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Abstract

The matrix-less method can be used to efficiently approximate the
eigenvalues of certain classes of matrices. Specifically, the method
has thus far been used to approximate the eigenvalues of Toeplitz
and Toeplitz-like matrices where it uses the fact that a function, the
so-called symbol f(θ) (and higher order symbol), of these matrices
contains information about their eigenvalues.

In this project, we numerically investigate whether this method also
works for matrices which result from discretising problems with vari-
able coefficients, where we do not have constant, or almost con-
stant, diagonals in the matrices but rather the diagonals are deter-
mined by the sampling of a function a(x); the spectral symbol is
then f(x, θ) = a(x)g(θ). Two other matrix sequences, which are
spectrally related to the original discretisation matrix, are also stud-
ied; these matrices share the same symbol as the original matrix but
have different higher order symbols.

The numerical results show that the matrix-less method is able to
well-approximate the eigenvalues for matrices generated with several
different functions a(x). Also, we identify examples where parts, or
the whole spectrum, behaves as if the expansion used for the matrix-
less method should be modified, but that it then probably will work.
Furthermore, we find surprising similarity of the spectrum, even in
higher order symbols, of the original discretisation matrix and one
of the two alternative matrices. We conclude the report with sugges-
tions for future avenues of research.
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1 Introduction

Eigenvalue problems are an important topic in many scientific fields such as en-
gineering, physics and mathematics. In many applications, the arising matrices
may be very large, meaning that it would take traditional methods a consid-
erable amount of time to calculate their spectrum. The matrix-less method,
however, give us an efficient way to approximate these eigenvalues but only for
certain classes of structured matrices. When discretising the diffusion equation,
where a variable diffusion coefficient is used, the resulting matrix is not of the
currently required form for using the matrix-less method. We are interested in
the spectrum of these matrices since the spectral properties of this discretisation
matrix affect both the stability, accuracy and convergence speed of solving the
system. For stability, it is required that all the eigenvalues of the discretisation
matrix, An, have non-positive real part, where a negative real part indicates
diffusion in the solution. Moreover we can look to the condition number of
the matrix, κ(An) = |λmax(An)|

|λmin(An)| , to evaluate the convergence rate of an iterative
method as well as to construct preconditioners which lower the condition number
of the matrix. Thus it would be beneficial to be able to efficiently approximate
the spectrum of the discretisation matrix using the matrix-less method, not
only for the current case with Toeplitz matrices, but slightly more generally for
discretisations of differential equations with variable coefficients.

Our goal in this report is to numerically investigate how the matrix-less method
can be applied to matrices which result from variable coefficients where the
function a(x) defining the variable coefficients is of a number of different forms.

In Section 2, we begin by first defining some basics on Toeplitz matrices and
the basics of the matrix-less method. We then define the differential equation
as well as the resulting matrix whose spectrum will be approximated in this
paper. We also define two other matrices which are spectrally related to the
main discretisation matrix, and which should yield identical results in an infinite
case but differ in the finite one. Section 3 then contains the bulk of the report,
where a number of different functions a(x) defining the variable coefficients are
tested. We end the report in Section 4 with our conclusions and suggestions of
topics for future research.
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2 Background and Problem
Setting

In this section we will detail the differential equation and specifically the result-
ing matrices which will be of main interest for this report. We will first begin
with a brief discussion on Toeplitz matrices, and then introduce the matrix-less
method, before the main problem of interest of the report.

2.1 Toeplitz Matrices
A Toeplitz matrix An ∈ Cn×n is a matrix with constant diagonals [5, pp. 95–96]:

An =



a0 a−1 · · · a−(n−1)

a1
. . . . . .

...
...

. . . . . . a−1

an−1 · · · a1 a0


. (2.1)

For each Toeplitz matrix An we can associate a function f(θ), called a symbol.
The symbol f ∈ L1(−π, π) generates a sequence of matrices {An}n of increasing
size n [5, p. 4]. In particular, we have the generated matrix

Tn(f) =
[
f̂i−j

]n
i,j=1

=



f̂0 f̂−1 · · · f̂−(n−1)

f̂1
. . . . . .

...
...

. . . . . . f̂−1

f̂n−1 · · · f̂1 f̂0


, (2.2)

with the elements f̂k ∈ C being the Fourier-coefficients

f̂k =
1

2π

∫ π

−π
f(θ)e−ikθdθ, k ∈ Z. (2.3)

The spectral behaviour of these matrix sequences can be described by the
theory of GLT sequences; see [5]. If {Tn(f)}n is a GLT sequence, denoted
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by {Tn(f)}n ∼glt f , then the singular values (except possibly o(n) outliers)
σj(Tn(f)), can be approximated by |f(θj,n)| where θj,n is an equispaced grid in
[−π, π]. That is,

σj(Tn) = |f(θj,n|+ Ej,n,0, (2.4)

where Ej,n,0 = O(h) is an error term.

If f is real-valued, which means that Tn(f) is a Hermitian Toeplitz matrix, then
we say that {Tn(f)}n ∼λ f and the eigenvalues λj(Tn(f)) can be approximated
by f(θj,n). If f is even, then we can choose a grid defined on [0, π]. Hence,

λj(Tn(f )) = f(θj,n) + Ej,n,0, (2.5)

again where the error term is Ej,n,0 = O(h). A very useful standard grid used
throughout this report is

θj,n =
jπ

n+ 1
. (2.6)

A particularly useful Toeplitz matrix is the discrete Laplacian matrix,

Tn(f) =



2 −1

−1 2 −1

−1
. . . . . .
. . . . . . −1

−1 2


, f(θ) = 2− 2 cos(θ) (2.7)

that is seen when discretising a differential equation which includes the Laplace
operator using second order central finite differences [1, p. 572].

Figure 2.1: Symbol f(θ) = 2 − 2 cos(θ) (blue line) of the discrete Laplacian
matrix. The blue dots represent the eigenvalues of Tn(f) for n = 5, i.e.,
λj(T5(f)) = f(θj,5) where θj,5 = jπ/6, j = 1, . . . , 5.

