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Abstract

Toeplitz matrices arise in many settings in scientific computing, and the spectrum (eigenvalues) of these
matrices is often of interest. These matrices are generated by a function called the symbol, and if they are
symmetric (Hermitian) then the spectrum behaves asymptotically as this function. Matrix-less methods
(MLM) are one of the numerical tools that efficiently approximates the spectrum of these matrices with
high accuracy. However, for matrices generated by non-monotone symbols these methods do not work
for the full spectrum; only the spectrum in the monotone regions can be accurately approximated. One
hypothesis that has arisen as a result is that there exists some intrinsic ordering of the eigenvalues which
hopefully would make MLM work for the full spectrum even for non-monotone symbols.

This project aims to sort these eigenvalues by introducing four different sorting methods: symbol
sort, DST sort, imaginary sort and similar sort. These sorting methods are used on mainly two different
non-monotone generating symbols, and tested by applying these tests; the MLM, symmetry test and
Hankel test.

The results show that the methods have different strengths and weaknesses, and no method is truly
able to sort all eigenvalues of a Toeplitz matrix with non-monotone symbol consistently. Symbol sort
does not work due to the remaining error of the eigenvalue approximation and DST sort has issues when
there are different eigenvectors with maximum amplitude at the same frequency. Imaginary sort gives
a correct ordering, but for a matrix with with slightly perturbed eigenvalues compared to the matrix of
interest. Similar sort can break down due to errors in the perturbed eigenvalues being greater than the
difference between the two closest ones. In future projects one could analyze the frequency spectrum of
the eigenvectors further to improve DST sort. To improve imaginary sort a more in depth analysis of
how to minimize the perturbation of the eigenvalues is necessary.
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1 Introduction

In the last couple of years new types of eigenvalue solvers, matrix-less methods (MLM), have been
developed; e.g., see [6, 15]. They exploit the fact that eigenvalues of certain matrix sequences, so called
generalized locally Toeplitz (GLT) sequences, can be approximated using an asymptotic expansion. The
current version of MLM works exclusively for the full spectrum for matrices with monotone generating
symbols since the ordering of the eigenvalues for those matrices is trivial. MLM also works for the
monotone part of a non-monotone symbol if such part exists. For matrices with fully non-monotone
generating symbols MLM breaks down. The objective of this project is to find methods to correctly
order the eigenvalues, with the hope that the full spectrum of matrices with non-monotone generating
symbols can be accurately approximated using MLM.

1.1 Toeplitz matrices and their symbols

This project focuses on real symmetric Toeplitz matrices. These matrices appear frequently when
discretizing PDE:s into linear systems when using numerical methods; such as for example finite elements,
finite volumes, and finite differences. They are named after the German mathematician Otto Toeplitz
and are defined by their constant diagonals. A square Toeplitz matrix of size n× n has the form

Tn(f) =



f̂0 f̂−1 . . . . . . f̂1−n

f̂1 f̂0 f̂−1
. . .

. . .
...

. . .
. . .

. . .
. . .

...
. . . f̂1 f̂0 f̂−1

f̂n−1
. . .

. . . f̂1 f̂0


. (1)

Here f is the so called generating symbol and f̂k, where k goes from 1 − n to n − 1 are the Fourier
coefficients of f(θ), that is,

f̂k =
1

2π

∫ π

−π

f(θ)e−kı̂θ, k ∈ Z.

The Fourier sum of the symbol f is

f(θ) =

∞∑
k=−∞

f̂ke
kı̂θ. (2)

Example 1.1.1. One example of a Toeplitz matrix that is studied throughout this project is the
second order finite difference discretisation of the bi-Laplacian (∇4). It has the diagonal entries: f̂0 = 6,

f̂−1 = f̂1 = −4, f̂−2 = f̂2 = 1 and f̂k = 0 for all other k,

T6(f) =


6 −4 1 0 0 0
−4 6 −4 1 0 0
1 −4 6 −4 1 0
0 1 −4 6 −4 1
0 0 1 −4 6 −4
0 0 0 1 −4 6

 . (3)

The generating symbol for this matrix is

f(θ) = 1e−2ı̂θ − 4e−ı̂θ + 6− 4eı̂θ + 1e2ı̂θ

= 6− 8 cos (θ) + 2 cos (2θ).
(4)

1.2 Monotone function

A function is monotone if it is either non-increasing or non-decreasing, see Example 1.2.1. Since the
order of the eigenvalues is related to the symbol, whether a symbol is monotone or not is an important
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property when it comes to sorting the eigenvalues. If we are interested in the whole spectrum the current
version of the MLM only works for matrices with monotone symbols, such as the bi-Laplacian in (3). For
matrices generated by non-monotone symbols it only works for the monotone regions, see the following
example.
Example 1.2.1. Monotone bi-Laplacian and non-monotone modified bi-Laplacian

bi-Laplacian Modified bi-Laplacian
6 −4 1 0 0 0
−4 6 −4 1 0 0
1 −4 6 −4 1 0
0 1 −4 6 −4 1
0 0 1 −4 6 −4
0 0 0 1 −4 6




6 −4 2 0 0 0
−4 6 −4 2 0 0
2 −4 6 −4 2 0
0 2 −4 6 −4 2
0 0 2 −4 6 −4
0 0 0 2 −4 6


f(θ) = 6− 8 cos (θ) + 2 cos (2θ) f(θ) = 6− 8 cos (θ) + 4 cos (2θ)

Monotone symbol Non-monotone symbol

(5)

1.3 GLT approximation

From the theory of GLT sequences ([14]) we know that the eigenvalues of a matrix generated by even

trigonometric polynomials, f(θ) =
∑∞

k=−∞ f̂k cos(kθ), can be approximated by sampling the generating
symbol on an equispaced grid θj,n ∈ [0, π]. This GLT eigenvalue approximation is described as follows,

λj(An) = f(θj,n) + Ej,n,0 (6)

where f(θj,n) is the sampled generating symbol and Ej,n,0 is the error which tends to 0 when the
matrix size n approaches infinity [6]. In the report the matrix An = Tn(f) +Rn is a Toeplitz-like matrix
where Rn is a low rank perturbation matrix; GLT matrices are a wider class of matrices where the
presented theory would apply, see [14].

