplitz(-like) matrix,

then we say that {An}n ∼λ f and the eigenvalues λj(An) can be approximated by
f(θj,n). If f is even, then we can choose a grid de�ned on [0, π]. Hence,

λj(An) = f(θj,n) + Ej,n,0, (1.1)

where again typically the error term is Ej,n,0 = O(h). We here provide some fur-
ther properties of these relations as described in [22]:

GLT 1. If {An}n ∼GLT f then {An}n ∼σ f . If {An}n ∼GLT f and the matrices An are
Hermitian then {An}n ∼λ f .

GLT 2. If {An}n ∼GLT f and An = Xn + Yn, where

• everyXn is Hermitian,
• ‖Xn‖, ‖Yn‖ ≤ C for some constant C independent of n,
• n−1‖Yn‖1 → 0,

then {An}n ∼λ f .

GLT 3. We have

• {Tn(h)}n ∼GLT f(x, θ) = h(θ) if h ∈ L1([−π, π]),

• {Dn(a)}n ∼GLT f(x, θ) = a(x) if a : [0, 1]→ C is continuous a.e.,
• {Zn}n ∼GLT f(x, θ) = 0 if and only if {Zn}n ∼σ 0.

GLT 4. If {An}n ∼GLT f and {Bn}n ∼GLT g then

• {A∗n}n ∼GLT f̄
• {αAn + βBn}n ∼GLT αf + βg for all α, β ∈ C
• {AnBn}n ∼GLT fg

GLT 5. If {An}n ∼GLT f and f 6= 0 a.e. then {A†n}n ∼GLT f−1.

GLT 6. If {An}n ∼GLT f and each An is Hermitian, then {h(An)}n ∼GLT h(f) for
every continuous function h : C→ C.

Note. We may also consider larger classes of matrix sequences by considering
zero distributed sequences. That is consider the Toeplitz-likematrixAn = Tn(f)+
Rn + Nn where Tn(f) is the pure Toeplitz matrix generated from the symbol f ,
while Rn and Nn are examples of Zn in GLT 3. Speci�cally Rn may be a low-rank
matrix which may be due to boundary conditions andNn is a small-normmatrix,
for example of the form hTn(g), which goes to the zeromatrix as n goes to in�nity.
Then by the linearity in GLT 4, we have that {An}n ∼GLT f .
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1.2 TheMatrix-less Method (MLM)

A class of methods, here denoted matrix-less, �rst introduced in [8, pp. 1329] and
then [18], have been extended to a larger class of Hermitian matrices, see e.g. [14]
and lately also to non-Hermitian matrices [19], [20]. The GLT eigenvalue approxi-
mation

λj(An) = f(θj,n) + Ej,n,0 ≈ f(θj,n) (1.2)

works when we can �nd or de�ne the symbol f(θ) for the sequence {An}n, but
the error, Ej,n,0, which depends on the regularity of f and is usually of size O(h)
might be prohibitively large for applications.

In MLM we assume and exploit an asymptotic expansion of the form

λj(An) = f(θj,n) + Ej,n,0

= f(θj,n) +
α∑
k=1

hkck(θj,n) + Ej,n,α

=
α∑
k=0

hkck(θj,n) + Ej,n,α,

(1.3)

where by de�nition f(θ) = c0(θ). The ck(θ)’s are typically unknown functions
which MLM can approximate by samplings c̃k(θj,n0). The parameters α ∈ Z+ and
n0 ∈ Z+ are chosen by the user, where typical values are around α = 3 and n0 =
O(102 ∼ 103). The resulting error is Ej,n,α = O(hα+1).

The basic idea of MLM is to numerically calculate the eigenvalues for α +
1 small-sized matrices using standard numerical eigen-solvers, approximate the
functions ck for k = 0, . . . , α on the grid θj,n0, and then use these to approximate
the spectrum for a matrix An where n � n0, by interpolation-extrapolation on a
grid θj,n.

First the matrices Ank of sizes nk = 2k(n0 + 1) − 1 for k = 0, . . . , α are con-
structed and their eigenvalues are computed using a standard numerical eigen-
solver; we use Julia’s [6] eigvals supplemented with GenericSchur.jl [31] or
GenericLinearAlgebra.jl [25] mainly due to the support of high precision
datatypes. A�er sorting the eigenvalues in non-decreasing order for each level
k, where we have assumed the matrix has a monotone symbol, and then choose
every 2k-th eigenvalue to construct a matrix E ∈ Cα+1×n0

E =


λ1(An0) λ2(An0) λ3(An0) . . . λn0(An0)
λ2(An1) λ4(An1) λ6(An1) . . . λ2n0(An1)

...
...

... . . .
λ2α(Anα) λ2·2α(Anα) λ3·2α(Anα) . . . λn0·2α(Anα)

 . (1.4)

This choice of grids and the corresponding subsets of eigenvalues for each
level is presented in Figure 1.1.

Once we have calculated the eigenvalues that the estimation is based on, we
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0 π/5 2π/5 3π/5 4π/5 π

0

1

2

θ

k

Figure 1.1: Grids for α = 2 and n0 = 4.

then use a speci�c Vandermonde matrix:

V =



1 h0 h20 h30 . . . hα0

1 h1 h21 h31 . . . hα1

1 h2 h22 h32 . . . hα2

1
...

...
... . . . ...

1 hα h2α h3α . . . hαα


, hk =

1

1 + nk
, (1.5)

and solve the linear system E = V C to �nd our approximation C̃:

C̃ =


c̃0 (θ1,n0) c̃0 (θ2,n0) · · · c̃0 (θn0,n0)

c̃1 (θ1,n0) c̃1 (θ2,n0) · · · c̃1 (θn0,n0)

...
... . . . ...

c̃α (θ1,n0) c̃α (θ2,n0) · · · c̃α (θn0,n0)

 , (1.6)

and then can use this approximation in an interpolation–extrapolation scheme
[17] to compute λj(Anf ) ≈ λ̃j,nf =

∑n
k=0 h

kc̃k(θj,nf ). Extending Examples 1.1.1
and 1.1.2, we here perform MLM on the matrices in those examples.