Using the symbol in (2.7) and sampling it using the grid θj,n = jπ
n+1 will yield

the exact eigenvalues λj(Tn(f)) = f(θj,n), as in Figure 2.1, of its respective
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matrix Tn(f); see, e.g., [5]. In general, this grid θj,n can be used for all symbols
to approximate the eigenvalues, but sometimes other grids are preferred since
they give smaller approximation errors; see, e.g., [9].

2.2 The Matrix-less Method
A class of methods, denoted matrix-less, were first introduced in [4] and has
been extended to a big class of Hermitian matrices, see e.g. [7] and lately also
to non-Hermitian matrices [11, 13]. The GLT eigenvalue approximation

λj(An) = f(θj,n) + Ej,n,0 ≈ f(θj,n) (2.8)

works when we can find or define the symbol f(θ) for the sequence {An}n, but
the error Ej,n,0 = O(h) might be prohibitively large for the application.

In the matrix-less method we exploit an asymptotic expansion of the form

λj(An) = f(θj,n) + Ej,n,0

= f(θj,n) +

α∑
k=1

hkck(θj,n) + Ej,n,α

=

α∑
k=0

hkck(θj,n) + Ej,n,α,

(2.9)

where f(θ) = c0(θ) and α ∈ Z+ is chosen by the user. The resulting error is
Ej,n,α = O(hα+1).

The matrix-less method approximates the functions ck(θ) by samplings c̃k(θj,n0),
where n0 ∈ Z+ is chosen by the user.

The idea of the method is to calculate the spectrum for α+ 1 smaller matrices
using standard numerical solvers, approximate the functions ck for k = 0, . . . , α,
and then use these to approximate the spectrum for a matrix An where n� n0.
In practice this is done by computing the matrix

C̃ =


c̃0 (θ1,n0

) c̃0 (θ2,n0
) · · · c̃0 (θn0,n0

)

c̃1 (θ1,n0
) c̃1 (θ2,n0

) · · · c̃1 (θn0,n0
)

...
...

. . .
...

c̃α (θ1,n0
) c̃α (θ2,n0

) · · · c̃α (θn0,n0
)

 , (2.10)

and then, by an interpolation–extrapolation scheme [12], approximate the cor-
responding matrix for θj,n instead of θj,n0

, and then compute λj(An) ≈ λ̃j,n =∑n
k=0 h

k c̃k(θj,n).

First the matrices Ank of sizes nk = (n0 + 1)2k − 1 for k = 0, . . . , α are con-
structed and their eigenvalues are computed using a standard numerical solver;
we use Julia’s eigvals [15] mainly due to the support of high precision floats.
After sorting the spectrum for each level k, we choose every 2k-th eigenvalue to
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construct a matrix E ∈ Cα+1×n0

E =


λ1(An0

) λ2(An0
) λ3(An0

) . . . λn0
(An0

)
λ2(An1

) λ4(An1
) λ6(An1

) . . . λ2n0
(An1

)
...

...
...

. . .
λ2α(Anα) λ2·2α(Anα) λ3·2α(Anα) . . . λn0·2α(Anα)

 . (2.11)

This choice of grids and the corresponding subsets of eigenvalues for each level
is presented in Figure 2.2.

Figure 2.2: Grids for α = 2 and n0 = 4.

Once we have calculated the eigenvalues that the estimation is based on, we
then use a Vandermonde matrix:

V =



1 h0 h20 h30 . . . hα0

1 h1 h21 h31 . . . hα1

1 h2 h22 h32 . . . hα2

1
...

...
...

. . .
...

1 hα h2α h3α . . . hαα


, hk =

1

1 + nk
, (2.12)

and solve the linear system E = V C to find our approximation C̃ in (2.10).

In Figure 2.3 is presented the approximated c̃k(θj,n0
) for the symbol f(θ) =

6− 8 cos(θ) + 2 cos(2θ) with (n0, α) = (200, 4). Note the erratic behaviour of c̃4
visible close to θ = 0; see detailed discussion in [6, 7].
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Figure 2.3: The approximations for ck(θ) for symbol f(θ) = 6 − 8 cos(θ) +
2 cos(2θ) which corresponds to the finite difference approximation of the bi-
Laplacian, computed with (n0, α) = (200, 4).

So far, matrix-less methods have successfully been employed for a wide class of
matrices An, most importantly

• An = Tn(f), {An}n ∼glt f , f Hermitian [4],

• An = Tn(g)−1Tn(f), {An}n ∼glt f/g [2],

• An = Tn(f), {An}n 6∼glt f , {An}n ∼glt c0, f non-Hermitian [11, 13],

• An = Tn(f) +Rn, where Rn is a low-rank matrix [9],

• An = Tn(f), where f is matrix-valued [8].

We shall now numerically investigate if we can use the matrix-less method to
approximate the higher order symbols ck for matrices An coming from discreti-
sations of problems with variable coefficients.

2.3 Problem Setting
So far we have discussed a method for efficiently approximating the spectrum
of Toeplitz matrices, however in this paper we would like to numerically test if
this method can be used more generally. Consider the following 1D diffusion
equation: {

− (a(x)u′(x))
′

= b(x), x ∈ (0, 1),

u(0) = γ1, u(1) = γ2,
(2.13)

where a(x) is some given function, b(x) is a source term and γ1, γ2 are the values
of the solution at the boundaries.

This ODE can be solved using various numerical methods, see e.g., [1]. These
often involve converting the problem into a linear system which is solved either
explicitly or using an iterative method. For example, a second order Finite
Difference approximation of (2.13) using n unknowns and a constant stepsize
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h = 1
n+1 could be [5, p. 192]:

−a(xj+ 1
2
)uj+1+(a(xj+ 1

2
)+a(xj− 1

2
))uj−a(xj− 1

2
)uj−1 = h2b(xj), j = 1, ..., n.

(2.14)
where xj = jh = j

1+n , x0 = 0, xn+1 = 1 and uj = u(xj). Assuming γ1 = γ2 = 0,
this would lead to the linear system, Anun = bn, where un is the vector of
unknowns, bi = b(xi) is a source term, and the discretisation matrix, An, is
given by:

An =



a 1
2

+ a 3
2

−a 3
2

−a 3
2

a 3
2

+ a 5
2
−a 5

2

−a 5
2

. . . . . .

