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Abstract
Ekström, S.-E. 2018. Matrix-Less Methods for Computing Eigenvalues of Large Structured
Matrices. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty
of Science and Technology 1652. 81 pp. Uppsala: Acta Universitatis Upsaliensis.
ISBN 978-91-513-0288-1.

When modeling natural phenomena with linear partial differential equations, the discretized
system of equations is in general represented by a matrix. To solve or analyze these systems,
we are often interested in the spectral behavior of these matrices. Whenever the matrices of
interest are Toeplitz, or Toeplitz-like, we can use the theory of Generalized Locally Toeplitz
(GLT) sequences to study the spectrum (eigenvalues). A central concept in the theory of GLT
sequences is the so-called symbol, that is, a function associated with a sequence of matrices of
increasing size. When sampling the symbol and when the related matrix sequence is Hermitian
(or quasi-Hermitian), we obtain an approximation of the spectrum of a matrix of a fixed size
and we can therefore see its general behavior. However, the so-computed approximations of the
eigenvalues are often affected by errors having magnitude of the reciprocal of the matrix size.

In this thesis we develop novel methods, which we call "matrix-less" since they neither
store the matrices of interest nor depend on matrix-vector products, to estimate these errors.
Moreover, we exploit the structures of the considered matrices to efficiently and accurately
compute the spectrum.

We begin by considering the errors of the approximate eigenvalues computed by sampling
the symbol on a uniform grid, and we conjecture the existence of an asymptotic expansion for
these errors. We devise an algorithm to approximate the expansion by using a small number of
moderately sized matrices, and we show through numerical experiments the effectiveness of the
algorithm. We also show that the same algorithm works for preconditioned matrices, a result
which is important in practical applications. Then, we explain how to use the approximated
expansion on the whole spectrum for large matrices, whereas in earlier works its applicability
was restricted only to certain matrix sizes and to a subset of the spectrum. Next, we demonstrate
how to use the so-developed techniques to investigate, solve, and improve the accuracy in
the eigenvalue computations for various differential problems discretized by the isogeometric
analysis (IgA) method. Lastly, we discuss a class of non-monotone symbols for which we
construct the sampling grid yielding exact eigenvalues and eigenvectors.

To summarize, we show, both theoretically and numerically, the applicability of the presented
matrix-less methods for a wide variety of problems.
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1. Introduction

Indeed, in order to understand the great mathematical
events, the comprehensive theories, long schooling and
persistent application would be required. But this is also
true with music. On going to a concert for the first time
one is not able to appreciate fully Bach’s “The Art of
Fugue,” nor can one immediately visualize the structure
of a symphony. But besides the great works of music
there are the smaller pieces which have something of great
sublimity and whose spirit reveals itself to everyone.

Otto Toeplitz
The Enjoyment of Mathematics

1.1 Background and Motivation
When modeling many natural phenomena, a partial differential equation (PDE)
is often the resulting mathematical representation. Whenever the considered
model is linear, the PDE takes the form

A u = b,

where A is the linear differential operator, u is the unknown, and b is the source
term. Since for many problems the analytical solution u is not available, we have
to resort to one of its numerical approximations. For this purpose, we select an
existing (or design an ad hoc) numerical method to discretize the continuous
problem. The computation of the numerical solution is then reduced to solving
a linear system of the form

Anun = bn,

where the matrix An ∈ Cn×n is the discrete counterpart of A , un ∈ Cn is
the numerical solution vector, and bn ∈ Cn is the source term vector. Under
the assumption of convergence of the chosen numerical method, we get closer
and closer to the analytical solution in a certain metric, as we increase n. For
many types of discretizations, the matrices An possess the so-called Toeplitz or
Toeplitz-like structure. We stress that, when discussing Toeplitz-like structures
we are not only referring to small perturbations of Toeplitz matrices, but also the
more general class of generalized locally Toeplitz structures [40, 41, 67, 68, 73].
In this thesis, we focus on these types of matrices.
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We develop new theoretical and algorithmic tools for analyzing the spectrum
of An. This is motivated by the fact that

• it is inherently difficult to solve the linear system Anun = bn, due to the
conditioning of An,

• the convergence rate of mainstream iterative solvers, such as multigrid
methods and preconditioned Krylov, when applied to the matrix An,

• the design of appropriate multigrid smoothers, prolongation and restric-
tion operators, as well as Krylov preconditioners for the matrix An,

are all topics that are strongly related to the eigenvalues (and singular values)
of An. From the theoretical viewpoint, we conjecture the existence of an
asymptotic expansion for the eigenvalues of An, and we validate the conjecture
through several numerical experiments. From the algorithmic viewpoint, based
on the conjectured expansion, we design fast and accuratematrix-lessmethods
for computing the whole spectrum of An. We use the new term “matrix-less”,
instead of the classical “matrix-free”, in order to stress that our methods neither
need to compute any matrix-vector products, nor need to store the entries of
An. Indeed, the proposed algorithms only make use of a few matrices Ak for a
limited number of different sizes k, much smaller than n.