Example 1.2.1. Recall the discrete Laplacian matrix in Example 1.1.1 where we
would now like to approximate the eigenvalues for this matrix of size nf = 100000
using a number of smaller matrices, with the smallest being of size n0 = 100.
Note that for the Laplacian matrix we have that the eigenvalues are exactly given
by sampling the symbol, f(θ) = 2 − 2 cos(θ), with the standard grid θj,n = jπ

n+1
,

that is λj(Tn(f)) = f(θj,n), and so we would expect that ck = 0 for k > 0 [14].
Figure 1.2 shows the approximated expansion functions obtained by following the
steps described above, using α = 3. Figure 1.3 shows the error of the extrapolated
eigenvalues.

6



0 π/4 π/2 3π/4 π
0

1

2

3

4

θ
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(b) log10 |c̃1|
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(c) log10 |c̃2|

0 π/4 π/2 3π/4 π

−7
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−2

θ

(d) log10 |c̃3|

Figure 1.2: Approximated c̃k of the Laplacian matrix for k = 0 . . . 3 (n0, α, Data
type) = (1000, 3, Double64).

0 π/4 π/2 3π/4 π
−16

−15

−14

−13

−12

−11

−10

θ

lo
g
1
0
|λ

j
(A

n
)
−
λ̃
j
|

Figure 1.3: Errors log10 |λj(Anf ) − λ̃j,nf | of the Laplacian matrix for nf = 100000
and (n0, α, Data type) = (1000, 3, Double64).

Note. Figure 1.2 shows that the expansion functions for the eigenvalues of the
Laplacian are near zero, this is why the c̃k, for k > 0, are plotted logarithmically
and so we do indeed observe the expected result.
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Example 1.2.2. Similar to the previous example, we here will consider the bi-
Laplacian matrix encountered in Example 1.1.2 where we would also like to ap-
proximate the eigenvalues for this matrix of size nf = 100000 using a number of
smaller matrices, with the smallest being of size n0 = 100. Figure 1.4 shows the
approximated expansion functions, again using α = 3. Figure 1.5 shows the error
of the extrapolated eigenvalues.

0 π/4 π/2 3π/4 π
0

5

10

15

θ

(a) c̃0

0 π/4 π/2 3π/4 π
0

1

2

3

4

θ

(b) c̃1

0 π/4 π/2 3π/4 π

−1.0

−0.5

0.0

0.5

1.0

1.5

θ

(c) c̃2

0 π/4 π/2 3π/4 π

−1.0

−0.5

0.0

0.5

1.0

θ

(d) c̃3

Figure 1.4: Approximated c̃k of the bi-Laplacian matrix for k = 0 . . . 3 (n0, α, Data
type) = (1000, 3, Double64).
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Figure 1.5: Errors log10 |λj(Anf )− λ̃j,nf | of the bi-Laplacian matrix for nf = 100000
and (n0, α, Data type) = (1000, 3, Double64).
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Note. In contrast to the previous example, we do not have that the eigenvalues
of the bi-Laplacian are given by the sampling of the symbol using the used grid
and thus we do see that the approximated expansion functions, c̃k, are non-zero
in this case as shown in Figure 1.4.

So far, MLM have successfully been employed for a wide class of matrices An,
most importantly,

• An = Tn(f) and {An}n ∼λ f , f Hermitian [18],

• An = Tn(g)−1Tn(f) and {An}n ∼λ f/g [1],

• An = Tn(f) and {An}n 6∼λ f , {An}n ∼λ c0, f non-Hermitian [19], [20],

• An = Tn(f) +Rn and {An}n ∼λ f where Rn is a low-rank matrix [15],

• An = Tn(f) and {An}n ∼λ f where f is matrix-valued [16].

Thus, MLM is a very powerful method for approximating eigenvalues. We will
now show that it can also be used for the approximation of eigenvectors.

1.3 Problem Description

So far, all the theory we have considered concerns approximating the eigenvalues
of Toeplitz(-like)matrices. In a general sense, MLMuses the fact that Toeplitzma-
trices in a sequence of matrices share the same symbol that describes the eigen-
values. This is shown in Figure 1.6 where we have plotted the eigenvalues of the
Laplacian matrix for a number of di�erent sizes.

0 π/4 π/2 3π/4 π
0

1

2

3

4

θ

n = 2
n = 4
n = 8
n = 16

Figure 1.6: Eigenvalues of Laplacian matrix for n = 2, 4, 8 and 16.
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Similarly, we would assume there to be some ‘eigenvector symbol’ that is main-
tained for eigenvectors of matrices in the same matrix sequence. Since eigenvec-
tors are not unique, and the current standard is for eigen-solvers to return eigen-
vectors with unit 2-norm, we would need to apply a suitable scaling to the eigen-
vectors when changing sizes. In Figure 1.7, we see that changing the size of the
matrices retains a certain structure of the eigenvectors similar to that of the eigen-
values, a�er the eigenvectors have been suitably scaled, and it is this structure
which MLM can exploit and allow us to approximate the eigenvectors. A ‘correct’
scaling of the eigenvectors, which is needed since it is numerically very sensitive
for MLM to work, is detailed later in the thesis, but we should highlight that we
have chosen our scaling such that the eigenvectors may be compared to a sam-
pling of the sine function using an equispaced grid (sin(jθi,n)), that is we may
compare it to the non-normalised Discrete Sine Transform (DST) [9].