. . . . . . −an− 1
2

−an− 1
2

an− 1
2

+ an+ 1
2


, (2.15)

where aj = a(xj), x ∈ (0, 1), j = 1, ..., n. Furthermore, it can be proven that:

{An}n ∼glt a(x)g(θ),

where g(θ) = 2− 2 cos(θ) was the symbol of (2.7) [5, p. 193].

Thus, the eigenvalues of a matrix An2 can be approximated as

λj(An2) ≈ a(xi,n)g(θj,n), j = (i, j) = (1, 1), . . . , (n, n), (2.16)

where xi,n = i/(n+ 1) and θj,n = jπ/(n+ 1), see [10].

Now consider the following matrix,

Gn = D(i)
n (a)Tn(g) =



2a1 −a1
−a2 2a2 −a2

−a3
. . . . . .

. . . . . . −an−1
−an 2an


, (2.17)

where D(i)
n (a) is the diagonal sampling matrix

(
D

(i)
n (a)

)
j,j

= a
(
x
(i)
j,n

)
, ∀j =

1, . . . , n with the sampling x(i)i,n and Tn(g) is the Laplacian matrix (2.7) [5, Thrm.
10.5 p. 193]. This matrix, (2.17), will also have the same symbol as (2.15) but
different higher order symbols [5, p. 195].

A physical condition that assures wellposedness of (2.13) is a(x) > 0 and a(x) ∈
C1(x). It will also be numerically tested for a(x) ∈ C0 or even discontinuous in
a finite number of points.
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In this report, we will also look whether two different samplings xi,n of the
symbol a(x), when generating Dn(a) in (2.17), will result in the eigenvalues of
Gn more accurately approximating the eigenvalues of (2.15).

The two different samplings we will consider when constructing Dn(a) of (2.17)
will be the standard grid as used in [5],

x
(1)
i,n =

i

n
, ∀i = 1, . . . , n (2.18)

and a slightly shifted grid

x
(2)
i,n =

i

n+ 1
, ∀i = 1, . . . , n. (2.19)

We now propose that we may use the same algorithm, Described in Section 2.2,
for An defined in (2.15) (and also Gn in (2.17)), formulated in the following
working hypothesis.

Working Hypothesis 1 If {An}n ∼glt a(x)g(θ), as defined in (2.15) and
(2.17), then we assume that the eigenvalues λj(An) behave as

λj(An) ≈
α∑
k=0

ck(ξj,n)hk.

where ξj,n = jπ
n+1 is an equispaced grid.

We will numerically test the working hypothesis for a wide range of functions
a(x) and for g(θ) = 2− 2 cos(θ).

Remark 1 Note that in Working Hypothesis 1 we have a symbol of the form
f(x, θ) = a(x)g(θ) for the matrix sequence {An}n of interest and the expansion
is a linear combination of univariate symbols c0(ξ), c1(ξ), c2(ξ), . . ., defined on
ξ ∈ [0, π]. Some other domain, for example ξ ∈ [−π, π] could have been chosen.

Thus we have now outlined in detail the problem which we would like to investi-
gate in this paper, and so we will now look to the numerical experiments which
have been performed and their results.
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3 Numerical Experiments

Now that we have introduced the problem, we can begin to numerically test
a number of different functions a(x) and investigate if the matrix-less method
is able to compute the symbols (and higher order symbols) for a number of
different functions a(x) that determine the variable coefficient in the diffusion
equation. We will first begin by looking at some simple smooth, monotone
functions. Then, we will look at a non-monotone function before ending with a
closer look at non-smooth functions. Note that in some experiments we compare
the spectral results of using matrices (2.15) and (2.17) (in two variants), which
have the same symbol. In Appendix B we show how (2.17) can be related to a
symmetric matrix which has the same characteristic polynomial and thus allows
us to use some optimised methods.

A brief summary of the numerical examples, with different function a(x), are
listed below:

Constant and Linear functions

• Example 1: a(x) = 1,
The case of using a constant function, will result in matrix (2.7).

• Example 2: a(x) = x,
A simple linear, monotone function to investigate the Working Hypothesis
1.

• Example 3: a(x) = 1− ε+ εx,
We investigate the transition from a purely constant case to a purely linear
case.

Laplace-like

• Example 4: a(x) = 2− 2 cos(πx),
In this example we study matrices giving spectral behaviour reminecent
of the bi-Laplacian Tn(f), f(θ) = (2− 2 cos(θ))2.

Non-monotonic

• Example 5: a(x) = sin(πx)
2,

We study the effect of two different grids when generating Gn = Dn(a)(2−
2 cos(θ)) (2.17) as compared with An (2.15).

Non-smooth
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• Example 6: a(x) =

{
2k (x− 0.5)

k+1
+ 0.5, x ≤ 0.5

0.5 exp
(
− 1
x−0.5 + 2

)
+ 0.5, x > 0.5

,

We study how the smoothness of a(x) impacts the expansion functions ck.

Discontinous

• Example 7: a(x) =

{
1− ε, x ≤ 0.5

1 + ε, x > 0.5
,

We study the different behaviour of ck for different discontinuous a(x).

From observation of the numerical examples, we found the following was typical
behaviour for the approximations for the different symbols ck (this approxima-
tion denoted as c̃k(θ)), which can be on part of or on the whole domain [0, π] of
the function c̃k(θ):

(P1) Same curve for different α;

(P2) Different curve for different α, smooth behaviour;

(P3) Erratic behaviour for a finite number of samplings, behaviour changes for
different α;

(P4) Fully chaotic behaviour in part of the domain.

3.1 Constant and Linear Examples
Example 1 For the first example, we choose a rather trivial case, in that it
leads to a standard Toeplitz matrix which the matrix-less method is already
known to work well for. Choose,

a(x) = 1, (3.1)

which yield c0(θ) = 2− 2 cos(θ) (to machine precision), as shown in Figure 2.1,
and all c̃k, k > 0 are zero, since the eigenvalues of the matrix Tn(g), where
g(θ) = 2 − 2 cos(θ), are given exactly by the grid θj,n = jπ/(n + 1), that is,
λj(An) = g(θj,n).

