
22038

Examensarbete 15 hp
Juni 2022

Exploring and extending eigensolvers
for Toeplitz(-like) matrices

A study of numerical eigenvalue and eigenvector

computations combined with matrix-less methods

Fredrik Cers
Oliver Groth
Martin Knebel

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Exploring and extending eigensolvers for
Toeplitz(-like) matrices

F. Cers, O. Groth, M. Knebel

We implement an eigenvalue solving algorithm proposed by Ng and Trench,
specialized for Toeplitz(-like) matrices, utilizing root finding in
conjunction with an iteratively calculated version of the characteristic
polynomial. The solver also yields corresponding eigenvectors as a free
bi-product. We combine the algorithm with matrix-less methods in order
to yield eigenvector approximations, and examine its behavior both
regarding demands for time and computational power.

The algorithm is fully parallelizable, and although solving of all
eigenvalues to the bi-Laplacian discretization matrix - which we used as
a model matrix - is not superior to standard methods, we see promising
results when using it as an eigenvector solver, using eigenvector
approximations from standard solvers or a matrix-less method. We also
note that an advantage of the algorithm we examine is that it can
calculate singular, specific eigenvalues (and the corresponding
eigenvectors), anywhere in the spectrum, whilst standard solvers often
have to calculate all eigenvalues, which could be a useful feature.

We conclude that - while the algorithm shows promising results - more
experiments are needed, and propose a number of topics which could be
studied further, e.g. different matrices (Toeplitz-like, full), and
looking at even larger matrices.

ISSN: 1401-5757, 22038
Examinator: Martin Sjödin
Ämnesgranskare: Ken Welch
Handledare: Sven-Erik Ekström

Contents
1 Introduction 1

1.1 Objective and purpose of the project . 2
1.2 Outcome of the project . 3

2 Theory 3
2.1 Introduction to the Ng-Trench algorithm . 3
2.2 The Ng-Trench algorithm . 8
2.3 Matrix-less method . 9

3 Method 11
3.1 Implementing the Ng-Trench algorithm . 11

3.1.1 Finding the eigenvalues as roots . 12
3.1.2 Finding the eigenvalues . 14

3.2 Implementing the matrix-less method . 14
3.2.1 Calculation and interpolation of higher order symbols 15

3.3 Combining the Ng-Trench algorithm with the matrix-less method 15
3.3.1 Constructing intervals with the matrix-less method 16
3.3.2 Approximating eigenvalues with the matrix-less method 16

3.4 Evaluating the methods . 16

4 Results and discussion 18
4.1 Future expansions . 23

5 Conclusions 25

6 References 26

7 Populärvetenskaplig sammanfattning 27

1 Introduction
A Toeplitz matrix has constant diagonal entries, and may be of any shape, however, in this report
we always assume that it is square. Toeplitz matrices are named after the mathematician Otto
Toeplitz, a German mathematician who was one of the first persons that started studying this type
of structured matrices. Toeplitz matrices have important applications in discretization of partial
differential equations, system theory, signal processing, and statistics, such as time series analysis,
image processing. A Toeplitz matrix, denoted Tn(f), can be written as

Tn(f) = [f̂i−j]
n
i,j=1 =



f̂0 f̂−1 f̂−2 f̂1−n

f̂1 f̂0 f̂−1 f̂−2
...

f̂2
.

...
...

. f̂−2
...

. . . f̂1 f̂0 f̂−1
f̂n−1 f̂2 f̂1 f̂0


(1)

where n defines the size of the matrix, Tn(f) ∈ Cn×n, and f is the so-called generating symbol, or
simply the symbol. Here, the entries f̂k are the Fourier coefficients of the symbol f(θ),

f̂k =
1

2π

∫ π

−π
f(θ)e−ikθdθ, f(θ) =

∞∑
k=−∞

f̂ke
ikθ, i2 = −1, k ∈ Z.

To give a concrete example of what a Toeplitz matrix may look like, we have the identity matrix,

In =


1

1
. . .

1

 = Tn(1), (2)

In this case, all the diagonal entries are equal to 0, except for the main diagonal, where they are
equal to 1. The identity is an example of a banded matrix, that is, only a finite number of Fourier
coefficients, f̂k, of the symbol are non-zero, in this case f̂0 = 1, since the symbol f(θ) = 1. Another
example of a banded matrix is the Laplacian, given by second order finite difference approximation
of the second derivative,

Tn(f) =


2 −1
−1 2 −1

.
−1 2 −1

−1 2

 , (3)

which is generated by the symbol f(θ) = 2− 2 cos(θ) = −e−iθ + 2− eiθ, and thus, f̂−1 = f̂1 = −1
and f̂0 = 2. The model matrix that will be used in this report is the bi-Laplacian discretization

1

matrix,

T =



6 −4 1
−4 6 −4 1
1 −4 6 −4 1

.
1 −4 6 −4 1

1 −4 6 −4
1 −4 6


, (4)

where the symbol is f(θ) = (2− 2 cos(θ))2 = 6− 8 cos(θ) + 2 cos(2θ). This matrix approximates the
fourth derivative. An example of a Toeplitz-like matrix is that we add boundary conditions to a
matrix, for example instead of Dirichlet-Dirichlet in (3), we have Dirichlet-Neumann in the matrix
below

An =


2 −1
−1 2 −1

.
−1 2 −1

−1 1

 = Tn(f) +Rn. (5)

Notice the 1 in the bottom right corner. This matrix can be written as a sum of a Toeplitz matrix,
Tn(f), and a low-rank correction matrix, Rn, where f(θ) = 2− 2 cos(θ) and Rn is the zero matrix
with a -1 in the bottom right corner.

For every matrix An defined above (including An = Tn(f)), we can define a sequence of matrices
of increasing size {An}n. Most results in this report can be applied to the wider class of so-called
generalized locally Toeplitz (GLT) sequences [3], but all numerical experiments only concerns the
pure Toeplitz case, in particular (4).

The theory of GLT sequences [3], describes the connection by the symbol f(θ) and the eigenvalues
λj(An); informally, we can say that for an Hermitian sequence of matrices {An}n, with an associated
symbol f(θ), we can approximate the eigenvalues of a matrix An for a fixed n as

λj(An) ≈ f(θj,n), j = 1, . . . , n,

where θj,n is an equispaced grid on [0, π], e.g., θj,n = jπ/(n+ 1).

1.1 Objective and purpose of the project
The aim of this project is first and foremost to implement the so called Ng-Trench algorithm for
eigenvalue and eigenvector calculation described in [4]. Thereafter, we wish to combine it with other
methods of approximation, parallelize it, and compare it with existing eigenvalue solvers. We wish
to look at both eigenvalues and eigenvectors (which both are given by the Ng-Trench algorithm).
The goal is to, for large Toeplitz matrices (size at least n = 103), gain some edge over the standard
solvers. Eigenvalue solvers that are found in LAPACK and MKL have been optimized for around
half a century, making beating them far from trivial. Our hope is that we, by using the special
properties of Toeplitz matrices, can construct an eigenvalue and eigenvector solver “better” than
these. It would of course be optimal to both be accurate and fast, however, it is possible that we
have to sacrifice accuracy for time efficency. Being able to efficiently approximate eigenvectors and
eigenvalues is of course also important.