0 π/4 π/2 3π/4 π

0.1

0.2

0.3

0.4

0.5

0.6
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n = 3
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n = 15
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(a) Unscaled v1(An)
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0.2

0.4

0.6

0.8

1.0

θ

n = 3
n = 7
n = 15
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(b) Scaled v1(An)
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n = 3
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(c) Unscaled v2(An)

0 π/4 π/2 3π/4 π
−1.0

−0.5
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0.5

1.0

θ

n = 3
n = 7
n = 15
n = 31

(d) Scaled v2(An)

Figure 1.7: Comparison of structure for scaled and unscaled eigenvectors of the
Laplacian matrix of di�erent sizes.

Thus, in this report we investigate the following hypothesis.

Working Hypothesis. For eigenvectors of symmetric Toeplitz and Toeplitz-like matri-
ces, there exists an expansion of the form:

vi,j(An) = c
[j]
0 (θi,n) +

α∑
k=1

hkc
[j]
k (θi,n) + E

[j]
i,n,α

where vi,j(An) is the ith component of the jth eigenvector of a symmetric Toeplitz or
Toeplitz-like matrix An of size n, θi,n = iπ

n+1
is an equispaced grid, the c[j]k ’s are the ex-
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pansion functions for the jth eigenvector andE[j]
i,n,α is some error termwhich goes to zero

as α and n goes to in�nity.

Note. Some notes about the above hypothesis:

• The c[j]k are typically unknown, and must be numerically approximated. In
Section 2.1 we propose an algorithm to compute the approximations of the
expansion functions c̃[j]k .

• It is known that the above expansion will not be completely true in general
(e.g. see [4] in the eigenvalue version) but we assume that numerically it
does work, except for possibly a few outlier elements.

• The method as seen in Example 1.2.1 was able to approximate all the eigen-
values of thematrix at once, however as can be seen in the above expansion,
the method will only be able to approximate a single eigenvector as a time.
Moreover since we begin with a matrix of size n0, we would be unable to
approximate more than the �rst n0 eigenvectors of the larger matrix as we
will not have the required information for the eigenvectors of j > n0.
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II

Main Results

We now investigate whether the working hypothesis holds for a number of dif-
ferent matrix sequences, that is if we are able to use MLM to approximate the
expansion functions, which from here out the approximations will be denoted
c
[j]
k . We primarily consider the following four di�erent cases:

1. The Laplacian matrix which was de�ned in Example 1.1.1 and then it was
further shown in Example 1.2.1 that the eigenvalues of this matrix were able
to be well approximated using MLM. This matrix has known eigenvectors,
being exactly given by DST [9] sampled using the standard grid, and so we
would expect it to behave similarly as in the eigenvalue case and have ck = 0
for k > 0.

2. The bi-Laplacianmatrix already discussed in Examples 1.1.2 and 1.2.2 where
we had that ck 6= 0 for k > 0 for the eigenvalues.

3. A not purely Toeplitz, but Toeplitz-like matrix sequence which arise from
using Isogeometric analysis (IGA).

4. A not banded but full Toeplitzmatrix sequencewhich is related to fractional
derivatives.

We �rst outline the algorithm that will be use to approximate the expansion func-
tions for the eigenvectors.

2.1 Algorithm

In order to approximate the jth eigenvector of a symmetric Toeplitz(-like) matrix
Anf , the following main steps must be performed:

1. Generate Eigenvectors: Using an odd n0, the di�erent sizedmatricesAnk of
sizes nk = 2k(n0 + 1) − 1 for k = 0, . . . , α are �rst constructed. For each of
thesematrices, the jth eigenvector is computed using a standard numerical
eigenvector solver (Here the jth eigenvector is the eigenvector associated
with the jth eigenvalue of the sorted eigenvalues in non-decreasing order)
and so we denote these vectors as vj(Ank).

2. Scale Eigenvectors:For the jth eigenvector of the smallest matrix, of size
n0, we �nd the index of its �rst extremum a�er or at the middle element,
and denote this index as î. For each k, we then divide eigenvector vj(Ank)
by its value at index 2kî. There is a small di�erence depending whether we
are approximating an even indexed or odd indexed eigenvector:
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Figure 2.1: Eigenvector 5 of the Laplacian matrix showing the point î.

• The odd index jth eigenvectors, which are symmetric, always attain an
extremum at their central element, thus they are scaled by dividing by
their central element, that is by element v(nk+1)/2,j(Ank) (where nk is
always odd for an odd n0). See Figure 2.1.

• Scaling by the middle element is not possible for the even index jth
eigenvectors, which are skew-symmetric, as they are (approximately)
zero at their central element (odd n0) thus the even eigenvectors are
scaled by using the above detailed method, where we use the index, î,
of the extremum a�er the central element. See Figure 2.2.
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Figure 2.2: Eigenvector 4 of the Laplacian matrix showing the point î.

• The eigenvectors are further scaled by a±1 so as to have the same form
as the DST [9], sin(jθj,n). See Figure 2.3.

The scaling of the eigenvectors, shown in Figure 1.7, allows us to use the
structure of the Topelitz(-like) matrices of di�erent sizes, which we cannot
do with the ‘plain’ eigenvectors from the standard numerical solvers as they
return the eigenvectors with unit 2-norm.

3. GenerateE[j] matrix: We are then able to analogously construct the matrix
E[j] ∈ Cα+1×n0 but now we have:

E[j] =


v1,j(An0) v2,j(An0) v3,j(An0) . . . vn0,j(An0)
v2,j(An1) v4,j(An1) v6,j(An1) . . . v2n0,j(An1)

...
...