Example 2 Next, we have have a simple monotonically increasing function,

a(x) = x, (3.2)

which yields the symbol f(x, θ) = a(x)g(θ) = x(2− 2 cos(θ)) for {An}n.
In Figure 3.1 we present the numerically computed c̃k(θj,n0

) for n0 = 1000 and
α = 3.
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Figure 3.1: [Example 2: a(x) = x] Computed c̃k for n0 = 1000 and α = 3.

We can summarise some our observations of numerical experiments for this
symbol in the following items

1. The errors |λj(An)− λ̃j,n|, for n = 100000, decrease as (n0, α) increases,
except close to θ = {0, π}. See Figure 3.2.

• Close to θ = 0 we have erratic (but “smooth”) behaviour.

• Close to θ = π the error does not decrease.

Figure 3.2: [Example 2: a(x) = x] Errors log10 |λj(An) − λ̃j,n| for α = 1, . . . , 5
and n = 100000. Left: n0 = 100. Right: n0 = 1000.

2. If we vary α in our computations c̃0 and c̃1 remain the same, as seen in
Figure 3.3. This is clear (P1) behaviour.
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0 π/4 π/2 3π/4 π
0

1

2

3

4

θ

c̃0(θj,n0) for α = 1

c̃0(θj,n0
) for α = 2

c̃0(θj,n0
) for α = 3

c̃0(θj,n0) for α = 4

c̃0(θj,n0
) for α = 5

0 π/4 π/2 3π/4 π
0

2

4

6

8

θ

c̃1(θj,n0) for α = 1

c̃1(θj,n0
) for α = 2

c̃1(θj,n0
) for α = 3

c̃1(θj,n0) for α = 4

c̃1(θj,n0
) for α = 5

Figure 3.3: [Example 2: a(x) = x] Computed c̃k for different α and n0 = 500.
Left: c̃0. Right: c̃1.

3. If we vary α in our computations c̃2 has a different shape for different α
for θ close to zero; see left panel of Figure 3.4. This is (P2) behaviour.
For the rest of c̃2 we have (P1) behaviour.

0 π/4 π/2 3π/4 π

−15

−10

−5

0

5

θ

c̃2(θj,n0
) for α = 2

c̃2(θj,n0) for α = 3

c̃2(θj,n0
) for α = 4

c̃2(θj,n0) for α = 5

0 π/32 2π/32 3π/32 4π/32
−100

−50

0

50

θ

c̃2(θj,n0
) for n0 = 100

c̃2(θj,n0
) for n0 = 500

c̃2(θj,n0) for n0 = 2000

Figure 3.4: [Example 2: a(x) = x] Computed c̃2 for different n0 and α. Left:
n0 = 100 and α = 2, 3, 4, 5. Right: Detail close to θ = 0 n0 = 100, 500, 2000
(with α = 2, 3, 4, 5).

4. If we increase n0 in our computations the erratic region close to θ = 0
shrinks; see right panel of Figure 3.4.

5. The magnitude of the maxima/minima close to θ = 0 for the computed c̃2
seems to increase with increasing α as in Figure 3.4

6. The computed c̃3 has a similar behaviour as c̃2 presented in Figure 3.4,
that is (P1) behaviour is most of the domain and (P2) in a small part of
it.

7. The computed symbols c̃2 and c̃3 seems to converge towards zero in the
main part of the spectrum (away from θ = {0, π}) as α is increased. As
stated in previous items the size of this region, with (P1) behaviour, in-
creases as n0 and α increases.

Remark 2 We used Double64 data type in Julia [3] for all computations to
ensure that numerical errors should not affect our computations; see [14].
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We conclude that as n0 and α increases the magnitude of the erratic region close
to θ = 0, where c̃2 behaves differently for different α, region of (P2) behaviour,
as in Figure 3.4, shrinks. Also, the “bad” region close to θ = π shrinks as n0
and α are increased.

Example 3 To analyse how the spectrum of (2.15) changes when we transition
between the simple functions (3.1) in Example 1 and (3.2) in Example 2, we use
a parameter ε to define

a(x; ε) = (1− ε) + εx (3.3)

such that a(x; 0) = 1 and a(x; 1) = x.

Figure 3.5: [Example 3: a(x; ε) = (1− ε) + εx] The function a(x) = a(x; ε) for
ε = {0, 1/2, 1}.

In Figure 3.6 is shown the computed c̃0, c̃1, and c̃2 for various different ε =
{0, 1/4, 1/2, 3/4, 1}.

Figure 3.6: [Example 3: a(x; ε) = (1− ε) + εx] Computed c̃k for n0 = 1000 and
α = 2 for different ε = {0, 1/4, 1/2, 3/4, 1}. Left: c̃0. Middle: c̃1. Right: c̃2.

In Figure 3.7 we see the computed c̃k for ε = 1/2, for n0 = 1000 and α = 3.
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Figure 3.7: [Example 3: a(x; ε) = (1 − ε) + εx] The computed c̃k for ε = 1/2,
n0 = 1000, and α = 3.

Numerical observations in this example are

1. The erratic (P2) behaviour described in Example 2 for c̃2 is present also in
the example for varying ε but the erratic behaviour is no longer at around
θ = 0 but rather where the discontinuity in c̃1 is, as seen in the middle
panel of Figure 3.6. Computations for different α and ε = 1/2 is shown
in Figure 3.8.

0 π/4 π/2 3π/4 π
−100

−50

0

50

100

θ

c̃2(θj,n0) for α = 2

c̃2(θj,n0
) for α = 3

c̃2(θj,n0) for α = 4

c̃2(θj,n0
) for α = 5

Figure 3.8: [Example 3: a(x; ε) = (1 − ε) + εx] c̃2 for varying α with ε = 1/2
and n0 = 1000

2. c̃1 appears to be zero until a discontinuity at a certain θ, depending on
ε (as ε increases this discontinuity moves to the left). For ε = 0 it is
at θ = π and for ε = 1 it is at θ = 0. See middle panel Figure 3.6.
If we consider the point c̃1(θε) at which the different c̃1(θ) curves have a
discontinuity, this appears to move like a smooth non-linear function of ε.