2

http://www.netlib.org/lapack/
https://www.intel.com/content/www/us/en/develop/documentation/mkl-tutorial-c/top.html

1.2 Outcome of the project
Although we had a clear objective and problem formulation, the focus of the project shifted as it
progressed. After successful implementation, analysis of results from numerical experiments, com-
bined with other methods, the project took a path where eigenvector calculation and approximation
became the focus. We found success both time and precision wise when combining our algorithm
with standard eigenvalue solvers to find exact eigenvectors, as well as when combining the Ng-Trench
algorithm with an eigenvalue approximation method in order to quickly approximate eigenvectors.

2 Theory
The term matrix was introduced by the mathematician James Sylvester in the mid 1800s and his
colleague Arthur Cayley started applying matrices to the study of systems of linear equations [5].
Today, matrices have many applications and there exists many different classes of matrices. A way
to write systems of linear equations on matrix form is

Ax = b, (6)

where A is called the coefficient matrix and b is called the constant matrix. (6) can also be used to
solve linear partial differential equations. For (6) to be valid, A must have the same number of rows
as the solution vector x have columns. This means that A ∈ Cm×n, x ∈ Cn×1 and b ∈ Cm×1. The
matrix A can also be called a linear transformation on the vector x. If x is a nonzero vector, there
exists some scalar λ [8] for which, this equation is true:

Ax = λx, (7)

where λ is the eigenvalue of A with corresponding eigenvector x. This can be rewritten as:

(A− λI)x = 0. (8)

This method for calculating eigenvalues and eigenvectors is easy to use when solving very small
matrices by hand. When the matrices become larger, the method is not as effective and becomes
expensive if a computer were to solve it. This would be a waste for Toeplitz-like matrices because
due to their characteristic structure, there exists more efficient methods to compute eigenvalues and
eigenvectors for Toeplitz-like matrices.

2.1 Introduction to the Ng-Trench algorithm
In the introduction, we mention that the goal of the project is to implement the Ng-Trench algorithm
[4]. This algorithm gives a numerical solution of the eigenvalue problem for Toeplitz-like matrices,
and also the corresponding eigenvectors. In this section, we describe and and explain the different
parts of the Ng-Trench algorithm.

Here, a Toeplitz-like matrix is denoted as An where index n refers to the size of the matrix,
which is n× n. The matrix An is assumed to be Hermitian, which means that An is the same as
the transpose of the complex conjugate of An,

An = ATn .

3

Furthermore, in this report An is always real-valued. In order to use Toeplitz-like matrices in the
Ng-Trench algorithm, the matrix An must satisfy the following equation,

AnZn − ZnAn = GnH
T
n (9)

where Zn is a shift matrix,

Zn =


0 0 ... 0 0
1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
...

0 0 ... 1 0

 (10)

and Gn and Hn have the size n× α, where α is assumed to be α� n and the displacement rank of
An, which can be calculated using singular value decomposition. Matrix An can be decomposed into
the weighted sum of separable matrices, which means that An can be written as the outer product of
two vectors An = u⊗ v. An can than be decomposed into a sum of columns

∑
iA

(i)
n =

∑
i σiUi⊗Vi,

where σi are the ordered singular values, and α is the number of non-zero σ [9]. In the case that An
is a pure Toeplitz matrix we have α = 2 [4] and

GTn =

[
1 0 · · · 0 0

0 f̂n−1 · · · f̂2 f̂1

]
,

HT
n =

[
f̂1 f̂2 · · · f̂n−1 0
0 0 · · · 0 −1

]
.

Computing the eigenvalues for an n × n Hermitian, non-sparse matrix usually requires O(n3)
floating-point operations per seconds, or flops, while the following algorithm theoretically only would
require O(n2) flops per eigenvalue [6]. Since the matrix An is an n× n-matrix, there are n different
eigenvalues λ1 ≤ λ2 ≤ ... ≤ λn. To be able to write the Ng-Trench algorithm in a concise fashion,
the different variables are explained and shown under this statement. Am is now denoted as

Am = [ai,j]
m
i,j=1, 1 ≤ m ≤ n.

With 1 ≤ m ≤ n, the matrix can be scaled down into smaller fragments, for example when m = 1,
Am only consists of one value, A1 = a1,1. This will prove to be useful in later calculations since
there will be iterations over the whole interval 1 to n.

The most common way to calculate eigenvalues algebraically for small matrices is with the
following equation: det(Am − λIm) = 0, if this equation is satisfied the eigenvalues are found.
Instead of solving this equation for every iteration, this equation is denoted as pm(λ) since it’s a
very expensive way to calculate eigenvalues for bigger matrices,

pm(λ) = det(Am − λIm), 1 ≤ m ≤ n

where p0(λ) = 1. This notation is important for the next step, since the p from the former iteration
is used in the following equation,

qm(λ) =
pm(λ)

pm−1(λ)
, 1 ≤ m ≤ n. (11)

4

Since p0(λ) = 1, this can be done for every iteration, which is helpful for the cost of the Ng-Trench
algorithm because calculations from previous iterations are used, instead of making new calculations.
The next step is to define the column just outside matrix Am,

vm =


a1,m+1

a2,m+1

...
am,m+1

 , 1 ≤ m ≤ n− 1

vm is the solution of the following equation, where wm(λ) is the solution,

(Am − λIm)wm(λ) = vm, 1 ≤ m ≤ n, (12)

where

wm(λ) =


w1m(λ)
w2m(λ)

...
wmm(λ)

 , 1 ≤ m ≤ n− 1.

Here, wm(λ) is replaced with another column vector. This column vector is w from the previous
iteration. The column vector is defined as ym,

ym(λ) =


w1m−1(λ)
w2m−1(λ)

...
wm−1m−1(λ)

−1

 , 2 ≤ m ≤ n− 1. (13)

Since wm−1 is one row shorter than wm, the last row is valued as -1, which is important for the
last calculation. Without -1, this method would not work. Here, vm is also replaced with qm and
em =

[
0 0 ... 0 1

]T which gives the equation:

(Am − λIm)ym(λ) = qm(λ)em, 2 ≤ m ≤ n.

When writing this equation on paper, this becomes a system of equations. If wm is used instead of
ym, this system of equations is not possible to solve, since there would be m+ 1 (the whole column
vector wm plus λ) variables and m equations, but because ym is used now, there are m variables
since the last row in the eigenvector ym is a constant. The following equation is a way to rewrite qm
with some of the matrices that’s been introduced above

qm(λ) = amm − λ− v∗m−1wm−1(λ), 1 ≤ m ≤ n. (14)

Even if this only is the introduction to the Ng-Trench algorithm it is very difficult for the reader to
understand and grasp what’s happening. As a way for the reader to get a deeper understanding of

5

what is happening, the different formulas above is used for an n× n test matrix An,

An =



6 −4 1
−4 6 −4 1
1 −4 6 −4 1

.
1 −4 6 −4 1

1 −4 6 −4
1 −4 6


(15)

To make it as easy to follow as possible, m = 4, which creates the the 4× 4 matrix Am,

A4 =


6 −4 1 0
−4 6 −4 1
1 −4 6 −4
0 1 −4 6

 .
A4 is used to create p4(λ),

p4(λ) = det(A4 − λI4) = λ4 − 24λ3 + 166λ2 − 328λ+ 105.

Together with p3 = −λ3 + 18λ2 − 75λ+ 50 is p4(λ) used to create q4(λ),

q4(λ) =
p4(λ)

p3(λ)
=
λ4 − 24λ3 + 166λ2 − 328λ+ 105

−λ3 + 18λ2 − 75λ+ 50
.