... . . .
v2α,j(Anα) v2·2α,j(Anα) v3·2α,j(Anα) . . . vn0·2α,j(Anα)

 . (2.1)
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Figure 2.3: Eigenvector 3 of the Laplacian matrix a�er scaling by the central ele-
ment and compared with sin(3θ)

4. Solve Linear System: Using the same Vandermonde matrix as in 1.5, we
solve the linear system E[j] = V C [j] to �nd our approximation C̃ [j] in (1.6)
but now it will be for eigenvector vj(Anf ).

The algorithm up to this point is summarised in the following JULIA function:

� �
function compute_c_vecs(n0 :: Integer, eigVecFunc, alpha :: Integer,

p :: Integer, name :: String, T :: DataType)
j0 = 1:n0
E = zeros(T,alpha+1,n0)
hs = zeros(T,alpha+1)
maxIDX = 0
for kk = 0:alpha

nk = (2ˆkk)*(n0+1)-1
jk = (2ˆkk)*j0
hs[kk+1] = convert(T,1)/(nk+1)
# 1. Generate Eigenvectors
EV = eigVecFunc(nk, p, T) #Returns the pth eigenvector of size nk
# 2. Scale Eigenvectors
if mod(p,2) == 1 #Odd index eigenvector

EV = EV ./ EV[ceil(Int64, end/2)]
EV = iseven((p - 1) / 2) ? EV : -1*EV #To get same form as DST

elseif mod(p,2) == 0 && p <= n0 #Even index eigenvector
i = ceil(Int64, nk / 2)
EV = EV[i + 1] > 0 ? EV : -1*EV
if kk == 0

while(EV[i] < EV[i+1]) #Loop to find index of first local max
i += 1

end
maxIDX = i

end
EV = EV ./ EV[convert(Int64, 2ˆ(kk)*maxIDX)]
EV = iseven(p/2) ? EV : -1*EV #To get same form as DST

end
# 3. Generate E^j matrix
eTnk = EV
E[kk+1,:] = eTnk[jk] #Constructing E matrix

end
# 4. Solve Linear System
V = zeros(T,alpha+1,alpha+1)

for ii = 1:alpha+1, jj = 1:alpha+1
V[ii,jj] = hs[ii]ˆ(jj-1)

end

return V\E
end� �
5. Interpolation-Extrapolation: Perform an interpolation-extrapolation pro-
cedure to compute the eigenvector of size nf .
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2.2 LaplacianMatrix

The �rst case we consider is for a matrix that we have already described in Exam-
ple 1.2.1, where it was shown that MLM is able to approximate well the eigenvalues
for these matrices. We investigate here how well we can approximate the eigen-
vectors which should be exactly given by DST, sin(jθi,n)where j is the eigenvector
number and hence c[j]k = 0 for k > 0. This is because these trigonometric func-
tions are eigenfunctions for the associated di�erential equation of the Laplacian
matrix. In Figure 2.4 we plot the �rst four scaled eigenvectors of the Laplacian
matrix of size n = 101.

0 π/4 π/2 3π/4 π

−1.0

−0.5

0.0

0.5

1.0

θ

v1(An)

sin(1θ)

(a) v1(An)

0 π/4 π/2 3π/4 π

−1.0

−0.5

0.0

0.5

1.0

θ

v2(An)

sin(2θ)

(b) v2(An)

0 π/4 π/2 3π/4 π

−1.0

−0.5

0.0

0.5

1.0

θ

v3(An)

sin(3θ)

(c) v3(An)

0 π/4 π/2 3π/4 π

−1.0

−0.5

0.0

0.5

1.0

θ

v4(An)

sin(4θ)

(d) v4(An)

Figure 2.4: First four scaled eigenvectors of the Laplacianmatrix computed using
(n0, Data type) = (101, Double64) and compared with sin(jθ).

The ordering of the eigenvectors is derived from the ordering of their associ-
ated eigenvalues (which are themselves ordered according to the associated sym-
bol of the matrix, which is monotone, and thus in this case are ordered from
smallest to largest), thus the �rst eigenvector is the one associated to the smallest
eigenvalue.

Observation 2.2.1. As expected, we do see in Figure 2.4 that the eigenvectors are
exactly given by DST. We further explore how di�erent the other tested matrices
are from sin(jθi,n) in their respective sections. It has been shown in [7] that for
certain classes of Toeplitz matrices, speci�cally those with a symbol satisfying
the ‘smooth simple-loop’ condition, the eigenvectors can be approximated by a
speci�c DST with some corrective vectors towards the end points of the DST.
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Using the Laplacian eigenvectors, wemay now use the algorithm as described
in Section 2.1 to compute the expansion functions for the di�erent eigenvectors.
In Figure 2.5, we show the computed expansion functions c[j]k , j = 1, . . . , 4, k =
0, . . . , 3 for a number of di�erent values of α.

We observe that, similarly to when MLM was used to approximate the eigen-
values of the Laplacian matrix in Example 1.2.1, all the expansion functions are
0 except c[j]0 . We show in Figure 2.5 only the �rst four eigenvectors but indeed all
the eigenvectors, up till j = 101 in this case, have the same behaviour where the
only non-zero expansion function is that of c[j]0 .

2.3 Bi-LaplacianMatrix

Consider the bi-Laplacianmatrices described in Example 1.1.2 which are discreti-
sation matrices using second order central �nite di�erence approximations of
size n. From Example 1.2.2 we observe that the eigenvalues of the bi-Laplacian
matrix can be approximated by MLM and in that case it is not as trivial as with
the Laplacian matrix, since we do not have an exact grid to sample the symbol.