1.4 Matrix-less method

Matrix-less methods (MLM) are based on the assumption of the existence of the asymptotic expansion

λj(An) = f(θj,n) + Ej,n,0

= f(θj,n) +

α∑
k=1

hkck(θj,n) + Ej,n,α

=

α∑
k=0

hkck(θj,n) + Ej,n,α.

(7)

.
For a symmetric Toeplitz-like matrix An, with {An}n ∼λ f , the GLT eigenvalue approximation is

given by f(θj,n) = c0(θj,n)[14]. The higher order symbols c1, ..., cα reduces the error of the approximation
of the eigenvalues.
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The MLM is used to approximate the eigenvalues of a large Toeplitz matrix Anf
of size nf ×nf . This

is done by calculating the the eigenvalues of a sequence of smaller matrices Ank
with sizes nk×nk, where

nk = 2k(n0 + 1)− 1 and k = 0, ..., α. This is done by some standard numerical eigenvalue solver such as
eigvals in Julia[3] or eig in Matlab. With the calculated sequence of eigenvalues E the approximation
of the higher order symbols C̃ for the grid θj,n0

are calculated by solving the system E = V C̃, where

E =


λ1(An0

) λ2(An0
) λ3(An0

) ... λn0
(An0

)
λ2(An1

) λ4(An1
) λ6(An1

) ... λ2n1
(An0

)
...

...
...

. . .
...

λ2α(Anα
) λ4α(Anα

) λ6α(Anα
) ... λ2αn0

(Anα
)

 , (8)

C̃ =


c̃0(θ1,n0) c̃0(θ2,n0) ... c̃0(θn0,n0)
c̃1(θ1,n0) c̃1(θ2,n0) ... c̃1(θn0,n0)

...
...

. . .
...

c̃α(θ1,n0) c̃α(θ2,n0) ... c̃α(θn0,n0)

 , (9)

V =


1 h0 h2

0 h3
0 ... hα

0

1 h1 h2
1 h3

1 ... hα
1

...
...

...
...

. . .
...

1 hα h2
α h3

α ... hα
α

 , hk =
1

1 + nk
. (10)

The higher order symbols of the θj,n0 grid is then interpolated and extrapolated to obtain the higher
order symbol samplings for the θj,nf

grid. At this point (7) is used to finally approximate the eigenvalues
of the large nf × nf matrix, [1, 7, 8, 9, 10, 11, 12].
In this project MLM is used as a test to see if the the eigenvalues are correctly ordered. By assuming
the correct ordering leads to continuous higher order symbols we look at c1, c2, . . . to verify the results.
If the higher order symbols are erratic the ordering of eigenvalues is classified as incorrect.

Working Hypothesis: Given a Toeplitz(-like) matrix with non-monotone generating symbol, there
exists a correct ordering of the eigenvalues such that MLM works for these matrices.

This report is organized as follows. In the following sections four different approaches to finding the
correct order of the eigenvalues are explored. Section 2 includes descriptions of the implemented sorting
methods and tests used to verify the correctness of the orderings. In Section 3 the sorting methods are
applied to matrices generated by non-monotone symbols and the results are discussed. The findings are
then summarized in Section 4 together with ideas of future works.

2 Sorting Strategies and Ordering Tests

2.1 Sort methods

Here follows explanations of the four heuristic sorting sorting methods used in this project: symbol sort,
DST sort, imaginary sort, and similar sort.

2.1.1 Symbol sort

This sorting method is based on the GLT eigenvalue approximation. The generating symbol of the
matrix is sampled on an equispaced grid which produces an approximation of the eigenvalues with a
certain ordering. The eigenvalues of the matrix are then calculated with some built in function, like
eigvals in Julia, and then sorted with the ordering from the GLT approximation.
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2.1.2 DST sort

An important tool in signal processing is the discrete Fourier transform (DFT), since it allows us to
analyze signals in the frequency domain by calculating the frequency spectrum. Given a finite set of
discrete samplings of a function, the DFT transforms it into samplings of its frequency domain function.
It is calculated as

Fk =

n−1∑
j=0

f̂k

(
cos

(
2πkj

n

)
− ı̂ sin

(
2πkj

n

))
, (11)

where f̂k are the Fourier coefficients. When the number of samples increase, the DFT quickly becomes
expensive to calculate. Instead, one can use the fast Fourier transform (FFT) algorithm to efficiently
compute the DFT. In Julia, the FFT is implemented in the package FFTW.jl [13].

The discrete sine transform (DST) is a family of transforms similar to the DFT and discrete cosine
transforms (DCT). As for DFTs, the discrete sine transform calculates the frequency spectrum of a set
of finite, sampled data points. Instead of describing the frequency spectrum as a combination of sines
and cosines as in DFTs, the DST only uses sines. In the discrete setting, there exists multiple different
sine transforms due to different choices when specifying boundary conditions [5], for instance

Yk = 2

n−1∑
j=0

Xj sin

(
π(j + 1)(k + 1)

n+ 1

)
(12)

is an example of transform DST-I.
Similarly, DCT exists as another option but consists of a sum of cosines and has 8 different transforms.