Then the column outside the matrix is defined as

v4 =


0
0
1
−4

 ,
and the solution vector w4(λ) is defined as

w4(λ) =


w14(λ)
w24(λ)
w34(λ)
w44(λ)

 .
As seen in (12), this yields the equation

6− λ −4 1 0
−4 6− λ −4 1
1 −4 6− λ −4
0 1 −4 6− λ



w14(λ)
w24(λ)
w34(λ)
w44(λ)

 =


0
0
1
−4

 .
Eigenvector w4(λ) is then replaced by y4(λ) =

[
w3(λ)
−1

]
and v4 is replaced by −q4(λ)eT4 , which

provides the equation
6− λ −4 1 0
−4 6− λ −4 1
1 −4 6− λ −4
0 1 −4 6− λ



w13(λ)
w23(λ)
w33(λ)
−1

 =


0
0
0

λ4−24λ3+166λ2−328λ+105
−λ3+18λ2−75λ+50

 .

6

This equation finds the eigenvector w3(λ) from the previous iteration. The last equation is (14),
which in this case is

q4(λ) = 6− λ−
[
0 1 −4

] 6− λ −4 1
−4 6− λ −4
1 −4 6− λ

−1  0
1
−4


= 6− λ− −17λ2 + 172λ− 195

(λ− 5)(λ2 − 13λ+ 10)
= 6− λ− −17λ

2 + 172λ− 195

λ3 − 18λ2 + 75λ− 50

=
λ4 − 24λ3 + 166λ2 − 328λ+ 105

−λ3 + 18λ2 − 75λ+ 50
=
p4(λ)

p3(λ)
= 0.

This method by Ng-Trench is not practical for general Hermitian matrices, because the cost for
calculating (12) is O(n3) for each eigenvalue λ. It can be combined with some other methods in
order to compute individual eigenvalues and eigenvectors of Toeplitz-like matrices. As mentioned in
the introduction of the Ng-Trench algorithm, Gn and Hn have dimensions n× α, where α is much
smaller than n. For the Ng-Trench algorithm, these matrices are scaled down by dropping the last
rows to change the dimensions to m× α. This is done with the following equations

Gm = UmnGn, Hm = UmnHn,

where Umn is the identity matrix, but with dimension m× n, since the last rows are dropped. The
matrix Umn is used on the left hand side of (9) in order to transform the left hand side into the
correct dimensions, which is done with the following equation

UmnAnZnU
T
mn = AmZm + vme

T
m, UmnZnAnU

T
mn = ZmAm.

These equations lead to the final form of the equation

AmZm − ZmAm = GmH
T
m − vmeTm, 1 ≤ m ≤ n− 1. (16)

The columns of Gm are denoted as

g
(m)
j =


g1j
g2j
...

gmj

 ,
which means that Gm can be rewritted as

Gm =
[
g
(1)
1 g

(m)
2 ... g

(m)
α

]
. (17)

All these equations and notations lay the foundation to the Ng-Trench algorithm that follows. The
Ng-Trench algorithm prodives a way to calculate (12) with the cost O(αn2) for every eigenvalue
and eigenvector instead of the cost O(n3).

7

2.2 The Ng-Trench algorithm
Here, specific start values are required for q, w and fj which are computed by the following equations

q1 = a11 − λ, w1(λ) =
a12
q1(λ)

, f
(1)
j (λ) =

g1j
q1(λ)

, 1 ≤ j ≤ α.

For 2 ≤ m ≤ n the equation for computing qm(λ) is the same as (14) that was used in the introduction
of the Ng-Trench algorithm. Computing the j:th column for f (m)(λ) is done with equation

f
(m)
j (λ) =

[
f
(m−1)
j−1 (λ)

0

]
−

(gmj − v∗m−1f
(m−1)
j−1 (λ))

qm(λ)
ym(λ), 1 ≤ j ≤ α, (18)

where ym is calculated in (13) and
(gmj−v∗m−1f

(m−1)
j−1 (λ))

qm(λ) is a scalar. In order to calculate the eigenvector
wm(λ) in a way that isn’t as costly as in (12), (16) is rewritten by adding and subtracting λZm on
the left hand side and both sides are muliplied by ym(λ), which gives

(Am − λIm)Zmym − Zm(Am − λIm)ym = GmH
T
mym − vmeTmym, 2 ≤ m ≤ n. (19)

As seen in (13), the last row of the eigenvector is −1, which means that eTmym(λ) = −1. Since Zm
is a shift matrix, seen in (10), Zm(Am − λIm)ym(λ) = Zmqm(λ)em = 0. This also yields that

Zmym(λ) =

[
0

wm−1(λ)

]
.

These results gives the resulting version of (19) which is

(Am − λIm)

[
0

wm−1(λ)

]
= GmH

T
mym(λ) + vm, 2 ≤ m ≤ n.

The final step to find an equation for wm(λ) is to multiply both sides with (Am − λIm)−1 since it
was established in (12) that (Am − λIm)−1vm = wm(λ). At last an equation for wm(λ) is provided

wm(λ) =

[
0

wm−1(λ)

]
− (Am − λIm)−1GmH

T
mym(λ).

Here, Fm(λ) = (Am − λIm)−1Gm and Fm(λ) is written as columns

Fm(λ) =
[
f
(m)
1 (λ) f

(m)
2 (λ) ... f

(m)
α (λ)

]
This means that (17) can be rewritten for the different columns as

(Am − λIm)f
(m)
j (λ) = g

(m)
j , 1 ≤ j ≤ α

The final version of the equation for the solution vector wm is as follows

wm(λ) =

[
0

wm−1(λ)

]
−
[
f
(m)
1 (λ) f

(m)
2 (λ) ... f

(m)
α (λ)

]
HT
mym(λ).

8

With this algorithm, it is possible to find specific eigenvalues. In order to find eigenvalue λi, an
interval (α, β) is given where λi is the only eigenvalue in the interval. This can be shown by
introducing Negn(λi), which is the number of eigenvalues before λi and the number of negative
values in the q-vector, since q is negative if a value that’s bigger than it’s corresponding eigenvalue
is given and positive if the given value is smaller than it’s corresponding eigenvalue. This means
that qi(α) > 0 and qi(β) < 0. This also means that the counter Negn will be different for α and β.
Negn(α) = i− 1 and Negn(β) = i.

2.3 Matrix-less method
The introduction mentioned symbols briefly. Symbols are very important when using matrix-less
methods to calculate eigenvalues. A matrix-less method is not the same the Ng-Trench algorithm
seen before but it is also a viable option for approximating eigenvalues for Toeplitz-like matrices
and then compute eigenvectors by inserting them in Ng-Trench. As mentioned previously in the
introduction of the Ng-Trench algorithm, it is assumed that the Toeplitz-like matrix is Hermitian.
Assumed a real matrix, it is here symmetric and banded with bandwidth p. This means that if the
function f originally is written as

f(θ) =

p∑
k=−p

f̂ke
ikθ, (20)

it can instead be written as

f(θ) = f̂0 +

p∑
k=1

f̂k(e
ikθ + e−ikθ), (21)

since f̂k = f̂−k. The other relation that’s useful here, is that eikθ + e−ikθ = 2 cos (kθ), which means
that function f can once again be rewritten as

f(θ) = f̂0 + 2

p∑
k=1

f̂k cos (kθ)

To show an example of what it can look like, the bi-Laplacian matrix in (4) is used again, where
f̂0 = 6, f̂1 = f̂−1 = −4 and f̂2 = f̂−2 = 1, which results in the following symbol for the matrix in (4)

f(θ) = 6− 8 cos (θ) + 2 cos (2θ).