Note. The square of the Laplacian matrix Ln = Tn(2 − 2 cos(θ)), that is (Ln)2,
shares the same symbol as the bi-LaplacianmatrixBn = Tn((2−2 cos(θ))2). How-
ever, (Ln)2 = Bn +Rn whereRn is a low-rank matrix with two non-zero elements,
−1, in the top le� and bottom right of the matrix. For the matrix (Ln)2 we have
the full eigendecomposition, where the eigenvalues are given by the sampling of
the symbol f(θ) = (2− 2 cos(θ))2 with θj,n = jπ

n+1
and the eigenvector matrix is the

DST [9].

In Figure 2.6, we show the �rst four eigenvectors of the bi-Laplacian as well as
sin(jθ) as was done for the Laplacianmatrix. Whereas before, the jth eigenvector
of the Laplacian matrix was an exact sampling of sin(jθ), we see here there is
some similarity but the curves no longer are exactly the same, and there is now
quite a visible di�erence.

Observation 2.3.1. Note speci�cally how the �nal extrema (those extrema that
are closest to the end-points) are always exceeding ±1, with the employed scal-
ing, but all other local extrema are ±1 (as sin(jθ) is). Also note the ‘compression’
of the vectors, which condense towards the centre. This is further highlighted in
Figure 2.7 which shows the comparison for eigenvector j = 11.

In addition, we should note that the extrema in the �rst and second eigenvec-
tor will always be ±1 using the scaling method we have described. If we follow
though the same pattern as observed for the other eigenvectors, then the extrema
would not ‘truely’ be±1 but exceed this, thus these eigenvectors are not perfectly
scaled to some theoretical ‘eigenvector symbol’.

In Figure 2.8 we see the computed c[j]k for the �rst four eigenvectors, with a
matrix size ofn0 = 201 and for a number of di�erent values ofα, which is explained
inObservation 2.3.2. We see that the expansion functions are able to be computed
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Figure 2.6: First four scaled eigenvectors of the bi-Laplacian matrix computed
using (n0, Data type) = (101, Double64) and compared with sin(jθ).

by themethod, and for the bi-Laplacianmatrixwenote that none of the expansion
functions are zero as we observed for the special case with the Laplacian matrix.

There are two important aspects to note about the above result:

• The computation of the c[j]k ’s are numerically sensitive. It was observed that
the standard Float64 data type (Double precision with machine epsilon,
ε = O(10−16)), as used by default in many programming languages such
as MATLAB, did not yield the same curves for di�erent alpha with c[j]1 and
c
[j]
2 for the tested eigenvectors. Using a high precision data type (Double64
with machine epsilon, ε = O(10−32) from Julia [26] was used in this case)
ensured the expansion functionswere then all correctly approximated. This
sensitivity is highlighted in Figure 2.9.

• The expansion functions, for k > 0, increase in magnitude with the eigen-
value number. That is, consider c[1]3 and c[4]3 and note how much larger in
magnitude c[4]3 is over c[1]3 . This indicates that there will be issues when us-
ing the computed expansion functions to approximate more than just the
�rst few eigenvectors. This point will be readdressed in Section 3.1.

• Consider Figure 2.8, and note that for each �gure the lowest α value has
a slightly di�erent shape to the larger alpha values, that is, that the c[j]k for
which α > k appear to perform better. So if we would like to calculate up
to a speci�c kmax, kmax is usually taken to be 3 in this paper, then we should
use an α which is larger than kmax, we here will typically use α = 4.
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Figure 2.7: Comparison of bi-Laplacian eigenvector j = 11 with sine highlighting
the di�erences (n0, Data type) = (501, Double64).
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(d) c[1]0 - Double64
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Figure 2.9: Comparison of approximated expansion functions with di�erent data
types for the �rst eigenvector of the bi-Laplacian matrix (n0) = (201).

Observation 2.3.2. The reason that Figure 2.8 has curves for di�erent values of
α is that if the method is successfully working, then we would observe approx-
imately the same curves for di�erent values of α and for di�erent starting sizes
n0. This gives us a condition to check whether the method is able to correctly
compute the expansion functions.

We here also look at using the full method to extrapolate the computed expan-
sion functions to approximate an eigenvector of larger size. Figure 2.10 shows the
log10 of the error when extrapolating from a size of n0 = 201 to a size nf = 10000
for α = 4.
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Figure 2.10: log10 error log10

∣∣vj(Anf )− ṽj(Anf )
∣∣ of the interpolated-extrapolated

�rst eigenvector for nf = 10000 and (n0, α, Data type) = (201, 4, Double64).

2.4 Isogeometric Analysis (IGA) Matrix

In this section we investigate whether we can apply MLM to the IGA matrices,
speci�cally theLnmatrix de�ned in [15, p. 1652]. Thismatrix is not purely Toeplitz
as we have so far dealt with, but is Toeplitz-like as the enforced boundary condi-
tions in the di�erential equation cause the ‘corners’ of thematrix to be perturbed.
The IGA Ln matrix has symbol, describing the eigenvalues,

{
1

n2
Ln
}
∼GLT f

f =
42(40− 15 cos(θ)− 24 cos(2θ)− cos(3θ))

1208 + 1191 cos(θ) + 120 cos(2θ) + cos(3θ)

where f is a monotonically increasing function. Ln is here created by using the
massMn and sti�nessKn matrices, such that Ln = (Mn)−1Kn, where:

nMn =
1

10080



2232 1575 348 3
1575 3294 2264 239 2
348 2264 4832 2382 240 2
3 239 2382 4832 2382 240 2

2 240 2382 4832 2382 240 2
. . . . . . . . . . . . . . . . . . . . .

2 240 2382 4832 2382 240 2
2 240 2382 4832 2382 239 3

2 240 2382 4832 2264 348
2 239 2264 3294 1575

3 348 1575 2232
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and

1

n
Kn =

1

240



360 9 −60 −3
9 162 −8 −47 −2
−60 −8 160 −30 −48 −2
−3 −47 −30 160 −30 −48 −2

−2 −48 −30 160 −30 −48 −2
. . . . . . . . . . . . . . . . . . . . .