Both the DST and DCT exists in the FFTW.jl package.
Another way to express the DST-I is through the DST-I matrix. It is an n×n matrix with normalized

entries calculated as [S]nj,k=1 =
√

2
n+1 sin

(
πjk
n+1

)
. If you would take the DST-I of a vector x, the same

result would be obtained by multiplying it with the DST-I matrix Sn. What is interesting is that for
the matrix generated by the non-monotone bi-Laplacian symbol f(θ) = 6− 8 cos (θ)+ 4 cos (2θ) but with
the number 4 instead of 6 in both corners, the DST-I matrix gives the exact eigenvector matrix and
diagonalizes the generated matrix. When having the number 6 in the corners, the DST-I matrix is close
to diagonalizing the generated matrix since the two cases are similar.

It is observed that the eigenvectors follows a sinusoidal behaviour with increasing frequencies. Naturally,
the Fourier transform comes to mind and our first proposal is to sort the eigenvectors by their frequencies.
We start by investigating the behaviour of the eigenvectors in the frequency domain using a variety
of transforms from the FFTW.jl library in Julia. Using the observations, we attempt to create a
sorting algorithm using the frequency behaviour of the eigenvectors. The algorithm begins with the
transformations using the FFTW.rfft and FFTW.r2r functions, these include the standard FFT, the
DST (DST-I, -II, -III, -IV) and the DCT (DCT-I, -II, -III, -IV). It then orders the eigenvectors by the
frequencies of maximum amplitude and rearranges the result form Julia’s standard eigenvalue solver in
this new ordering.

2.1.3 Imaginary sort

A third approach to sorting the eigenvalues involves creating a complex Toeplitz matrix by adding an
imaginary matrix constructed from a monotone symbol g(θ) to the real non-monotone matrix constructed
by f(θ). Together, the overall symbol becomes h(θ, δ) = f(θ)+ ı̂δg(θ), and the resulting complex Toeplitz
matrix reads

Tn(h(θ, δ)) = Tn(f) + ı̂δTn(g). (13)

Now, the matrix Tn(h) can be accurately sorted in the monotone order of the imaginary part. However,
there is a trade-off. By adding an imaginary part, the nature of the real eigenvalue components is
slightly altered compared to those from the corresponding real matrix Tn(f). When the scaling factor δ
is decreased, Tn(h) approaches Tn(f).
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An alternative method is to first sort the non-monotone eigenvalues of the real matrix and the complex
matrix eigenvalues in increasing order according to its real part (automatically done with the function
eigvals in Julia). Secondly sort the complex matrix eigenvalues according to the increasing imaginary
part and save how eigenvalue positions change. We then change the order of the real eigenvalues using
the so-obtained ordering. This would give us the exact eigenvalues, but the ordering might be faulty.

2.1.4 Similar sort

The similar sort method constructs a new generating symbol h(θ) by adding an imaginary generating
symbol ı̂g(θ) to f(θ) which is the generating symbol of the original matrix with the eigenvalues we want
to sort. The similar matrix Tn(g(θ)) has the same eigenvalues as Tn(f(θ)) but in the reverse order [4, 16].

Tn(h(θ)) = Tn(f(θ)) + ı̂Tn(g(θ)) (14)

For the method to be able to sort all the eigenvalues of the whole spectrum f(θ) has to be monotone
and uniquely valued for at least one half of the spectrum. Uniquely valued means the values in that part
of the spectrum do not appear anywhere else. The next step of the method is to calculate and sort the
eigenvalues of Tn(h(θ)). If the monotone part of f(θ) is non-decreasing the real part of the eigenvalues
should be non-decreasingly sorted and if the monotone part of f(θ) is non-increasing the real part of
the eigenvalues should be non-increasingly sorted. Then the real part of the eigenvalues will be correctly
sorted in the monotone part of the spectrum. Because of this, by assumption, the imaginary part of the
eigenvalues correspond to the eigenvalues in the non-monotone part of the spectrum in reverse order.
Thus, λn(Tn(h)) corresponds to λ1(Tn(f)), λn−1(Tn(h)) corresponds to λ2(Tn(f)) and so on.

2.2 Ordering Tests

The following three tests are used to check the correctness of the orderings produced by the sorting
methods; Hankel, symmetry, and MLM.

2.2.1 Hankel test

Here the Hankel matrix Hn(f) is defined as the anti-diagonal version of the Toeplitz matrix Tn(f). The
eigenvalues of the Hankel matrix has the same magnitude as the eigenvalues of the Toeplitz matrix but
with opposite sign for every other eigenvalue ([2]). We have,

Hn(f) = YnTn(f), Yn =


1

1

. .
.

1
1

 , (15)

and
λj(Hn(f)) = (−1)(i+1)λj(Tn(f)), j = 1, . . . , n. (16)

To verify that a sorting algorithm works correctly the algorithm is applied to a Toeplitz matrix and its
Hankel version separately. If the resulting eigenvalues do not satisfy the condition (16) they are assumed
to be ordered incorrectly.