In order to use a matrix-less method, the symbol for the Toeplitz matrix is needed and with the
simplification from (21), a matrix-less method becomes much more viable. For matrix-less methods,
the eigenvalues of a matrix Tn(f) is approximated by sampling the symbol of the matrix and adding
it with the errors of the approximations of order O(h), where h is the grid-size related to n as
h = 1

n+1 .
λj(Tn(f)) = f(θj,n) + Ej,n,

where j is the index of the grid points θj,n, j = 1, ..., n and n, as mentioned before, is the size of the
matrix. The error Ej,n is dependent on the grid-size and can be expanded into different functions
c(k)(θj,n) that’s also depend on grid-size

Ej,n =

α∑
k=1

c(k)(θj,n)h
k + Ej,n,α,

9

where error Ej,n,α is of order O(hα+1). With this new of writing Ej,n, a new equation for the
eigenvalues is given

λj(Tn(f)) = f(θj,n) +

α∑
k=1

ck(θj,n)h
k + Ej,n,α,

The approximation of ck(θ), using the matrix-less method, is possible by carefully choosing matrix
sizes nk and subsets of eigenvalues jk,

nk = 2k−1(n1 − 1) + 1, jk = 2k−1j1,

where j1 = 1, 2, . . . , n1, such that θj1,n1 = θjk,nk for all k. What this enables, is that Julia’s own
eigenvalue-solver can be used to calculate the eigenvalues for small matrices in order to compute
the values of the different functions ck(θj,n). Since they are constant, the eigenvalues are also
approximately constant for some grid points. But since the the order of the matrix becomes bigger,
there are more eigenvalues to compute. These eigenvalues that are not constants can instead be
computed using interpolation. Interpolation is a statistical method that uses known values to
estimate unknown values between these known values. Since the eigenvalues are approximately
the same for some grid points and the symbol f looks the same, no matter what order the matrix
is, the error E is also the same for these grid points. This means that all the functions ck(θj1,n1

),
k = 1, ..., α. This can be written as a matrix function

E = HC, (22)

where

E =


Ej1,n1

Ej2,n2

...
Ejα,nα

 , H =


h1 h21 ... hα1
h2 h22 ... hα2
...

...
. . .

...
hα h2α ... hαα

 , C =


c1(θj1,n1)
c2(θj1,n1

)
...

cα(θj1,n1)

 .
Since Ej,n,α is an error of order O(hα+1), Ej,n,α is assumed to be negligible for α = 3 and is therefore
excluded when computing C. In order to compute C, both sides are multiplied with H−1h1 h21 h31

h2 h22 h32
h3 h23 h33

−1 Ej1,n1

Ej2,n2

Ej3,n3

 =

c1(θj1,n1)
c2(θj1,n1)
c3(θj1,n1

)

 . (23)

This equation is solved using
C = H \ E.

With these functions, it is possible to use interpolation and extrapolation to approximate the rest of
the eigenvalues for a matrix of arbitrary size n× n.

10

3 Method
The Ng-Trench algorithm, and all additional tools regarding the spectral analysis, are implemented
in the Julia programming language [2]. We first implement the main algorithm, after which we
produce a method for finding α and β via bisection, allowing us to find the eigenvalues as roots to
qn(λ). Next, we build a matrix-less method for approximating the eigenvalues and combine this
with our algorithm in different ways. We finally parallelize the solver and compare both its accuracy
and efficiency to standard solvers. We study both the eigenvalues and the eigenvectors, which are a
“free” biproduct of the Ng-Trench algorithm.

3.1 Implementing the Ng-Trench algorithm
The Ng-Trench algorithm is purely iterative, starting with a given initial value given by An and λ,
and thereafter constructing {qi}ni=1 (for a n× n matrix An), step by step. In order to get “clean”
and easily separable code, we write each line of the Ng-Trench algorithm as an independent function,
each being called by our actual function for finding {qi}ni=1. For example, we implement the function

ym(λ) =

[
wm−1(λ)
−1

]
as the following in Julia.

function y(Ww)
Uses Ww (w_{m-1} (a vector) to create y_m (a vector))
return [Ww;-1]

end

That is, we take the w from the previous iteration (wm−1) and append −1 to it. A more advanced
snippet is the function creating the F matrix, where each column is composed of the column vectors
f
(m)
j (λ), where 1 ≤ j ≤ α. Specifically, we create the m× α matrix[

f
(m)
1 (λ) f

(m)
2 (λ) . . . f

(m)
j (λ)

]
This is done, since although the the Ng-Trench algorithm gives a way of computing α m× 1 vectors
in (18), they are always used as a m× α matrix. The following code is the Julia implementation:

function F(F_old,G,vv,qq,yy)
Uses F_old ((m-1) x alpha matrix), G ((m-1) x alpha matrix
to extract g_{mj} as
bottom value at column j),
#vv (vector v_{m-1}), qq (value q_m)
and yy (vector y_m)
T = eltype(G)
m = (size(F_old)[1]+1)
alpha = size(F_old)[2]
Fm = zeros(T,m,alpha)
gg = G[end,1]

11

https://julialang.org/

if m-1 == 1
Fm[:,1] = [F_old[:,1];0] -
yy*(gg-(vv’*F_old[:,1])[1])/qq

else
Fm[:,1] = [F_old[:,1];0] -
yy*(gg-vv’*F_old[:,1])/qq

end

for j in range(2,alpha)
gg = G[end,j]

if m-1 == 1
Fm[:,j] = [F_old[:,j-1];0] -
yy*(gg - ((vv’*F_old[:,j-1])[1]))/qq

else
Fm[:,j] = [F_old[:,j-1];0] -
yy*(gg - (vv’*F_old[:,j-1]))/qq

end
end
return Fm

end

The principle is the same as for the short y(Ww)-function. We take the necessary values from the
current or previous iteration as input parameters, and perform operation on and with them as
specified by the Ng-Trench algorithm. The matrix-element-syntax is basically identical to Matlab’s,
for an m×m matrix Am = {ai,j}mi,j=1 we find element ar,p as A[r,p]. Also, just like Matlab, we
get column r as A[:,r] and row p as A[p,:].

Only the functions are not enough to calculate the q-vector though, we also need something
driving the whole iterative procedure. The basic principle is that, given the function being called
for some n× n matrix A and value λ (not necessarily an eigenvalue), start by calculating the given
initial values, and using a for loop ranging from 2 to n, we calculate each value one by one. We
have to consider some special cases, like the fact that we cannot create vm when m = n since that
would require an n+ 1 element long vector from an n× n matrix. This is however easily solved by
an if-statement.

However, implementing the bulk of the Ng-Trench algorithm is just the beginning. As we have
stated, eigenvalues are found as roots to qn(λ), and finding these roots is not trivial.

3.1.1 Finding the eigenvalues as roots

As was stated in Section 2, in order to find the i-th eigenvalue, we must first find an interval (α, β)
containing exactly one eigenvalue to An, and none from An−1. The first condition is ensured by
checking that Negn(α) = i− 1 and that Negn(β) = i, if there is one less eigenvalue at α compared
with β, there must be exactly one between α and β. Remember from section 2 that Negn(λ) could
be found as the amount of negative values in the {qm(λ)}nm=1. Furthermore, the second condition is
that qn(α) > 0 and qn(β) < 0. All four of these conditions can be checked with two calls to the
q-finding function, one for α and one for β.

12

The interval finding algorithm requires a starting guess for (α, β), which in principle only re-
quires that the eigenvalue λ ∈ (α, β). Using bisection we can use this initial interval and narrow it
down until it satisfies all the conditions we impose on it. The idea can be seen in Algorithm 1.