3. c̃2, presented in the right panel of Figure 3.6 has a discontinuity in the
same locations as c̃1 in the middle panel.

4. In Figure 3.9 we present the computed errors log10 |λj(An)− λ̃j,n| for n =
100000 with different n0 and α. Clearly, there is a difficulty to compute
the eigenvalue approximation accuratly close to the discontinuity discussed
in previous items. However, we have nice (P1) behaviour in the rest of
the domain except close to θ = π.
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Figure 3.9: [Example different linear 2: a(x) = x] Errors log10 |λj(An) − λ̃j,n|
for α = 1, . . . , 5. and n = 100000 Top: ε = 1/4, Middle: ε = 1/2, Bottom:
ε = 3/4. Left: n0 = 100. Right: n0 = 1000.

3.2 Laplace-like Example
Example 4 A lot of interest has been given to the study of the symbol f(θ) =
(2 − 2 cos(θ))2 = 6 − 8 cos(θ) + 2 cos(2θ); see for example [6, 12]. If we have
g(θ) = 2− 2 cos(θ), then f(θ) = g(θ)2. If we now define

a(x) = 2− 2 cos (πx), (3.4)

with x ∈ [0, 1] we have f(x, θ) = a(x)g(θ) which in some sense is related to
the bivariate symbol f(θ1, θ2) = g(θ1)g(θ2) (the generated matrix by this symbol
is the matrix Tn(f) = Tn1

(g) ⊗ Tn2
(g), where n1 and n2 are the number of

discretization points in each dimension).

As seen in Figure 3.10, the expansion can be computed. However, as seen close
to θ = 0 there is erratic (P3) behaviour for c̃2 and c̃3. This is similar to the
behaviour described in detail, for the related symbol f(θ) = (2− 2 cos(θ))2 in [6,
12].
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Figure 3.10: [Example 4: a(x) = 2−2 cos (πx)] The approximations c̃k computed
for n0 = 1000 and α = 3.

In Figure 3.11 is seen the erratic (P3) behaviour close to θ = 0. Using different
α in the computations yield different solutions.
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c̃2(θj,n0
) for α = 5
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1.9

2.0

2.1

2.2

2.3

Figure 3.11: [Example 4: a(x) = 2−2 cos(πx)] Erratic behaviour of approxima-
tions of c̃2 close to θ = 0 when computing with different α.

Apart from these finite number of erratic value, with (P3) behaviour, in c̃2 and
c̃3, the expansion works well and can be used to interpolate-extrapolate the c̃k
for a large matrix; see Figure 3.12 for n = 100000.
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Figure 3.12: [Example 4: a(x) = 2 − 2 cos (πx)] Errors, for n = 100000,
log10 |λj(An)− λ̃j,n| for α = 1, . . . , 5. Left: n0 = 100. Right: n0 = 1000.

3.3 Non-Monotonic Example
So far, we have only considered functions which are monotone on the interval of
interest. Next we will consider examples where a(x) is not monotone over the
interval.

Example 5 In this example we consider the function,

a(x) = sin(πx)
2
. (3.5)

In Figure 3.13 the symbol f(x, θ) = a(x)(2− 2 cos(θ)) is shown.

1
2

30.5

0

2

4

θ
x 0

1

2

3

Figure 3.13: [Example 5 a(x) = sin(πx)
2] Visualization of the symbol f(x, θ) =

a(x)(2− 2 cos(θ)).

However, the main point of this example is to study the different spectral be-
haviour of the expansion functions ck for the three spectrally related matrices,
(2.15) and, (2.17) using the two grids x(1)i,n (2.18) and x(2)i,n (2.19), that all share
the same symbol f(x, θ) = a(x)(2− 2 cos(θ)).

We denote by c̃(0)k the functions approximated for matrix (2.15), while c̃(1)k and
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c̃
(2)
k denote the functions approximated for matrix (2.17) using the grids (2.18)
and (2.19).

In the left panels of Figure 3.14, c̃k for the three matrix sequences defined above
are shown, with k = 0, 1, 2. In the right panels the difference between c̃

(0)
k and

the two other discretisations are shown.
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Figure 3.14: [of Example 5: a(x) = sin(πx)
2] Visualisation and comparison of

c̃
(0)
k , c̃

(1)
k , c̃

(2)
k .

We can summarise some our observations of numerical experiments for this
symbol in the following items,

1. Clearly seen in right panels of Figure 3.14 is that using (2.19) for gener-
ating the diagonal sampling matrix Dn(a) in (2.17) yields a much more
accurate approximation of the functions c̃k of (2.15) than using (2.18).

2. The functions c̃k have nice (P1) behaviour over the whole domain, except
c̃2 close to θ = 0, as seen in Figure 3.15. This is similar to the behaviour
present in Example 4.
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Figure 3.15: [Example 5: a(x) = sin(πx)
2] The approximated c̃2 for various

different α. Note the erratic behaviour for a few approximations close to θ = 0.

3.4 Non-Smooth Example
So far we have only considered functions which are infinitely many times differ-
entiable on the domain of interest. However, we will now look at what affect
differetiability, and indeed continuity, could possibly have on the higher order
symbols. Since the final two examples will make use of piecewise defined func-
tions, we will make the following remark:

Remark 3 Assume we have a function:

a(x) =

{
aA(x), x ≤ 0.5,

aB(x), x > 0.5,

then the matrix An, defined in (2.15), is symmetric tridiagonal, and of the form

An =

[
A R
RT B

]
, (3.6)

Where R is a low rank matrix with only one non-zero element in the bottom left
corner, and A and B are related to the two functions aA(x) and aB(x). Assum-
ing n even, then two separate eigenvalue functions (one from the A (fA(x, θ))
part and one from B (fB(x, θ)) part will describe the spectrum). We would have
then have that:

fA(x, θ) = aA

(x
2

)
(2− 2 cos(θ))

fB(x, θ) = aB

(
x+ 1

2

)
(2− 2 cos(θ))

Note that if the discontinuity is not at x = 0.5 then R will be non-square and A
and B differ in size. Also, if there are multiple intervals with functions defined
on them in the piecewise function, then more blocks like R,A,B will be present.