2.2.2 Symmetry test

Another verification method comes by checking the symmetry of the elements of the sorted eigenvectors.
For odd-numbered eigenvectors, the elements of the sorted eigenvector should also be odd and vice versa
for even-numbered eigenvectors. This is checked by comparing the boundary points. If the eigenvector
is odd, it is symmetric meaning the sum of the boundary points should be approximately 0. Even
eigenvectors should be skew-symmetric, with the difference between boundary points approximately 0.
For the even eigenvectors the value at the middle point θ = π/2 should also be close to 0. An example
is given in Figure 1.
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Figure 1: Eigenvectors for the monotone bi-Laplacian symbol f(θ) = 6 − 8 cos (θ) + 2 cos (2θ) sampled on a equidistant
grid with n=127 points. Left: Odd numbered eigenvectors. Right: Even numbered eigenvectors

2.2.3 MLM test

The MLM test analyses the behaviour of the higher order symbols. It is assumed that if the higher order
symbols that are not smooth means the ordering of eigenvalues is faulty. The amplitude and pattern
of non-smooth higher order symbols may indicate how close each eigenvalue is to its accurate position.
An example of smooth curves are the plots in Figure 14. Examples of non-smooth higher order symbols
are c1 and c2 in Figure 10 and more amplitude-bound non-smooth higher order symbols can be seen in
Figure 22.

3 Results and Discussions

In this section the sorting methods are tested for some Toeplitz matrices of varying size. The main focus
is sorting the spectrum generated from the non-monotone modified bi-Laplacian and using the MLM test
for evaluating the results.

3.1 Symbol sort

Looking at Figure 2, we see that the symbol sort method successfully manages to sort the eigenvalues
for f(θ) = 6 − 8 cos (θ) + 4 cos (2θ) in the special case when the generated matrix has 4 in the corners.
Looking at Figure 2, we examine how the sorted eigenvalues for f(θ) = 6− 8 cos (θ)+4 cos (2θ) compares
to its symbol. In the special case when the generated matrix has 4 in the corners, the eigenvalues follows
the symbol. This is because in this case, the eigenvalues are given exactly by f(θj,n). In the regular case
where the corner elements of the matrix are equal to 6, the sorted eigenvalues follows a different shape
compared to the symbol. This is because the standard θj,n = jπ

n+1 grid is used to sample these eigenvalues
which is not always the correct grid to use. For the second symbol f(θ) = 2 cos (θ)− 2 cos (2θ) in Figure
4 this is also the case.

(a) n=7 (b) n=15
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(c) n=7 with (Tn(f))1,1 = (Tn(f))n,n = 4 (d) n=15, with (Tn(f))1,1 = (Tn(f))n,n = 4

Figure 2: Symbol sort method performed using samplings of the symbol f(θ) = 6− 8 cos (θ) + 4 cos (2θ)

(a) n=7 (b) n=15

Figure 3: Symbol sort method performed using samplings of the symbol f(θ) = 2 cos (θ)− 2 cos (2θ)

In Figures 4 and 5, no sensible result for any of the symbols are obtained. The MLM has failed, likely due
to the ordering of eigenvalues given by the symbol sort method being incorrect. In the regions where the
two symbols are monotone, the higher order symbols look nice, but for the other non-monotone regions,
it is completely erratic. While sampling the symbol can give an approximation of the eigenvalues for the
generated Toeplitz matrix, the error of the approximation is an indicator for an incorrect ordering of this
method.

(a) c0 (b) c1 (c) c2

Figure 4: Higher order symbols computed for f(θ) = 6− 8 cos (θ) + 4 cos (2θ) for n0 = 127 using symbol sort
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(a) c0 (b) c1 (c) c2

Figure 5: Higher order symbols computed for f(θ) = 2 cos (θ)− 2 cos (2θ) with n0 = 127 using symbol sort

3.2 DST sort

Figure 6 displays the resulting eigenvalue order for the 7x7 and 15x15 bi-Lapacian and modified bi-Lapacian
after sorting by maximum amplitude of the DST-I coefficients. The algorithm works for the bi-Laplacian
symbols but seems to fail for 15x15 and other larger modified bi-Laplacian. This is in line with the results
from the MLM in Figure 7, where the higher order symbols are smooth in the bi-Lapacian case, but grow
very large for the modified bi-Laplacian case.

(a) 7x7 bi-Laplacian with BC = 5 (b) 15x15 bi-Laplacian with BC = 5

(c) 7x7 bi-Laplacian (d) 15x15 bi-Laplacian
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(e) 7x7 modified bi-Laplacian with BC = 4 (f) 15x15 modified bi-Laplacian with BC = 4

(g) 7x7 modified bi-Laplacian (h) 15x15 modified bi-Laplacian

Figure 6: Resulting eigenvalue order from DST sort together with its symbol

(a) bi-Laplacian (b) Modified bi-Laplacian

Figure 7: Higher order symbols using MLM with DST sort and n0 = 31

The resulting first three eigenvectors of the bi-Laplacian illustrates the idea behind the method. In Figure
8 the increasing frequencies of the eigenvectors are distinguishable in the frequency domain and the order
is found accordingly.
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(a) Real domain (b) Frequency domain

Figure 8: First three eigenvectors after sorting the 15x15 bi-Laplacian with DST sort

For the non-monotone modified bi-Laplacian, in Figure 9, we observe additional high frequency components.
For the first three eigenvectors the low frequencies dominates the signals and allows the method to work,
but we notice the increasing amplitude of the high frequency components.