Algorithm 1 Finding the interval
Require:

α, β . Starting guess
i . Which eigenvalue we want to find
A . Our matrix

1: while (α, β) does not satisfy the conditions do
2: γ ← (α+ β)/2
3: if Negn(γ) ≤ i− 1 then
4: α← γ
5: else
6: β ← γ
7: end if
8: end while
9: return (α, β)

Via the symbol, one can compute maximal and minimal eigenvalues to the matrix1. For a 100× 100
matrix this might be a fine initial interval, since the eigenvalues are relatively widely spaced, and the
matrix operations are not too costly. However, with an increase in matrix size we quickly increase
both how compactly the eigenvalues are distributed (of course, if we squeeze more values into (0, 16),
the space between two consecutive values decreases), and also the cost of each operation since the
matrices are larger. If we use just the minimal and maximal eigenvalues as α and β, respectively,
the computational cost of finding the interval that actually satisfy the conditions will rise rapidly.
We would thus like a more efficient manner of initializing these values. Such a method has been
implemented, and will be discussed after the section on root finding and matrix-less methods. Below
follow quick Julia-like pseudo-code for finding α and β for the i-th eigenvalue to the matrix A,

function abFinder(a,b,i,A)
q_a = qFind(a)
q_b = qFind(b)
neg_a = count(x->x<0,q_a) # Amount of negative
numbers per def.
neg_b = count(x->x<0,q_b) # As above
while # Some maximum of iterations

qn_a = q_a[end] #Values at m=n
qn_b = q_b[end]
if Neg_a == i-1 && Neg_b == i && qn_a > 0 && qn_b < 0

return [a,b] # interval found
else

c = (a+b)/convert(T,2)

1For example, the bi-Laplacian matrix with symbol f(θ) = 6−8 cos (θ)+2 cos (2θ) has a maximum value f(π) = 16
and a minimal value f(0) = 0, and thus all eigenvalues are distributed in the open interval (0, 16) [3]

13

Neg_c = count(x->x<-0,qFind(c))
if Neg_c <= i-1

a = c
elseif Neg_c >= i

b = c
else

println("error")
end

3.1.2 Finding the eigenvalues

We now have a method for computing the q-vectors, and a separate one for finding the intervals
containing our sought values. As we know from the Theory section, the eigenvalues are found
as the roots to qn(λ), i.e the eigenvalues are the values λ such that qn(λ) = 0. There are many
optimized root finding algorithms implemented in most computing science languages, and Julia is
no exceptions. Using (in our case) the Roots.jl package2, we can find the roots to qn(λ). All we
have to do to find a given eigenvalue is plug in the function with the matrix specified (e.g., by using
an anonymous function with only λ as and input parameter), and our interval. Optionally, we could
also specify which method to use (the default is bisection). The following lines are some pseudocode
for finding the i-th eigenvalue to the matrix A,

[a,b] = abFinder(a_start,b_start,i,A) # Find interval
E = find_zero(lmb->qFinder(A,lmb),(a,b)) # qFinder runs the Ng-

Trench algorithm for
given lambda (lmb) and A

The lmb->qFinder(A,lmb) treats qFinder(A,lmb) as a function only depending on lmb since A is
already specified. Finding all (or a section of all) eigenvalues is not more difficult than putting the
code for finding one eigenvalue inside a for loop, looping over i for the sought values.

3.2 Implementing the matrix-less method
There are two (major) issues with the Ng-Trench algorithm so far regarding its computational
speed. It has to do with both the finding of (α, β), and the root finding procedure. Root finding
requires many function calls in order to converge to a root (each demanding for large matrices),
and (α, β) currently starts by covering the entire spectrum for each eigenvalue, ensuring no one can
be left out. In other words, the interval is unnecessarily big, and it would be advantageous if we
could make it smaller and specific to each eigenvalue. As it turns out, we can. By implementing
matrix-less methods to approximate the eigenvalues via higher order symbols we can take this
eigenvalue approximation, say λ̃, and let our interval (α, β) = (λ̃− ε, λ̃+ ε). We can by using this
approximation shift the initial guess of the interval from covering the entire spectrum, to e.g. only
covering an interval in the order of 10−4.

Regarding the root finding procedure, matrix-less also has a role to play. As has been stated,
one of our method’s advantages is that it gives the eigenvector belonging to a certain eigenvalue
as a bi-product. Finding eigenvectors to Toeplitz-like matrices is many times desired. We could,
with a good matrix-less approximation of the eigenvalue, plug that approximation in and get an

2From https://github.com/JuliaMath/Roots.jl

14

https://github.com/JuliaMath/Roots.jl

eigenvector approximation in just one function call per eigenvector. This is also fully parallelizable,
and the higher order symbols need only be calculated once for a certain matrix. Interpolation is
inexpensive, and we thus have a potentially very fast way for approximating eigenvectors. Now we
will briefly look at the implementation of matrix-less methods.

To use matrix-less, we need two things: a method for numerically computing the higher order
symbols, and a way to interpolate the values for larger n.

3.2.1 Calculation and interpolation of higher order symbols

As we described in the section on Theory, we can via (23), which is a direct consequence of (22),
determine our C-matrix, where the j-th column are the α higher order symbols evaluated in the j-th
point. Implementing this in Julia is a as easy as writing C = H\E.

Algorithm 2 Approximate higher order symbols
Require:

f(θ) . Matrix’s symbol
α . No. of symbols to compute
A . Our initial matrix

1: n1 ← rows(A)
2: j1 ← 1 : n1
3: θj1 ← j1 · π/(n1 + 1) . Here we define our grid points
4: for k = 1 : α do
5: nk ← 2k−1(n1 + 1)− 1
6: jk ← 2k−1j1
7: hk ← 1/(nk + 1)
8: Ejk,nk ← λjk − f(θj1) . Subtract exact eigenvalues by approximated
9: Store Ejk,nk as k-th row in E

10: end for
11: for i = 1 : α, j = 1 : α do
12: Store (hi)

j in Hi,j . hi to the power of j
13: end for
14: return C = H \ E

Having calculated our matrix C, we can interpolate the values for each symbol (i.e. each row),
by fitting a polynomial to it, and - if we want to approximate eigenvalues to an nf × nf -matrix -
evaluating it in nf places along our eigenvalue distribution3.

3.3 Combining the Ng-Trench algorithm with the matrix-less method
Up until now we have in this section presented ways of implementing our eigenvalue (and eigenvector)
solver, using it to find intervals containing exactly one eigenvalue, finding eigenvalues as roots to a
function, and constructing matrix-less approximations of the eigenvalues. Simply stated, we desire as
few function calls as possible in order to utilize our algorithm. With the unmodified algorithm, both
the interval finding and the root finding require many function calls. Both root finding and interval

3For bi-Laplace this would be in (0, π)

15

finding are iterative procedures. We would thus like a somewhat “direct” method of computing these
instead. Such can be implemented - although both have their respective trade-offs. We will expand
on two ideas below, one being to use a matrix-less approximation of the eigenvalue to construct a
narrow interval for (α, β). The other is to directly input the eigenvalue approximations gotten from
matrix-less, or other eigenvalue solvers, in order to get an eigenvector approximation. Here we are
also interested in how the eigenvectors error depends on the error of the eigenvalue approximation
we passed the Ng-Trench algorithm.