−2 −48 −30 160 −30 −48 −2 0
−2 −48 −30 160 −30 −47 −3

−2 −48 −30 160 −8 −60
−2 −47 −8 162 9

−3 −60 9 360


Figure 2.11 shows the �rst four scaled eigenvectors of the IGA Ln matrix.

0 π/4 π/2 3π/4 π

−1.0

−0.5

0.0

0.5

1.0

θ

v1(An)

sin(1θ)

(a) v1(An)

0 π/4 π/2 3π/4 π

−1.0

−0.5

0.0

0.5

1.0

θ

v2(An)

sin(2θ)

(b) v2(An)

0 π/4 π/2 3π/4 π

−1.0

−0.5

0.0

0.5

1.0

θ

v3(An)

sin(3θ)

(c) v3(An)

0 π/4 π/2 3π/4 π

−1.0

−0.5

0.0

0.5

1.0

θ

v4(An)

sin(4θ)

(d) v4(An)

Figure 2.11: First four eigenvectors of IGA Ln matrix computed using (n0, Data
type) = (101, Double64) and compared with sin(jθ).

We observe that the eigenvectors are extremely close to the DST with a very
small amount of ‘dri�’ outwards. We do not observe the behaviour of the �nal
extrema as we did with the bi-Laplacian in Figure 2.6, with all the extrema in this
case being the same magnitude. However, we do note that there is a small ‘cusp’
near both ends for all eigenvectors, see Figure 2.12, which we anticipatemay pose
a problem in the approximated expansion functions.
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Figure 2.12: Zoomed plot of v1(An) using (n0, Data type) = (21, Double64) and
compared with sin(θ).

We observe from Figure 2.13 that we do get consistent c[j]k in the interior of
the eigenvectors (the same curves for di�erent α) however there are large asymp-
totes near the end points for c[j]k , k > 0. This behaviour is most likely due to the
presence of ‘cusps’ near the ends of the eigenvectors as previously described, and
shown in Figure 2.12. This problem towards the end points is consistent with the
�nding in [24] where it was found that using MLM for the eigenvalues also had
di�culty near the end points.

2.5 Fractional Derivative RelatedMatrix

For the �nal test case, we consider a ‘full’ symmetric Toeplitz matrix, that is, a
symmetric Toeplitz matrix with only non-zero coe�cients. This means that for
any �nite n the full set of Fourier coe�cients is not known. To that end, consider
a �rst order discretisation of the fractional derivative [12]. Speci�cally for the 1.5
derivative, the symbol of the matrix will then be:

f(θ) = e−iθ
(
1− eiθ

)1.5
.

Using the Grünwald formula [29], we obtain, e.g.,
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As can be seen above, the corresponding matrix sequences Tn(f) are not sym-
metric (Hermitian) which we require in this report, thus here we consider the
symmetric part of these matrices, de�ned as:

An =
Tn(f) + Tn(f)T

2
.
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Then we obtain:
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Figure 2.14 shows the �rst four scaled eigenvectors of the matrix An as described
above.
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Figure 2.14: First four scaled eigenvectors of the symmetrised Fractional Deriva-
tive matrix computed using (n0, Data type) = (101, Double64) and compared with
sin(jθ).

Observation 2.5.1. We can observe that the behaviour of the eigenvectors is al-
most the opposite of what we observe for the bi-Laplacian. Here we have that the
�nal extrema are less that ±1 (rather than larger) and there is a general outward
expansion (rather than inward compression).

In Figure 2.15, we plot the computed expansion functions for the �rst four
eigenvectors.

Observation2.5.2. Weobserve fromFigure 2.15, that in this casewe do not obtain
consistent curves for di�erent α, which means we cannot in this case use our
derived MLM to approximate the eigenvectors. We can note however that for the
di�erent α curves, they do have the same shape and rather there appears to be
a scaling issue which indicates that it might be possible to create another MLM
which allows for di�erent scaling of the expansion functions depending on α, or
a possible modi�cation of the working hypothesis may be required.
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We have now tested our MLM for eigenvectors on four di�erent test cases. In
the next section we look into some considerations one must make when using
this method.
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III

Considerations and Extensions

We observed in the results that the method as described in Section 1.3 does work
for a number of di�erent matrices, however also observed an example where it
was unable to accurately approximate the expansion functions, however it may
be possible that the expansion could be altered to include scaling terms which
would resolve the issue, or modify the working hypothesis.

In this sectionwe detail some considerations onemust take into accountwhen
using this eigenvector MLM method as well as some possible extensions of the
method.

3.1 Number of Eigenvectors to be Approximated

In all the results in the previous section, we have only considered the �rst few
eigenvectors, but generally how does the method perform beyond that? Firstly,
there is the practical limitation that we can only perform the expansion on the
�rst n0 eigenvectors, as we will not be able to generate expansion functions for
the remaining eigenvectors eigenvectors. Secondly, we already made the note in
the bi-Laplacian results that the expansion functions increase in magnitude with
eigenvector number which already indicates that there could be a degredation
in accuracy as the eigenvector number increases. Indeed, consider Figure 3.1
which shows the maximum-norm of the error of the approximated eigenvectors
and we observe that the error does generally grow with the eigenvector number.
The chosen error estimate used is

∥∥Anf ṽj(Anf )− λjṽj(Anf )∥∥∞ where Anf is the
bi-Laplacian matrix of size nf , λj is the jth eigenvalue and ṽj(Anf ) is the approx-
imation of the jth eigenvector.
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Figure 3.1: Errors log10

∥∥Anf ṽj(Anf )− λj,nf ṽj(Anf )∥∥∞ of the bi-Laplacian matrix
for nf = 10000 and (n0, α, Data type) = (201, 4, Double64).
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Choosing a largern0will of course decrease the error as canbe seen inFigure 3.2
where we show the error in the approximation for a number of di�erent starting
n0.
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Figure 3.2: Errors log10

∥∥Anf ṽj(Anf )− λj,nf ṽj(Anf )∥∥∞ of the bi-Laplacian matrix
for nf = 10000, n0 = {201, 403, 807} and (α, Data type) = (3, Double64).