(a) Real domain (b) Frequency domain

Figure 9: First three eigenvectors after sorting the 15x15 modified bi-Laplacian with DST sort

DST-I for all the eigenvectors are presented in Figure 10. For the bi-Laplacian, solitary amplitude peaks
can be seen for all eigenvectors. The modified bi-Laplacian instead shows multiple amplitude peaks in
its non-monotone region (v1− v7). This proves challenging for the algorithm because e.g. v4 and v6 both
have major amplitude peaks at the same frequencies 4 and 6. The main peaks ascends by one frequency
unit per eigenvector for both matrices, while the significant secondary peaks in the non-monotone region
(see v2 - v7) descends by one unit per eigenvector with the exception of v5 where the main and secondary
peaks lines up.
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Figure 10: DST-I of eigenvectors 1-15. f1(θ): The 15x15 bi-Laplacian with symbol f1(θ) = 6 − 8 cos(θ) + 2 cos(2θ).
f2(θ): The 15x15 modified bi-Laplacian with symbol f2(θ) = 6− 8 cos(θ) + 4 cos(2θ)

The problem with multiple peaks becomes even more pronounced for larger matrices. See for example
the 63x63 modified bi-Laplacian in Figure 11, the amplitudes of the main and secondary peaks in v19 are
just about the same.
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(a) Resulting eigenvalue order together with its symbol (b) DST-I of eigenvector 19

Figure 11: DST sort of the 63x63 modified bi-Laplacian

3.3 Imaginary sort

Imaginary sorting is done by combining the matrices

Tn(h) =


6 −4 2 0 0
−4 6 −4 2 0
2 −4 6 −4 2
0 2 −4 6 −4
0 0 2 −4 6

+ δı̂


0 −1 0 0 0
−1 0 −1 0 0
0 −1 0 −1 0
0 0 −1 0 −1
0 0 0 −1 0

 , (17)

where the complex symbol h(θ, δ) is a combination of the real symbol f(θ) and the imaginary symbol
g(θ, δ)̂ı, namely,

h(θ, δ) = f(θ) + ı̂g(θ, δ) = 6− 8 cos(θ) + 4 cos(2θ)− 2δ cos(θ)̂ı. (18)

f(θ) = 6− 8 cos(θ) + 4 cos(2θ). (19)

g(θ, δ)̂ı = −2δ cos(θ)̂ı. (20)

The combination yields the complex matrix
6 −4− δı̂ 2 0 0

−4− δı̂ 6 −4− δı̂ 2 0
2 −4− δı̂ 6 −4− δı̂ 2
0 2 −4− δı̂ 6 −4− δı̂
0 0 2 −4− δı̂ 6

 . (21)

Here as a 5 × 5 matrix but can be scaled diagonally to any size. This matrix with the corresponding
generating symbol is used for all following calculations if nothing else is stated. In Figure 12 are four
plots showing how the higher order symbols behave while sorting with the imaginary method depending
on the size of δ. We want to decrease δ to make the real part of the eigenvalues correspond as closely as
possible to the eigenvalues from the real matrix in equation (17).
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(a) δ = 21 (b) δ = 20

(c) δ = 2−1 (d) δ = 2−2

Figure 12: Plots showing how the sorting breaks down when decreasing δ. A good sorting results in smooth C-curves.
The matrix size is 31× 31

For the two plots Figure 12 (a) and (b) all three higher order symbols are smooth for most of their
values, but when δ approaches smaller values two of the higher order symbols c1 and c2 start to break
down getting sporadic. This indicates that the order of the real part of the eigenvalues may not be
correct although more testing is needed to know exactly where this happens. To stabilize the higher
order symbols an idea is to increase the matrix size n0. In Figure 13 this is visualized with δ as 2−1.

(a) n0 = 31 (b) n0 = 63
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(c) n0 = 127 (d) n0 = 255

Figure 13: Plots showing how by increasing the matrix size, it is possible to use smaller δ(= 2−2) and still have higher
order symbols that are not breaking

As seen in Figure 13, the results show that increasing the matrix size will allow for smaller δ values.
Why this works is currently unclear to us but this possibly means we can increase the accuracy when
using this sorting method for the MLM. First we try to decrease δ while increasing the matrix size
such that the matrix is not larger than it has to be for each value of δ. In Figure 14 we track how
the higher order symbols behave when δ ∈ [20, 2−2, 2−4, 2−8] and the corresponding matrix sizes are
n0 ∈ [26 − 1, 28 − 1, 210 − 1, 214 − 1] = [63, 255, 1023, 16383]. There seems to be a stability condition
that the matrix size must be doubled if δ is to be halved. When looking at how the c1 curve changes
between the observed four plots an important observed phenomena is how c1 seems to converge towards
three smooth curve segments as δ approaches zero, possibly pointing towards there existing an analytical
solution for the perfect higher order symbol.

(a) δ = 20, n0 = 63 (b) δ = 2−2, n0 = 255

(c) δ = 2−4, n0 = 1023 (d) δ = 2−8, n0 = 16383

Figure 14: Plots showing how the higher order symbols changes as δ decrease with matching matrix size
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To investigate if the imaginary method gives a relevant result we monitor how the MLM error changes
with changing δ. MLM generates eigenvalues for a matrix of size 10, 000 and 100, 000 and then is compared
to Julia’s eigenvalue solver (eigvals). But how can the error be calculated for the non-monotone part
of the curve? In Section 3.4 the eigenvalues from the real matrix are sorted in the same order as the
imaginary sorting method. The result shows that the higher order symbol c1 of the real matrix is not
smooth, indicating that it likely is not the correct order. Three different absolute error measurements are
shown in Figures 15, 16. In Figure 15 MLM is compared to the imaginary sorted eigenvalues of the real
matrix. In Figure 15 (a) and (b) only uses one higher order symbol c0 for the MLM while (c) and (d)
uses two higher order symbols (c0, c1). Figure 16 displays the difference between the MLM generated by
c0 and c1 and the actually eigenvalues with both ordered by rising values.