3.3.1 Constructing intervals with the matrix-less method

We have already discussed constructing eigenvalue approximations with matrix-less. It is tempting
to just input these directly - as an initial guess - into root finding procedure. This does not work. It
is to easy ending up in a singular point where we have an eigenvalue to An−1, made evident by (11).
We thus need to approximate an interval, as narrow as possible, containing the eigenvalue we are
looking for. This is simply done by, given a set of eigenvalue approximation {λ̃i}ni=1, letting our
interval (α, β) for the eigenvalue λi be (λ̃i−1, λ̃i+1). This is in contrast to letting the interval be the
minimal and maximal eigenvalues, given by the symbol and discussed briefly in section 3.1.1.

3.3.2 Approximating eigenvalues with the matrix-less method

This is not more complicated by computing the set of eigenvalue approximations {λ̃i}ni=1 and taking
an eigenvector approximation ṽi as

ṽi = yn(λ̃i),

in accordance with yn(λ) being the eigenvector and a “free” bi-product of the Ng-Trench algorithm.

3.4 Evaluating the methods
Since our algorithm is fully parallelizable (the solving for each eigenvalue and eigenvector can be done
independently), it is relevant to compare it running parallel to standard eigenvalue and eigenvector
solvers running sequentially. Basically, calling eigvals(A) in Julia on a matrix A, calculates all
eigenvalues, and not in parallel. With our method, we can split the n eigenvalue calculations onto k
threads and theoretically reduce the time by around a factor 1/k. On basic laptop with two cores,
we could reduce the time by a factor of four4. Using the UPPMAX clusters we can access a great
amount of CPUs. As of the writing of this report, the Rackham cluster (which we used) consists of
9720 cores [7].
Parallelizing the Ng-Trench algorithm in Julia is trivial. We simply start Julia on as many threads
as we want to use, and then put @threads before the loop we want to run parallel. A pseudo code
example running a loop on 40 threads:

Start Julia with:
julia --threads=40
Then:
using Base.Threads
@threads for i=1:n

function(i)
end

4Each core consists of two threads

16

https://uppmax.uu.se/

We also use the BenchmarkTools.jl package in Julia to analyze the computational demands of
our methods, both regarding time and memory. We save both our answers (to look at the error),
and the benchmark, for each test we run. The error can be analyzed by computing very high
precision solutions, like Double645 and BigFloat with 1024 bits. This is of course very demanding
- especially when computing eigenvectors (takes multiple days for matrices of size in the order of
103) - but necessary to evaluate the results.

5From https://github.com/JuliaMath/DoubleFloats.jl

17

https://github.com/JuliaCI/BenchmarkTools.jl

4 Results and discussion
Below we present some results from our methods, tested upon the square bi-Laplace discretization
matrix. Both errors and benchmarks are shown for various data types (standard Float64, Double64,
BigFloat256, BigFloat1024). As has been stated before, an advantage of our algorithm is that it - in
contrast to standard eigenvalue and eigenvector solvers - is fully parallelizable, meaning that we can
calculate multiple eigenvalues at the same time (since determining one is not dependent upon another).
Thus, we utilize the UPPMAX clusters when gauging the viability of our methods. The amount of
cores varies depending on the experiment, but in general 20-40 cores are used. As a reminder, for
a fully parallelizable application like this, using k cores could result in a time decrease of a factor 1/k.

We can right away say that there were issues when attempting to use the eigenvalue solver to
just find eigenvalues. We can find exact eigenvalues, but when attempting to find all eigenvalues
(with datatype BigFloat), to a 1024× 1024 matrix, we ran out of time, despite having allocated 10
hours on 40 cores, and thus being able to find 80 eigenvalues parallel. Built in, standard functions,
could do it however. It should be said that our algorithm has the ability to calculate a single specific
eigenvalue, whilst general solvers return all eigenvalues. In the case where the user is only interested
in one, or a few, eigenvalues, our method might still be useful. We have also not looked at even
larger matrices. That would be very demanding, and experiments could take weeks or even months.
These problems mainly arise due to the root finding procedure, requiring many iterations and thus
many function calls in order to converge to an eigenvalue. This does however, not make the Ng-Trench
algorithm useless. Apart from being able to calculate one or a few specific eigenvalues, we found
great potential in fast eigenvector approximation, since this can be done without having to find roots.

As seen in Figure 1, the estimated values on the eigenvectors for the 1024 × 1024 matrix are
almost identical to the theoretical eigenvectors given by Julia’s own function eigvecs(A), except
for the first few eigenvectors. Figure 1 shows how the estimated eigenvectors is easier to calculate
than the theoretical eigenvectors. The estimated eigenvectors are calculated by using the matrix-less
method from 2 with n1 = 64 and n = 1024, which in this case is 3.25 times faster than Julia’s own
eigenvector-solver.

18

Figure 1: The error for each of our estimated eigenvectors for a 1024× 1024 matrix. This graphical
description of the error is a logplot.

Time (s) Memory (GB)
Our solver 1661.194 2184.97
Standard solver 5395.361 2940.89

Table 1: The time it took for the calculations to run and how much memory (estimate of total
accessed, not peak memory) that was necessary for our estimated eigenvectors and Julia’s own
function eigvecs(A).

As seen in Figure 1, the error for first eigenvectors are much bigger than the rest of the
eigenvectors. This can partly be explained by [1] (due to the fact that the first eigenvalues behave
erratic) and the matrix-less method works better for both larger n1 and larger n. To verify our code,
we insert the eigenvalues calculated with Julia’s eigvals(A) into qFinder in our code to get the
eigenvectors. These eigenvectors are then compared to the theoretical eigenvectors, calculated with
Julia’s eigvecs(A).

19

(a) The logarithmic error of all the values in eigen-
vector 1 for a 1024× 1024 matrix with datatype
Float64.

(b) The logarithmic error of all the values in eigen-
vector 1 for a 1024× 1024 matrix with datatype
Double64.

(c) The logarithmic error of all the values in eigen-
vector 1 for a 1024× 1024 matrix with datatype
BigFloat256.

(d) The logarithmic error of all the values in eigen-
vector 1 for a 1024× 1024 matrix with datatype
BigFloat1024.

Figure 2: Errors in approximation of the first eigenvector.

Since the first eigenvector was the most accurate eigenvector in Figure 1, we focus on this
eigenvector to see if the qFinder function can generate better results for theoretical eigenvalues. As
seen in Figure 2, the accuracy depend heavily on what datatype that is used. The error is small for
all data types but the difference in accuracy is large, especially between Float64 and BigFloat1024.
Another thing that’s evident is the fact that all graphs are almost identical, which isn’t strange
since the values are the same, only that the different data types yields different accuracy.

20

In the Ng-Trench algorithm, there is a way to calculate the eigenvalues using qm(λ) = 0, where the
eigenvalues are the roots of qm(λ). In the following results, we have done the other way around to
test how accurate this method actually is. This is done by using Julia’s own function eigvals(A),
which gives the exact eigenvalues, and than using these eigenvalues to see if qm(λ) is equal to zero.

(a) The logarithmic error of q for different data
types for a 256× 256 matrix.

(b) The logarithmic error of q for different data
types for a 512× 512 matrix.

(c) The logarithmic error of q for different data
types for a 1024× 1024 matrix.

(d) The logarithmic error of q for different data
types for a 2048× 2048 matrix.

Figure 3: Errors for q.

We can also observe that the errors of q for the different data types are almost identical, no
matter the size of the matrix. This is a consequence of Julia’s machine epsilon for the data types.
We study the 2048×2048 matrix and how the machine epsilons relates to the errors. For reference we
mention the different machine epsilons, and memory requirement for storing one value, for different
data types.