3.2 Non-monotone Symbols

So far, in this report, we have considered symmetric Toeplitzmatriceswithmono-
tone symbols, and thuswemay ask ourselves how themethod performs generally
on symmetric Toeplitz matrices with non-monotone symbols. In this case, con-
sider the following symbol which is related to the bi-Laplacian:

f(θ) = γe−2iθ − 4e−iθ + 6− 4eiθ + γe2iθ.

This symbol is monotone for γ ∈ [−1, 1] and non-monotone outside this interval.
A value of γ = 1 would exactly give us the symbol of the bi-Laplacian matrices.
The standard functionswhich numerically generate the eigenvalues (and vectors)
will sort them into non-decreasing order of the eigenvalues, meaning that for a
matrix corresponding to a non-monotone symbol, the eigenvector corresponding
to the �rst eigenvalue in the symbol will not be the �rst one in thematrix of eigen-
vectors.

Consider the case for γ = 2, where Figure 3.3 plots the symbol as well as the
sorted eigenvalues which are computed by a standard eigenvalue solver. We ob-
serve that below the green line, the symbol is non-monotone, and that the eigen-
values do not follow the same shape as the symbol in this part since they are
sorted.

30



0 π/4 π/2 3π/4 π

0

5

10

15

θ

Symbol
Sorted Eigenvalues

Figure 3.3: Symbol and sorted eigenvalues (n0, Data type) = (101, Double64).

Thus, we would then expect that the �rst column of the matrix containing the
eigenvectors returned by standard solvers, may not be the true ‘�rst’ eigenvector
according to the symbol. In Figure 3.4 we have plotted the �rst four eigenvectors
which are computed by a standard solver (eigvecs in Julia).
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Figure 3.4: First four eigenvectors of the non-monotone bi-Laplacian matrix as
computed by a standard solver (n0, Data type) = (101, Double64).

Indeed we observe in Figure 3.4 that the obtained eigenvectors from the stan-
dard solver are not of the formwewould generally expect, and have so far seen in

31



the report. By applying a ‘reordering’ of the eigenvectors, wherewe now sort them
according to thenumber of times they change sign, we thenobtain Figure 3.5, that
shows the �rst four resorted eigenvectors which correspond to eigenvectors 50,
49, 48 and 47 respectively.
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Figure 3.5: First four eigenvectors of the non-monotone bi-Laplacian matrix a�er
reordering (n0, Data type) = (101, Double64).

The eigenvectors in Figure 3.5 are now more of the shape we would usually
expect, being similar to DST [9]. If the points were to be plotted using a single
line, we would observe an oscillating line, but using points we can observe that
there appears to be three or four (or more) distinct curves in all the eigenvectors
(which have been plotted).

Thus, we have not only the issue of the ordering of the eigenvectorswhen deal-
ing with matrices resulting from non-monotone symbols, we also appear to have
interlaced samplings which means that the current eigenvector MLM we have
proposed in Section 1.3 would be unable to approximate the expansion functions.
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IV

Conclusions

The goal of this report is to investigate whether it is possible to use the matrix-
less method de�ned in Section 1.3 to approximate the eigenvectors of symmetric
Toeplitz and Toeplitz-likematriceswithmonotone symbols. It is speci�cally high-
lighted that caremust be taken to ensure that the eigenvectors are correctly scaled
so that the method can use the structure that is maintained in the eigenvectors
when the matrix changes size.

The �rst case that is treated in Section 2.2 is that of the Laplacianmatrix where
we have the exact eigendecomposition, and this is used to check that MLM be-
haves as expected. We have in this case that the eigenvectors of the Laplacian
matrix are given exactly by the DST of the same size, that is that the j-th eigen-
vector is an equispaced sampling of sin(jθ) where θj,n is an equispaced grid. Ap-
plying MLM to the Laplacian matrix, it was found that the expansion functions
c̃k;j, k > 0 are zero, similar to the behaviour observed when MLM is used on the
eigenvalues.

The second case in Section 2.3 involved investigating the performance on the
bi-Laplacian matrix, which is related to the Laplacian matrix since the square of
the Laplacian is the bi-Laplacianwith a small rankperturbation. The eigenvectors
in this case were not given exactly by the DST but were still extremely similar in
shape, with the di�erences being a contraction of the points towards the centre
and that the �nal extrema were larger than ±1.

The expansion functions for the eigenvalues of the bi-Laplacianwerenot trivial
as they were for the Laplacian matrix, and this same trend continued for the ex-
pansion functions of the eigenvectors. Consistent curves were observed in this
case, meaning that approximately the same expansion function was computed
for di�erent values of α, indicating that the method does work in this case. It was
noted that the expansion functions are numerically sensitive and a high accuracy
data-type needs to be used in order to correctly approximate the expansion func-
tions.

The third case in Section 2.4 uses a Toeplitz-like matrix rather than a purely
Toeplitz matrix as in the previous two cases. The matrix in question is derived
using IGA and it was observed that the eigenvectors in this case were again very
similar to the DST, even more than the bi-Laplacian with only slight di�erences.
Notably though, there was a small cusp near both ends of the eigenvectors, and
it was this cusp which caused some small issues when computing the expansion
functions. The expansion functions are found to have consistent curves for dif-
ferent alpha with the only issue of an asymptote in c[j]k , k > 0 at the point of the
cusp. This indicates that it may be necessary to only use the parts of the higher
expansion functions which are una�ected by the asymptotes, and then only use
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a lower order approximation at the cusps.