(a) δ = 2−2, n0 = 255 (b) δ = 2−6, n0 = 4095

(c) δ = 2−2, n0 = 255 (d) δ = 2−6, n0 = 4095

Figure 15: Error structure for MLM with α as 0 in (a) and (b) and α as 1 in (c) and (d). This means using one higher
order symbol c0 for α = 0 and two higher order symbols (c0, c1) for α = 1. MLM is compared to the sorted eigenvalues
from the real matrix according to the imaginary sorting method. Size of comparison is nf = 16383

(a) δ = 2−2, n0 = 255 (b) δ = 2−6, n0 = 4095

Figure 16: Error structure for MLM with α as 1, which means using two higher order symbols c0 and c1. The MLM is
sorted in rising order compared to the eigenvalues from the real matrix in rising order. Size of comparison is nf = 16383
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There are a couple of important and insightful behaviours displayed in Figures 15 and 16. One is that
using two higher order symbols (c0, c1) instead of just c0 gives better approximations. Not only in the
monotone part which is shown in previous papers [9] and [1], but also likely for the non monotone part
as seen by comparing Figure 15 (b) and (d). Even if the sorting of the eigenvalues of the real matrix are
not exactly correct, the curves clearly points towards two higher order symbols giving higher accuracy.
Adding more levels of higher order symbols has been done in the previous papers but needs to be tested
more for the whole curve.

The other significant result is that decreasing δ clearly results in decreased error for the whole curve
if we assume the imaginary sorted comparison in Figure ?? is a valid comparison. In Figure 16 only the
monotone part decreases showing the importance of how the error is measured.

3.3.1 DST sort of complex matrix

As already shown in Section 3.2 there are difficulties in sorting the eigenvalues through DST-sorting.
In the non-monotone part more than one peak will occur for each eigenvector making it difficult for
any observer to know where in the order the eigenvector belongs. This is with the assumption that the
position of high amplitude peaks tells us something about the ordering position of the eigenvector and
it’s corresponding eigenvalue.

In Figure 17 the DST of an eigenvector taken from four versions of the complex matrix in equation
21 are shown. The variable differentiating the four matrices is δ and each eigenvector is from the
non-monotone part. Changing δ is equivalent to changing the amplitude of the imaginary part of the
complex matrix. What can be witnessed is how there is one pronounced peak for δ = 20 compared to for
example δ = 2−3 where there are multiple peaks with higher amplitude. Note that when using the DST
only the real part of the eigenvectors are used.

Figure 17: The DST of four different eigenvectors with different values on δ. Larger δs corresponding to a larger eigenvalue
part for the complex matrix. The matrix size here is 32 × 32 and the eigenvector is chosen as the one corresponding with
the eighth positioned eigenvalue sorted with the imaginary method
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The DSTs in Figure 17 and the DST sorting method in Section 2.1.2 raises a question. If we have a
complex matrix with a large enough imaginary part and thus pronounced peaks. Is it possible to sort
the eigenvalues and eigenvectors by finding the index position of the largest peak for each corresponding
DST? The answer appears to be yes. If the eigenvalues are sorted according to both the DST method
and the imaginary method separately they end up in the exact same order. Figure 18 shows the ordered
DSTs of the eigenvectors. Here early positions are represented by orange peaks to the left and later
positions are represented by the blue peaks to the right. The ordering can be checked by comparing the
indexing of the eigenvalues for both methods.

Figure 18: The sorted eigenvectors where orange/red DST-peaks are early positions and blue are later positions. Here δ
is 20 and n0 is 31. The sorting method used here is imaginary sort, but DST sort would generate the exact same result

3.3.2 Structure of the imaginary part

Figures 19 and 21 show the resulting higher order symbols up to c2 for the symbol f(θ) = 2 cos (θ) −
2 cos (2θ) and f(θ) = 6 − 8 cos (θ) + 4 cos (2θ), respectively. They are computed for different added
imaginary symbols g(θ), with one of the cases including a boundary condition (different values in the
corners of the matrix). The higher order symbols c1 and c2 for f(θ) = 2 cos (θ) − 2 cos (2θ) seems
reasonable, including the case with a BC. In the case of the modified bi-Laplacian f(θ) = 6− 8 cos(θ) +
4 cos(2θ) it can be observed from c0, c1 and c2 that there is some instability in the MLM when using
a BC in the generated imaginary matrix, as their corresponding higher order symbols have grown very
large. For the added imaginary symbol g(θ) = 2 − 2 cos (θ), the computed c2 seems oscillatory, which
could suggest that a matrix size larger than n0 = 127 might be needed.

(a) c0 (b) c1
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(c) c2

Figure 19: Higher order symbols c0, c1 and c2 calculated for the symbol f(θ) = 2 cos (θ)−2 cos (2θ) for different imaginary
symbols g(θ) with δ = 0.2, n0 = 127. Here “Imaginary parts” specifies the diagonals of the added imaginary matrix

(a) c0 (b) c1

Figure 20: c2

Figure 21: Higher order symbols c0, c1 and c2 calculated for the symbol f(θ) = 6 − 8 cos(θ) + 4 cos(2θ) for different
imaginary symbols g(θ) with δ = 0.2, n0 = 127. Here “Imaginary parts” specifies the diagonals of the added imaginary
matrix

3.4 Alternative imaginary sort

When pondering upon how to get rid of the errors from the imaginary sorting method one might propose
to take the eigenvalues from the real matrix made of the modified bi-Laplacian generating symbol and
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sort it with the imaginary eigenvalue part from the complex matrix in (21).

(a) δ = 2−2, n0 = 255 (b) δ = 2−4, n0 = 1023

Figure 22: Eigenvalues of real matrix sorted in order of rising imaginary eigenvalues from complex matrix. Here with the
left plot using δ = 2−2 and n0 = 255 and the right plot using δ = 2−4 and n0 = 1023

The higher order symbol c1 is not smooth but it seems like there is some kind of pattern to the jumping.
This may indicate that the ordering is wrong but that it still may not be too far out from the real index
positions. Combining this method with some kind of DST analysis could bring a better understanding
of the problem. Decreasing δ does not seem to have any positive impact on the sorting.