Float64 Double64 BigFloat256 BigFloat1024

εm 2.22 · 10−16 4.93 · 10−32 1.73 · 10−72 1.11 · 10−308
Bytes 8 16 80 176

21

(a) The logarithmic error of q from the Ng-Trench
algorithm for different data types and the ma-
chine epsilon values for a 2048× 2048 matrix.

(b) A zoomed-in version of 4(a)

Figure 4: Errors for q for different data types.

As seen in Figure 4, the error is always bigger than the machine epsilon for each datatype.
What’s interesting is that the difference between each datatype and their corresponding machine
epsilon is constant. This means that we get correlation between for all the data types and their
corresponding machine epsilon. The error can here be written as O(106 · εm), where εm is the
machine epsilon for the different data types.

Most of the previous plots have shown how big the errors are for our methods. These results
look very promising, but in order for our methods to be justified, our methods should be faster
than Julia’s own functions. Figure 5 show us how fast the Ng-Trench algorithm calculate the
eigenvectors of a 2048× 2048 matrix compared to Julia’s own function eigen.

Figure 5: The time it takes for the Ng-Trench algorithm to calculate the eigenvectors for a 2048×2048
compared to eigen for different data types. This graphical description of the error is a logplot.

What we see here is a comparison in time between the Ng-Trench algorithm and eigen. We
observe that for datatype Float64, our method is much slower than eigen which is very fast in
this case, as seen in Figure 5 where the y-axis is logarithmic. However, for all other data types,
our method is faster. The largest difference is for BigFloat1024 where our method is faster by a
factor of 10 for only one thread, and then increases when we use multiple threads. The fact that our

22

method can be parallelized is a big advantage, since bigger matrices will take longer, which means
that running the code in parallel is of big interest in order to speed up the calculations.

(a) Calculation depending on matrix size for different
methods and data types.

(b) Memory usage depending on matrix size for different
methods and data types.

Figure 6: Comparisons between eigen and eigvals combined with Ng-Trench.

In Figure 6 we again compare performance of our eigenvector finder, using eigenvalues from
the built-in function eigvals, with the built-in function eigen that yields both eigenvalues and
eigenvectors. Figure 6 panel (a) and (b) show calculation time and memory usage for the two
methods, for different matrix sizes and data types. Similar to previous results, the method utilizing
the Ng-Trench algorithm outperforms the build-in method in terms of calculation time for all data
types except Float64. With increasing matrix sizes the difference in calculation time increases up
to two orders of magnitude for the BigFloat data types. In terms of memory usage the built in
methods performs better for both of the lower precision data types, Float64 and Double64. For
BigFloat data types they perform very similar, results being indistinguishable on the plots.

4.1 Future expansions
Although the implementation of the Ng-Trench algorithm in its current state is far from perfect,
we have shown that it has some advantages compared with standard solvers for calculating the
eigenvalues, and clear advantages regarding eigenvectors, for Toeplitz matrices. Running the Ng-
Trench algorithm in its most basic state has not proved efficient for 1000× 1000-matrices, however
the size could definitely be increased to see if the standard methods will surpass our algorithm in
terms of time required.

An interesting area of expansion is of course to examine how matrix-less methods can improve
the Ng-Trench algorithms efficiency, while minimizing the trade off in accuracy. This was done in
part, but could of course be looked at much more thoroughly. For example, we know that the error
for matrix-less is O(h1+α), meaning that if we use larger matrices, we should see a decrease in error6.

It would also be interesting with an investigation of parallel computing’s effect on the algorithm’s
run time, and why we did not find a linear time decrease when increasing the amount of threads,
as seen in Figure 5. Here, more detailed benchmarks and profiling of the algorithm, containing

6since h = 1/(n+ 1) and thus will decrease with increasing n

23

detailed information regarding e.g. memory allocation, would likely prove useful, both for diagnosing
bottlenecks and for optimization.

Throughout this report, we have only experimented with the bi-Laplace matrix. It would be
of interest to look at other matrices, ranging from other banded matrices, full7 matrices, and
Toeplitz-like matrices, and investigating if and how this would effect the time and computational
demands of the solver, compared with standard methods.

Lastly, one could try to correlate the value of qn(λ̃) for an eigenvalue approximation λ̃ with the
error of the eigenvalue approximation. For an exact eigenvalue, qn(λ) = 0. Seeing how this function
behaves for increasing values of error in λ̃ could give insights into the Ng-Trench algorithm and how
it may be optimized for a given task.

7Non-sparse, i.e. most elements are non-zero

24

5 Conclusions
The implementation of the eigenvalue solver was successful in the sense that it was able to calculate
eigenvalues and eigenvectors to our model matrix, the Bi-Laplace discretization matrix. This could
be done fully parallel and thus opening up for large reduction in the time demanded.

Regarding the calculation of eigenvalues, we could see that our method was not superior to
standard methods for the size we tried (1024 × 1024 with datatype BigFloat) when finding all
eigenvalues. We do however note that our solver is able to find a single, or a section, of eigenvalues,
which is not something standard solvers do.

We also combined our algorithm with matrix-less methods in order to compute eigenvector
approximations using the eigenvalue approximations gotten from matrix-less. This showed very
promising results, with most errors around 10−6 and the time required being about a third of what a
standard solver needed. What we observe from the results is that our calculations of the eigenvectors
are much faster than Julia’s built-in function eigvecs(A). The first comparison is Table 1 where
we see that when we use the matrix-less method for a 1024 × 1024, it is 3.25 times faster than
eigvecs(A). In Figure 1 the errors for this method are shown, what we see is that the errors are
very small for all eigenvectors (and would decrease as n → ∞), except the first few eigenvectors.
This can be explained in [1].
When using the Ng-Trench algorithm to calculate the eigenvectors, we see in Figure 5 the difference in
time between our solver and eigen. As we can see, there is a big variety in our solver’s performance
and eigen for the four different datatypes. For Float64, our solver is much slower than eigen,
but for Double64, BigFloat256 and BigFloat1024, our solver is faster. We observe that when only
one thread is used, our solver and eigen are equally fast but when more threads are used, our
solver becomes faster the more threads that are used. This is the case for both BigFloat256 and
BigFloat1024 as well, the difference is that our solver is initially faster for these datatypes. The
biggest difference in speed is for BigFloat1024 where our solver is faster by a factor of 10 initially
and the difference continues to grow using more threads. Similar results are found when looking at
the computing time of these methods for different matrix sizes and data types, which can be seen in
Figure 6. Memory usage was however less for the built-in methods when using lower precision data
types and similar for higher precision data types such as BigFloat.

We conclude that results were promising, and further studies are warranted. We especially need
to continue investigating matrix-less methods combined with our algorithm, and test matrices of
different size, as well as full matrices and non symmetric matrices, not to mention Toeplitz-like
matrices. Also code optimization could further improve the algorithms efficiency, as its current state
is just a basic implementation

25

6 References

References
[1] M. Barrera, A. Böttcher, S. M. Grudsky, and E. A. Maximenko, Eigenvalues of even

very nice Toeplitz matrices can be unexpectedly erratic, in The Diversity and Beauty of Applied
Operator Theory, Operator theory, Springer International Publishing, Cham, 2018, pp. 51–77.

[2] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to
numerical computing, SIAM Rev. Soc. Ind. Appl. Math., 59 (2017), pp. 65–98.