We will utilise Remark 3 further in the examples that follow.
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Example 6 In this example we will consider the following Ck([0, 1]) function
defined as:

a(x) =

{
2k (x− 0.5)

k+1
+ 0.5, x ≤ 0.5

0.5 exp
(
− 1
x−0.5 + 2

)
+ 0.5, x > 0.5

, (3.7)

where k ∈ [0,∞) indicates the number of times this function is differentiable on
[0, 1]. Figure 3.16 shows this function for k = 0 and k = 1 on the domain [0, 1].
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k = 0

x

a(x)

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

k = 1

x

a(x)

Figure 3.16: [Example 6: k-times differentiable function] Function a(x) for dif-
ferent k. Left: k = 0. Right: k = 1.

For n = 2048 we present in Figure 3.17 for k = 0 (left panel) and k = 1 (right
panel) the following properties: The eigenvalues λj(An) (blue line), λj(A) (red
line), and λj(B) (green line). The sorted union of the eigenvalues of A and
B (dashed black line) overlap well the eigenvalues of the matrix An. Also, the
rearranged samplings of fA(x, θ) = (2k

(
x
2 − 0.5

)k+1
+ 0.5)(2−2 cos(θ)) (dashed

cyan line) and fB(x, θ) = (0.5 exp
(
− 1
x/2 + 2

)
+0.5)(2−2 cos(θ)) (dashed orange

lane) are shown, and they overlap the eigenvalues of A and B respectively.
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Figure 3.17: [Example 6: k-times differentiable function] Comparison of block
matrix simplification of An and the respective symbols. Left: k = 0. Right:
k = 1.

We have the following observations from the numerical experiments,

1. The function c0 is accurately approximated, with (P1) behaviour, both for
k = 0 and k = 1. Visually looks like the presented eigenvalue curves
λj(An) in Figure 3.17.
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2. Both for k = 0 and k = 1, most of the approximation c̃1 has (P1) be-
haviour. However, close to the discontinuity, as seen in both panels of
Figure 3.18, there is (P2) behaviour, that is as we change α in our com-
putation we locally get different curves around the discontinuity.
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Figure 3.18: [Example 6: k-times differentiable function] Visualization of c̃1.
Left: k = 0. Right: k = 1.

3. In the left panel of Figure 3.19 we see (P4) behaviour, that is chaotic
behaviour, in most part of the domain. There is only a small region close
to θ = π where it is smooth; this is the region where fA does not overlap
fB.

4. In the right panel of Figure 3.19 we see, as opposed to the left panel, that
most of the domain has nice (P1) behaviour. Only close to θ = 0 we see
erratic (P2) behaviour. For c̃3 and k = 1 we found similar behaviour.
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Figure 3.19: [Example 6: k-times differentiable function] Visualization of c̃2.
Left: k = 0. Right: k = 1.

5. From this point we have observed that increasing k has tended to decrease
the noise in c̃1 and c̃2 somewhat and also shifted it towards 0 and so we
ask ourselves whether this trend would continue for larger values of k.
Figure 3.20 shows the results for k = 10 (left panel) and k = 100 (right
panel) where indeed we do see that this trend has continued and for the
case k = 100, c̃1 is completely 0 up until the notch and the noise in c̃2 in
now only concentrated around 0.
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Figure 3.20: [Example 6: k-times differentiable function] Computed c̃1 and c̃2
for varying α. Left: k = 10. Right: k = 100.

3.5 Discontinuous Example
Example 7 In this example we study a discontinuous step function a(x), namely

a(x) =

{
1− ε, x ≤ 0.5,

1 + ε, x > 0.5,
(3.8)

which could model a case of having an interface between two materials having
different diffusion coefficients.

In the left panel of Figure 3.21 we show, for ε = 0.1 and n = 2000 the follow-
ing properties: the eigenvalues λj(An) (blue line), λj(A) (red line), and λj(B)
(green line). Also shown are the sorted union of the eigenvalues of A and B,
defined in Remark 3 (dashed black line). The symbols

fA(x, θ) = (1− ε)(2− 2 cos(θ))

fB(x, θ) = (1 + ε)(2− 2 cos(θ))

are presented in rearranged form (sample on an equispaced grid over x and θ
and sort samplings by size). As seen, the sorted union of the eigenvalues of A
and B overlap the sorted eigenvalues of An.

23



0 π/4 π/2 3π/4 π
0

1

2

3

4

ε = 0.1

θ

λj(An)

λj(A)

λj(B)

Sorted λj(A) ∪ λj(B)

fA(θ)

fB(θ)

0 π/4 π/2 3π/4 π

−6

−3

0

3

6

(7,pi/2)

ε = 0.1

θ

c̃0(θj,n0)

c̃1(θj,n0
)

Figure 3.21: [Example 7: Discontinuous a(x)] For ε = 0.1 in (3.8). Left: Eigen-
values for n = 2000 of An (blue line), A (red line), B (green line), and sorted
union of eigenvalues of A and B (black dashed line). Right: Computed c̃0 and
c̃1 for n0 = 1000 and α = 2. Note that c̃0 matches the sorted eigenvalues of An
in the left panel.

We here list a few observations from the numerical experiments

1. In the region where fA and fB overlap, the eigenvalues of A and B mix
when sorting the union of the two, and then the matrix-less method will
not be able to work; see the right panel of Figure 3.21 where c̃1 is just
noise left of the discontinuity in c̃0. This corresponds to (P4) behaviour.
Hence, as ε increases a larger portion of the spectrum can be reconstructed
by the asymptotic expansion and the matrix-less method.

2. Of course ε = 0 is smooth, as it is the constant case and ε = 1 is a scaled up
constant for θ > 1/2 and zero otherwise but we are also interested in other
values of ε. We can see in Figure 3.22 how the point with discontinuous
derivative changes for different ε. This is until we reach ε = 1 and the
second function that is continuous to the first derivative.
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Figure 3.22: [Example 7: Discontinuous a(x)] Computed c̃0 for various ε.