3.5 Similar sort

Figures 23, 24 and 25 illustrates how the similar sort method is applied to the modified bi-Laplacian
matrix with generating symbol f(θ) = 6 − 8 cos(θ) + 4 cos(2θ). First the generating symbol g(θ) =
6 + 8 cos(θ) + 4 cos(2θ) of the similar matrix is multiplied with the imaginary unit and added to f(θ).
Then the eigenvalues of the matrix generated by the resulting symbol h(θ) = f(θ) + ı̂g(θ) are calculated
and sorted with a non-decreasing real part. Finally the imaginary eigenvalues from the correctly ordered
part of the spectrum [π/2, π] are reversed into the other half of the spectrum [0, π/2].

Figure 23: The generating symbol of the modified bi-Laplacian matrix f(θ) = 6− 8 cos(θ) + 4 cos(2θ) and the generating
symbol of the similar matrix g(θ) = 6 + 8 cos(θ) + 4 cos(2θ)
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Figure 24: The real and imaginary parts of the eigenvalues of the matrix generated by symbol h(θ) = f(θ) + ı̂g(θ) =
6− 8 cos(θ) + 4 cos(2θ) + ı̂(6 + 8 cos(θ) + 4 cos(2θ)) sorted with non-decreasing real part. n=127

Figure 25: The real and imaginary parts of the eigenvalues of the matrix generated by the symbol h(θ) = f(θ) + ı̂g(θ) =
6− 8 cos(θ) + 4 cos(2θ) + ı̂(6+ 8 cos(θ) + 4 cos(2θ)). n=127. The reversed imaginary parts are placed on the first half of the
spectrum [0, π/2], while the real parts are kept on the second half [π/2, π]

The ordering obtained from the previous steps is then applied to the eigenvalues of the modified bi-Laplacian
matrix with generating symbol f(θ) to finally receive the desired eigenvalues ordered by the similar sort
method. In Figure 26 the resulting ordered eigenvalues are plotted together with the generating symbol.
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(a) n=15 (b) n=127

Figure 26: The sorted eigenvalues of the modified bi-Laplacian matrix generated by the symbol f(θ) = 6 − 8 cos(θ) +
4 cos(2θ)

To further investigate the correctness of similar sort we construct the higher order symbols used in the
MLM. In Figures 27 and 28 we can see that the higher order symbols c1 and c2 become erratic in the first
half of the spectrum [0, π/2] for both n=15 and n=127. This means the ordering produced by similar
sort is incorrect. In an attempt to figure out why the method does not give the correct ordering for the
eigenvalues of the modified bi-Laplacian we take a look at the errors introduced by the addition of the
imaginary similar matrix. In Figure 29 the eigenvalue errors are compared to the minimum difference
between the two size-wise closest eigenvalues of the modified bi-Laplacian. Since the median error is larger
than this difference it is very likely that the ordering will be altered by the addition of the imaginary
matrix. In other words, the correct ordering for the eigenvalues of modified bi-Laplacian differs from the
correct ordering of the eigenvalues of the modified bi-Laplacian with the added imaginary similar matrix.

(a) c0 (b) c1 (c) c2

Figure 27: Higher order symbols for the modified bi-Laplacian matrix, n = 15

(a) c0 (b) c1 (c) c2

Figure 28: Higher order symbols for the modified bi-Laplacian matrix, n = 127
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Figure 29: The blue and red lines shows the differences between the eigenvalues of the modified bi-Laplacian [6,−4, 2] and
the real part of the eigenvalues of the same matrix with the added imaginary similar matrix [6,−4, 2] + ı̂[6, 4, 2]. The green
line shows the difference between the two size-wise closest eigenvalues of the modified bi-Laplacian [6,−4, 2]. The matrix
sizes n are all odd numbers between 7 and 127

3.6 Hankel and symmetry tests

In this section we apply the Hankel and symmetry tests to the resulting orderings of eigenvalues and
eigenvectors for symbol sort, DST sort, imaginary sort and similar sort. The parameter δ is fixed to 0.2.
Then we compare the orderings for a specific matrix size to see where the orderings differ.

Table 1: Hankel and symmetry tests for the eigenvalues and eigenvectors of the modified bi-Laplacian sorted by all
methods. The matrices are of sizes between 15x15 and 77x77 and δ = 0.2 for imaginary sort. A passed test is marked as
✓and a failed test is marked as ✗.

Symbol DST Imag Similar
n Hankel Sym Hankel Sym Hankel Sym Hankel Sym
15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
17 ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓
19 ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓
21 ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗
23 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
25 ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗
27 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓
29 ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓
31 ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗
51 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓
53 ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓
63 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
77 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

The first observation from Table 1 is that the Hankel and symmetry tests essentially verifiy the same
thing. To pass the symmetry test every other eigenvector has to be even and every other has to be odd.
To pass the Hankel every other eigenvalue has to have the opposite sign compared to the eigenvalues of
the Hankel version of the matrix. Therefore these two tests yield the same result when they are applied
to the same ordering of eigenvalues and eigenvectors.
Similar sort passes the tests for n=15 but when looking at the higher order symbols presented in Figure
27 we can see that the ordering is not correct. This is because the Hankel and symmetry tests do not
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completely verify the correctness of the ordering. A correct ordering will pass the tests but some incorrect
orderings will also pass the test.

In Table 1 the imaginary sort fails the test for all matrix sizes larger than 15 but this result is a bit
misleading. The ordering produced by imaginary sort aims to correctly order the eigenvalues which has
been altered by the addition of the imaginary part, while the ordering produced by the other three sorting
methods aims to sort the original unaltered eigenvalues. In the tests the orderings are directly applied to
the bi-Laplacian which leads to imaginary sort failing. So it is essentially the alternative imaginary sort
method which is tested here. It should also be noted that a fixed δ = 0.2 is used for all imaginary sort
tests.