[3] C. Garoni and S. Serra Capizzano, Generalized locally Toeplitz sequences: Theory and
applications, Springer International Publishing, Cham, Switzerland, 1 ed., June 2017.

[4] M. K. Ng and W. F. Trench, Numerical solution of the eigenvalue problem for Hermitian
Toeplitz-like matrices, 1997.

[5] The Editors of Encyclopaedia Britannica, Matrix theory. [Online]. Available from:
https://www.britannica.com/science/matrix-mathematics. 1998.

[6] W. F. Trench, Numerical Solution of the Eigenvalue Problem for Efficiently Structured
Hermitlan Matrices, Trinity University, 1991.

[7] UPPMAX, The Rackham Cluster. [Online]. Available from: https://uppmax.uu.se/resources/
systems/the-rackham-cluster/. 2021.

[8] E. W. Weisstein, Eigenvalue. [Online]. Available from: https://mathworld.wolfram.com/
Eigenvalue.html.

[9] Wikipedia, Singular value decomposition. [Online]. Available from: https://en.wikipedia.
org/wiki/Singular_value_decomposition#Example. 2022.

26

https://www.britannica.com/science/matrix-mathematics
https://uppmax.uu.se/resources/systems/the-rackham-cluster/
https://uppmax.uu.se/resources/systems/the-rackham-cluster/
https://mathworld.wolfram.com/Eigenvalue.html
https://mathworld.wolfram.com/Eigenvalue.html
https://en.wikipedia.org/wiki/Singular_value_decomposition#Example
https://en.wikipedia.org/wiki/Singular_value_decomposition#Example

7 Populärvetenskaplig sammanfattning
Vid lösning av alla möjliga tekniska naturvetenskapliga problem uppkommer matriser. Dessa är
en sorts samling med värden, som har sina egna räkneregler. De kan ha godtycklig storlek, och ett
exempel är enhetsmatrisen:

I =


1 0 ... 0
0 1 ... 0
...

.
...

0 ... 0 1


vilken är matrisernas motsvarighet av en etta8. Ofta har matriser inom vissa tillmäpningar återkom-
mande strukturer, så att även om värdena skiljer sig mellan två matriser, så är de ändå placerade
utefter något visst mönster. En sådan struktur en matris med konstanta diagonaler, som matrisen
ovan som bara har ettor på huvuddiagonalen. En sådan matris kallas för en Toeplitz-matris9 och
förekommer bland annat i signalbehandling och numerisk beräkning av derivator. Alla matriser har
vissa kvantifierbara egenskaper som ger information om den, och en sådan egenskap är egenvärdet,
som är viktigt för att bland annat avgöra metoders lämplighet. Detta värde har vissa geometriska
egenskaper som vi inte går igenom nu, det är helt enkelt ett värde vi är intresserade av.

Egenvärdet kan beräknas analytiskt för en matris, men för riktiga tillämpningar är matriserna inte
sällan i storleksordning större än 1000×1000, alltså tusen rader och tusen kolumner, och därmed över
en miljon element10. För att beräkna egenvärden till matriser större än 10×10 blir papper och penna
väldigt plågsamt, och behöver vi numeriska metoder som kan göra det effektivt. Vi kan inte heller
kopiera den analytiska metoden och göra den numeriskt, både på grund av tidsåtgång och stabilitet,
alltså att vi får felaktiga värden. Som tur är, finns många metoder för egenvärdesberäkning som kan
hantera “stora” matriser. Vi kallar dessa för vanliga egenvärdeslösare, efter som de kan beräkna
egenvärden till matriser med godtycklig struktur. Vi studerar som sagt Toeplitz-matriser, och vill
göra en specialiserad egenvärdeslösare för dessa. Alltså en lösare som bara hanterar Toeplitz-matriser.

Syftet med detta projekt är att implementera en egenvärdeslösare för Toeplitz-matriser i pro-
grammeringsspråket Julia, vilket är ett “snabbt” programmeringsspråk för numerisk analys. Denna
lösare kan räkna ut på egenvärden, och egenvektorer (som är en sorts matris med bara en kolonn,
och hör till egenvärdet). Huvudprincipen är att den arbetar fram en funktion steg för steg, och sen
hittar egenvärdet som roten11 till den funktionen. Vi vill därefter effektivera denna algoritm. Vi
testar även att kombinera den med en snabb metod för egenvärdesuppskattning, alltså att hitta vad
egenvärdet ungefär är, som bygger på att utnyttja särskilda funktioner kopplade till Toeplitz-matrisen.

En fördel är att vi kan köra vår lösare parallellt. Traditionellt, om fyra beräkningar ska göras, görs
de en efter varandra. Men genom att beräkna parallellt kan alla fyra beräkningar göras samtidigt,
vilket drar ner beräkningstiden med ungefär en faktor fyra. Om en beräkning tar 10 sekunder, skulle
det alltså traditionellt ta 40 sekunder. Vi kan dock göra fyra beräkningar på ungefär 10 sekunder

8För en matris A är IA = A, på samma sätt som 1 · a = a för en variabel a
9Efter matematikern Otto Toeplitz

10Värdena i en matris kallas för element
11En rot är ett värde där funktionen är noll. Till exempel är x = 2 en rot till f(x) = 2x− 4 eftersom f(2) = 0

27

https://julialang.org/

oavsett om vi kör dem parallellt12. Detta är ett enkelt exempel, och 10 eller 40 sekunder spelar
kanske inte så stor roll, men ponera att varje beräkning tar fem minuter, och du ska göra 1000
beräkningar. Då kan du spara ganska mycket tid genom att göra exempelvis 64 beräkningar parallellt
åt gången. Såklart finns begränsningar för hur många processer som kan köras parallellt samtidigt,
och dessa bestäms av hårdvaran du räknar på. Men genom att utnyttja stora datorsystem bygda för
att göra krävande beräkningar kan vi få tillgång till exempelvis 64 trådar, där varje tråd kör en process.

Slutligen kör vi tester på vår algoritm, där målet såklart är att vara lika snabba och få lika
bra svar som de vanliga lösarna. Vi ser att vi kan göra bra uppskattningar av egenvektorerna på
mycket kortare tid än de vanliga, men att vi då offrar en del av vår precision, det vill säga får ett
lite felaktigt svar. Detta eftersom vi använder de tidigare nämnda uppskattningarna på egenvärdena.
Vi kan också använda vanliga lösare för att beräkna exakta egenvärden, och sedan använda dessa
för att beräkna exakta egenvektorer, snabbare än en vanlig lösare kan beräkna egenvärden och
egenvektorer. För framtden är det intressant att testa algoritmen på större matriser, samt på andra
typer matriser än den matris vi testat här. Den måste såklart vara Toeplitz, men det finns fler
strukturer en matris kan ha.

12Detta är en grov förenkling, mängder av olika faktorer - exempelvis minne - kan spela in och göra att tidsåtgången
inte minskar på detta sätt

28

	Introduction
	Objective and purpose of the project
	Outcome of the project

	Theory
	Introduction to the Ng-Trench algorithm
	The Ng-Trench algorithm
	Matrix-less method

	Method
	Implementing the Ng-Trench algorithm
	Finding the eigenvalues as roots
	Finding the eigenvalues

	Implementing the matrix-less method
	Calculation and interpolation of higher order symbols

	Combining the Ng-Trench algorithm with the matrix-less method
	Constructing intervals with the matrix-less method
	Approximating eigenvalues with the matrix-less method

	Evaluating the methods

	Results and discussion
	Future expansions

	Conclusions
	References
	Populärvetenskaplig sammanfattning