3. In Figure 3.23 we show in the left panels c̃1 and in the right panels c̃2. In
the top panels ε = 0.1, middle panels ε = 0.9, and bottom panels ε = 1.1.
As we vary α in each panel we see (P2) behaviour in the smooth regions
and (P4) in the regions when fA and fB overlap.
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Figure 3.23: [Example 7: Discontinuous a(x)] The computed c̃1 (left) and c̃2
(right) for different α and for various different ε. Top: ε = 0.1. Middle: ε = 0.9.
Bottom: ε = 1.1.

4. In the bottom panel of Figure 3.23 , that is ε = 1.1, then fA and fB do
not overlap, and we have (P2) behaviour over the whole domain. We also
see two distinct regions [0, π/2] and [π/2, π] present in both c̃1 and c̃2.
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4 Conclusions

The goal of this paper was to numerically investigate whether the matrix-less
method could successfully be used to approximate the eigenvalues of discreti-
sations of the variable coefficient diffusion equation, when assuming Working
Hypothesis 1.

The first non-trivial example was the simple linear case of a(x) = x where we
found that c̃0, c̃1 had (P1) behaviour (nice and smooth for different α). For c̃2,
and most likely the higher ordered symbols of larger degree, (P1) behaviour was
observed in most of the domain, but also (P2) behaviour (varies with different
α) and (P3) behaviour (a finite number of the values are erratic for every α).
As we increase n0 these bad regions decrease in size.

We then investigated the behaviour of the higher-order symbols when the func-
tion transitions from a constant case to a linear case. We found here that c̃1,
for ε ∈ (0, 1), was zero up to some point when it would suddenly jump in value
before moving quickly towards the discontinuity at π. This point of jumping
in value moved towards 0 as ε increased, however not in a linear fashion and it
should also be noted that the magnitude of this jump was also not linear with
ε. The point where this jump occurred was also present in c̃2 as an asymptote
which had worse behaviour for larger values of α. We found though that the
interpolation of eigenvalues worked well for most of the spectrum except for the
point where this jump occurred.

We then tested a function which would result in a a symbol similar to that of a
bi-Laplacian matrix. In this case, it was found that the expansions worked fairly
well and it was possible to perform an interpolation-extrapolation successfully
except for an erratic (P3) region near θ = 0.

A non-monotone function was then tested to primarily compare the different
grids, (2.18) and (2.19), used in (2.17) where it was generally found that the
approximated higher order symbols c̃k of the matrix using the (2.19) grid per-
formed much more similarly to the those of (2.15). It was also observed that
there was some erratic (P2) behaviour in c̃2 around θ = 0 when changing the
values of α.

Following the investigation into a non-monotone function, a Ck([0, 1]) function
was then tested, meaning a function with k continuous derivatives on the interval
[0, 1]. It was found that for all k, the c̃1 had a point at which it suddenly goes
to 0 and then after hitting 0, very quickly increases. This region was erratic
for k = 0 but fairly stable for larger k. Furthermore, c̃2 was extremely erratic
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across almost the entire domain of k = 0, which corresponds to (P4) behaviour,
and is due to the overlap of fA and fB in this region. Surprisingly, this region
is smooth for k = 1, but we notice a region of (P2) behaviour close to θ = 0
(and also for c̃3). If increasing continuity with k = 100 we see that c̃1 is zero
until the point where it quickly increases, and c̃2 has a good (P1) behaviour in
most of the domain.

A discontinuous function was then tested where the most striking feature in the
discontinuous example is that when symbols fA and fB overlap we have (P4)
behaviour, that is, chaotic. In the smooth regions, we have (P2) behaviour and
we conjecture in item (E2) below as a possible explanation.

Finally we present the following list of possible explanations and conjectures on
the reasons of behaviour (P1)–(P4) observed in the numerical results:

(E1) The expansion in Working Hypothesis 1 works and the ck functions can
be approximated.

(E2) We conjecture that the expansion in Working Hypothesis 1 should be
modified to

λj(An) ≈
α∑
k=0

ck(ξj,n)hkγ .

where γ ∈ R is some constant.

(E3) This behaviour can not be resolved since Working Hypothesis 1 is not
correct for these values, just like described in [6]. The easiest solution is
to discard these erratic samplings before doing interpolation-extrapolation
of c̃k(θj,n0

) for large n.

(E4) In some cases this phenomenon is due to numerical noise, and can be
remedied by either decreasing n0 or increasing the precision of the com-
putation. Also, due to non-monotone symbols or overlapping symbols (as
seen in Example 7) it is not possible to do a correct ordering of eigenvalues
of An. In most cases, no known solution to this problem is known.

For future research we suggest the following items:

1. Study the functions a(x) where (P2) behaviour, that different ck are com-
puted for varying α, is present. Can a γ be found that makes the expansion
mentioned above work, or can it be approximated?

2. Improved interpolation-extrapolations schemes for approximating ck(θj,n)
for a large n should be investigated.

3. For piecewise a(x), can expansions of the spectra of A and B in Remark 3
be used to efficiently approximate the spectrum of An, or does the matrix
R influence the spectrum too much?

4. Can alternative grids be used in the expansion to achieve better results,
for example, θj,n = (j − 1)π/n.

5. Complex-valued a(x) should also be studied further; it was implemented
during the project but omitted due to time constraints where the biggest
issue found was dealing with how to correctly order the complex eigenval-
ues.
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A Code

The code to generate as well as to interpolate and calculate the eigenvalues from
the interpolated values is given below.

1 function compute_c(
2 n :: Integer,
3 α :: Integer,
4 eigfun :: Function,
5 a :: Function,
6 T :: DataType
7 )
8

9 j0 = 1:n
10 E = zeros(T, α + 1, n)
11 hs = zeros(real(T), α + 1)
12 for kk = 0:α
13 nk = (2∧kk) * (n+1) - 1
14 jk = (2∧kk) * j0
15 hs[kk+1] = convert(T, 1) / (nk+1)
16 eTnk = eigfun(a, nk, T)
17 E[kk+1,:] = eTnk[jk]
18 end
19 V = zeros(T, α + 1, α + 1)
20 for ii = 1:α + 1, jj = 1:α + 1
21 V[ii, jj] = hs[ii]∧(jj - 1)
22 end
23 return C=V\E
24 end