Tables 2 and 3 show the orderings produced by the four methods for the modified bi-Laplacian matrix
of size 15x15 and 21x21. The numbers are the size indices of the eigenvalues and their position in the
row is where they should be placed. E.g., for the matrix of size 15x15 symbols sort would order the
7th largest eigenvalue first followed by the 6th largest followed by the 5th largest and so on. Since the
modified bi-Laplacian is monotone and uniquely valued in the second half of the spectrum the ordering
of the eigenvalues are there trivial. Hence, all sorting methods give the same ordering for the last eight
eigenvalues for the 15x15 matrix and last 11 for the 21x21 matrix. Interestingly DST sort, imaginary sort
and similar sort produces the same ordering for the 15x15 matrix. This ordering passes the Hankel and
symmetry tests but is previously proven wrong by the higher order symbols of the MLM. For the 21x21
matrix every sorting method produces a unique ordering but only DST passes the Hankel and symmetry
tests.

Table 2: Eigenvalue ordering of the matrix generated by f(θ) = 6− 8 cos θ + 4 cos 2θ, size 15x15.

Symbol 7, 6, 5, 3, 1, 2, 4, 8, 9, 10, 11, 12, 13, 14, 15
DST 7, 6, 4, 3, 1, 2, 5, 8, 9, 10, 11, 12, 13, 14, 15
Imaginary 7, 6, 4, 3, 1, 2, 5, 8, 9, 10, 11, 12, 13, 14, 15
Similar 7, 6, 4, 3, 1, 2, 5, 8, 9, 10, 11, 12, 13, 14, 15

Table 3: Eigenvalue ordering of the matrix generated by f(θ) = 6− 8 cos θ + 4 cos 2θ, size 21x21.

Symbol 10, 9, 8, 6, 5, 3, 1, 2, 4, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
DST 10, 9, 7, 6, 4, 3, 1, 2, 5, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
Imaginary 10, 7, 9, 6, 4, 3, 1, 5, 2, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
Similar 10, 9, 8, 6, 4, 3, 1, 2, 5, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21

4 Conclusions and Future Works

The objective of the project is to find methods to correctly order the eigenvalues of matrices with
non-monotone generating symbols. Four different sorting methods are implemented and although none
of the methods correctly sorts the eigenvalues for the whole spectrum without introducing perturbations
the results could be useful in future projects. Even the current results from the imaginary sorting method
may be useful for some applications if the order is not crucial, since the errors of the MLM approximations
are very small. We summarize here the performance of each method together with ideas for future work.

Symbol sort, which is based on the GLT approximation, only works if the sampled generating symbol
gives the exact eigenvalues. Therefore the method works for the matrix with generating symbol f(θ) =
6 − 8 cos θ + 4 cos 2θ but with fours in the top left and bottom right corners of the matrix. For other
matrices where the sampled generating symbol does not give the exact eigenvalues the method produces
incorrect orderings due to the errors in the GLT approximation.

DST sort applies the discrete sine transform to the eigenvectors corresponding to each eigenvalue and
then orders them by the frequencies of maximum amplitude. For matrices with non-monotone generating
symbols the DST shows multiple peaks of significant magnitude. The current version of the method
considers only the largest peak when ordering the eigenvectors which leads to incorrect orderings. In
future works one could analyse the frequency spectrum in other ways to possibly improve the DST
sorting method.
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Imaginary sort adds an imaginary matrix with a monotone generating symbol to the matrix whose
eigenvalues are to be sorted. The eigenvalues of the combined matrix are then sorted in the monotone
order of their imaginary part. This produces the correct ordering but with a perturbation on the
eigenvalues because of the added imaginary matrix. To minimize this perturbation the imaginary matrix
is multiplied with a scaling factor δ. Smaller δ leads to smaller perturbations of the eigenvalues but too
small δ leads to incorrect orderings. From the results it is observed that bigger matrices allows smaller
a smaller scaling factor. In future research one could try to find the exact mathematical relationship
between δ and the matrix size n. With that relationship δ could always be chosen as small as possible
without ruining the eigenvalue ordering. Since larger n allows smaller δ it may also be possible to decrease
the scaling factor when refining the grid within the MLM. One may also look at how good an indicator
unstable higher order symbols are in showing if the eigenvalues are incorrectly sorted or not. A third
idea would be to look closer on the DST of the eigenvectors after using the alternative imaginary sorter
in Section 3.4, and see if one can use them to slightly alter the order to a correct one. For theoretical
mathematicians the most interesting point of interest is to further investigate the nature of higher order
symbols with regards to δ approaching zero in the imaginary sorting method.

Similar sort exploits that the order of eigenvalues corresponding to the monotone part of the generating
symbol is known. By adding an imaginary similar matrix with the same eigenvalues but in reverse order
the eigenvalues corresponding to the non-monotone part of the original matrix can also be sorted. To
be able to sort all the eigenvalues of a matrix its generating symbol must be monotone on at least half
of the spectrum. If it is monotone on a smaller part of the spectrum the method can still be used to
sort some eigenvalues. For example if the symbol is only monotone on the last fourth of the spectrum
the method can be used to sort the eigenvalues on the first fourth of the spectrum. From the results it
is seen that the method fails to obtain the correct ordering for the eigenvalues. This is likely due to the
error introduced by adding the imaginary part. The eigenvalues of the summed matrix are skewed and
may have another order by size compared to the eigenvalues of the original matrix.
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