The �nal case in Section 2.5 dealswith amatrix related to the fractional deriva-
tive, in that it is the symmetric part of a discretisation of the fractional derivative
and it is a ‘full’ symmetric Toeplitz matrix. The eigenvectors in this case are again
similar to the DST but have the opposite behaviour to the bi-Laplacianwhere here
there is an expansion away from the centre and the �nal extrema are smaller than
±1.

The expansion functions in this case did not get consistent curves for di�erent
αmeaning that the method was not able to correctly approximate the expansion
functions. The shape of the expansion functions was consistent though, however
there appeared to be a di�erent scaling between them. Amodi�cation to theMLM
to allow for a scaling parameter that depends on αmay resolve the issue observed
here, or the working hypothesis may need to be modi�ed.

Some general considerations with the method were then discussed, where
it was highlighted that the error in the method increases with the eigenvector
number. The issues arising when using symmetric Toeplitz matrices with non-
monotone symbols was also brie�y discussed whether the main issues were that
the eigenvectors were no longer correctly ordered according to the symbol, which
is the same issue when performing MLM for the eigenvalues of these matrices,
and also that the eigenvectors appeared to have three di�erent interlaced sam-
plings.

For future research, the following items are suggested:

1. Can the method be applied as is to de�ation methods to approximate the
necessary eigenvectors?

2. Can a method be created where the eigenvalues and eigenvectors are si-
multaneously approximated and improved, using for example [13] which is
implemented in IterativeRefinement.jl [32], where the eigenvectors
which are not in the �rst n0, are approximated using the DST?

3. Can the method be modi�ed to allow a scaling parameter that depends on
α and scales the expansion functions as needs for certain matrices?

4. Howcan the eigenvectors for symmetric Toeplitzmatriceswithnon-monotone
symbols be correctly approximated? Can the di�erent interlaced sampling
be individually expanded or do they have some dependence on each other?

5. Since there is also an issue when approximating the eigenvalues of Toeplitz
and Toeplitz-like matrices with non-monotone symbols due to the incorrect
ordering, can the eigenvectors be used to the assign the correct ordering to
the eigenvalues and then can MLM be used for non-monotone symbols?

6. In this thesis we have created expansions for the columns of the matrix of
eigenvectors for a given matrix sequence. Would it however be possible to
create expansions for the rows as an alternative or complement?
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A

Code

• Construction of Toeplitz matrices

� �
function toeplitz(n :: Integer, vc :: Array{T,1}, vr :: Array{T,1}) where T

s = size(vc[1],2)
Tn = zeros(eltype(T),s*n,s*n)
for ii = 1:length(vc)

Tn = Tn + kron(diagm(-ii+1=>ones(eltype(T),n-ii+1)),vc[ii])
end
for jj = 2:length(vr)

Tn = Tn + kron(diagm( jj-1=>ones(eltype(T),n-jj+1)),vr[jj])
end
return Tn

end� �
• Eigenvectors of Laplacian matrix

� �
function LapEV(n :: Integer, p:: Integer, DT :: DataType)

v = [2, -1]
mat = toeplitz(n, convert.(DT, v), convert.(DT, v))
EV = real(eigvecs(mat))
return EV[:,p]

end� �
• Eigenvectors of bi-Laplacian matrix

� �
function biLapEV(n :: Integer, p:: Integer, DT :: DataType)

v = [6, -4, 1]
mat = toeplitz(n, convert.(DT, v), convert.(DT, v))
EV = real(eigvecs(mat))
return EV[:,p]

end� �
• Eigenvectors of IGA matrix

� �
function IGA_Mass_mat(n ::Integer, DT :: DataType)

v = [4832, 2382, 240, 2]
M = toeplitz(n,convert.(DT,v), convert.(DT,v))

B_term = [2232 1575 348 3;
1575 3294 2264 239;
348 2264 4832 2382;
3 239 2382 4832]
M[1:4, 1:4] = convert.(DT, B_term)
M[end-3:end, end-3:end] = rotl90(convert.(DT, B_term), 2)

return convert(DT, (1/10080)) .* M
end
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function IGA_Stiff_mat(n ::Integer, DT :: DataType)
v = [160, -30, -48, -2]
M = toeplitz(n,convert.(DT,v), convert.(DT,v))

B_term = [360 9 -60 -3;
9 162 -8 -47;
-60 -8 160 -30;
-3 -47 -30 160]
M[1:4, 1:4] = convert.(DT, B_term)
M[end-3:end, end-3:end] = rotl90(convert.(DT, B_term), 2)

return convert(DT, 1/240) .* M
end

function IGAEV(n :: Integer, p:: Integer, DT :: DataType)
M = IGA_Mass_mat(n, DT)
K = IGA_Stiff_mat(n, DT)
L = M \ K
EV = real(eigvecs(L))
return EV[:,p]

end� �
• Eigenvectors of symmetrised fractional derivative matrix

� �
function generateFracDerivTn(n :: Integer, alpha :: AbstractFloat,

DT :: DataType)
g=zeros(n+1)
g[1]=1
for ii=2:n+1

g[ii]=g[ii-1]*(-(alpha-(ii-2))/(ii-1))
end

Tn=-toeplitz(n,convert.(DT, g[2:n+1]),convert.(DT, [g[2],g[1]]))
return Tn

end

function FracDerivEV(n :: Integer, p:: Integer, DT :: DataType)
Tn = generateFracDerivTn(n, 1.5, DT)
mat = (Tn + Tn') ./ 2
EV = real(eigvecs(mat))
return EV[:,p]

end� �
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