1 function localization(x, m)
2 b = mod(m, 2)
3 v = div(m+b, 2)
4 fx = floor(Int64, x);
5 cx = ceil(Int64, x);
6 if x - fx <= cx - x
7 u = (fx - v + 1):(fx + v - b);
8 else
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9 u = (cx - v + b):(cx + v - 1);
10 end
11 return u
12 end

1 function interpolate_c(nf :: Integer, C; applicable_ck = 0)
2 T = eltype(C)
3 α, n0 = size(C)
4 if applicable_ck == 0 # if applicable_ck not defined, then, use

all data↪→

5 applicable_ck=repeat([1 n0],α+1)
6 end
7 h0 = 1 / (convert(T,n0)+1)
8 hf = 1 / (convert(T,nf)+1)
9 tf = LinRange(convert(T, pi) / (nf+1), nf * convert(T,pi) /

(nf+1), nf)↪→

10 CC = zeros(T, α, nf)
11

12 for jj in 1:nf
13 for kk in 1:α
14 indices = localization(tf[jj] * (n0+1) / pi, α - kk + 1)
15 if indices[1] < applicable_ck[kk,1]
16 indices = indices .- indices[1] .+ applicable_ck[kk,

1]↪→

17 end
18 if indices[end] > applicable_ck[kk, 2]
19 indices = indices .- indices[end] .+ applicable_ck[kk,

2]↪→

20 end
21 tt = indices * pi * h0
22 ccfit = fit(collect(tt), C[kk, indices], α - kk)
23 CC[kk, jj] = ccfit(tf[jj])
24 end
25 end
26 return CC
27 end

1 function get_eigs(CC, nf :: Integer)
2 alpha = size(CC, 1) - 1
3 hf = 1 / (nf + 1)
4 H = ones(1,1) .* (hf .∧ (0:α))'
5 return (H * CC)[:]
6 end
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B Matrix Symmetrisation

For the simplifications of (2.15) we get non-symmetric tridiagonal matrices,
however from the Julia manual we see that non-symmetric matrices can not use
any of the optimised methods for the eigvals function but if we could some-
how symmetrise the matrix, we could use the optimised methods available for
eigvals [15, Special matrices].

Consider the following matrices S and Ssym:

S =



a1 b1
c1 a2 b2

c2
. . . . . .
. . . . . . bn−1

cn−1 an

 , Ssym =



a1
√
b1c1√

b1c1 a2
√
b2c2

√
b2c2

. . . . . .

. . . . . .
√
bn−1cn−1√

bn−1cn−1 an

 ,

where we will prove that S and Ssym have the same characteristic polynomial
and thus the same spectrum. First consider the sequence of submatrices of S,
which we will denote Kj , that begin in the bottom right corner of S. That is
that we have:

K0 = an, K1 =

[
an−1 bn−1
cn−1 an

]
, K2 =

an−2 bn−2
cn−2 an−1 bn−1

cn−1 an

 , etc.,

until we finally have that Kn−1 = S.
Let us now denote Pj to be the characteristic polynomial of Kj . We can then
immediately note that P0 = λ − an and P1 = (λ − an−1)(λ − an) − bn−1cn−1,
and as for P2, we can expand along the top row and obtain that P2 = (λ −
an−1)P1 − bn−2cn−2P0. Here, we now make the following claim:

Claim: The characteristic polynomial, Pj , of the matrix Kj , as defined above,
can be expressed recursively as:

Pj = (λ− an−j)Pj−1 − bn−jcn−jPj−2

for j = 2, 3, ..., n− 1

Proof: We will prove this claim using mathematical induction. It has already
been show to hold for j = 2, thus we just need to show that the induction step
is true. Assume now that the claim holds for some j = t, we will now show that
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it holds for j = t+ 1. Consider the matrix Kt+1:

Kt+1 =



an−(t+1) bn−(t+1)

cn−(t+1) an−t bn−t

cn−t
. . . . . .
. . . an−1 bn−1

cn−1 an

 ,

If we now calculate the determinant of λIt+1 − Kt+1, by expand along the top
row, we get the following where | · | denotes the determinant:

Pt+1 = det(λIt+1 −Kt+1) = (λ− an−(t+1))

∣∣∣∣∣∣∣∣∣∣
λ− an−t −bn−t
−cn−t

. . . . . .

. . . λ− an−1 −bn−1
−cn−1 λ− an

∣∣∣∣∣∣∣∣∣∣
+ bn−(t+1)

∣∣∣∣∣∣∣∣∣∣
−cn−(t+1) −bn−t

λ− an−(t−1)
. . .

. . . . . . −bn−1
−cn−1 λ− an

∣∣∣∣∣∣∣∣∣∣
For the second matrix we can expand along the first column and thus get:

= (λ− an−(t+1))Pt − bn−(t+1)cn−(t+1)Pt−1

Thus, we have show that the claim holds for the initial step, j = 2 and also for
the arbitrary step j = t+1, and so by the principals of mathematical induction,
the claim is proven. �

We now have a recursive formulation for the characteristic polynomials for each
Kj . We can similarly define Ksym

j to be the sequence of submatrices of Ssym, that
begin in the bottom right corner. For each Ksym

j , we can associate P sym
j to be

the characteristic polynomial for that submatrix. By inspection, we can imme-
diately note that P sym

0 = λ−an and P sym
1 = (λ−an−1)(λ−an)− bn−1cn−1 and

generally we will have a similar claim as before that P sym
j = (λ− an−j)Pj−1 −

bn−jcn−jPj−2 which can be proven identically as the previous proof using math-
ematical induction. We thus have that Pj = P sym

j for all j = 0, 1, ..., n− 1 but
Pn−1 is the characteristic polynomial for Kn−1 = S and P sym

n−1 is the character-
istic polynomial for Ksym

n−1 = Ssym, thus we have that S and Ssym have the same
characteristic polynomial and thus the same spectrum.

Our method for calculating the eigenvalues of the simplifications is therefore to
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construct the Ssym matrix for (2.17). We thus get:

G′n =



2a1
√
a1a2

√
a1a2 2a2

√
a2a3

√
a2a3

. . . . . .

. . . . . . √
an−1an

√
an−1an 2an


, (B.1)

Computationally this adds O(n) operations for the off diagonal multiplications
but the optimisations for eigvals.
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