1.2 Toeplitz Matrices
The first matrices of interest in this thesis, Toeplitz matrices, are named after the
German mathematician Otto Toeplitz (1881–1940) [19, 76]. A Toeplitz matrix
is a square matrix of size n × n with constant diagonals, that is, a matrix

[ai−j ]ni,j=1 =



a0 a−1 a−2 . . . . . . a1−n

a1
. . . . . . . . .

...

a2
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . a−2
...

. . . . . . . . . a−1

an−1 . . . . . . a2 a1 a0


.

Given a function f ∈ L1(−π, π) we can associate with it a sequence of Toeplitz
matrices {Tn(f)}n with Tn(f) = [f̂i−j ]ni,j=1. The constants f̂ω are the Fourier
coefficients of f , that is,

f̂ω = 1
2π

∫ π

−π
f(θ)e−iωθdθ, i2 = −1, ω ∈ Z. (1.2.1)

The function f is referred to as the generating function of the matrix sequence
{Tn(f)}n, but it is also called the symbol of {Tn(f)}n because of the Weyl
distribution results [3, 57, 70] that we address in Section 1.3, and a more general
version presented in [74, 75, 77]. The symbol f generates the finite-dimensional
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matrices Tn(f), but also T (f) = [f̂i−j ]∞i,j=1 = [f̂i−j ]∞i,j=−∞, which is an infinite
(or bi-infinite) dimensional matrix. However, the study of infinite Toeplitz
matrices, also known as Toeplitz operators, is out of the scope of this thesis;
details on the topic can be found in [17, 19, 20]. From the definition of the
Fourier coefficients, we observe that if f is real-valued then Tn(f) is Hermitian
(An = A∗

n) for all n; if f is real-valued and even (f(θ) = f(−θ) ∈ R), almost
everywhere, then Tn(f) is real and symmetric for all n. For a given banded
Toeplitz matrix Tn(f) with bandwidth 2p + 1, and with a generic central row

(Tn(f))i =
[
0, . . . , 0, f̂p, . . . , f̂1, f̂0, f̂−1, . . . , f̂−p, 0, . . . , 0

]
,

the corresponding symbol is,

f(θ) =
p∑

ω=−p

f̂ωeiωθ. (1.2.2)

In the case of a symmetric banded Toeplitz matrix we have f̂ω = f̂−ω for
ω = 1, . . . , p, and in view of the relation f̂ω(eiωθ + e−iωθ) = 2f̂ω cos(ωθ),
(1.2.2) becomes,

f(θ) = f̂0 + 2
p∑

ω=1
f̂ω cos(ωθ). (1.2.3)

When f̂ω ∈ R for all ω = 0, . . . p, we call a symbol of the form (1.2.3) a
real cosine trigonometric polynomial (RCTP). Toeplitz matrices generated
by RCTPs (in some cases with the addition of a low-rank, with respect to n,
correction matrix) represent the starting point of the results in Papers I–IV.
Furthermore, in Paper V we deal with a special class of Toeplitz matrices, that
we call “symmetrically sparse tridiagonal”, generated by symbols of the form
(1.2.2), where the only non-zero elements are f̂−p, f̂0, and f̂p, for some p.

Example 1.2.1. To illustrate the construction given above, we consider a simple but
practical and important example of an RCTP symbol,

f(θ) = 2 − 2 cos(θ).

The Fourier coefficients of f(θ), by (1.2.1), are f̂0 = 2, f̂1 = f̂−1 = −1, and
f̂ω = 0, for all ω ̸= {−1, 0, 1}. Hence, the bandwidth is 2p + 1 = 3. Since f(θ)
is of the form of (1.2.3), and p = 1, it is an RCTP symbol. The Toeplitz matrix of
order n = 5, generated by f , is given by,

T5(f) =


f̂0 f̂−1 0 0 0
f̂1 f̂0 f̂−1 0 0
0 f̂1 f̂0 f̂−1 0
0 0 f̂1 f̂0 f̂−1
0 0 0 f̂1 f̂0

 =


2 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 .
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The matrix Tn(f) is the matrix resulting from discretizing the Laplacian with second
order finite differences, that is,

−∆u = −∂2u

∂x2 ≈ 1
h2 Tn(f)un = 1

h2



2u1 − u2
−u1 + 2u2 − u3

...
−uj−1 + 2uj − uj+1

...
−un−2 + 2un−1 − un

−un−1 + 2un


,

where h = 1/(n+1), un = [u1, . . . , un]T, and we are assuming Dirichlet boundary
conditions; for more details, see [40, Section 10.5.1].

If the matrix at hand is banded and Toeplitz, for example from a discretized PDE,
and the matrix is assumed to be generated by a symbol, then, we can construct the symbol.
Consider, the matrix

A5 =


−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2
0 0 0 0 −1

 =


f̂0 f̂−1 f̂−2 0 0
0 f̂0 f̂−1 f̂−2 0
0 0 f̂0 f̂−1 f̂−2
0 0 0 f̂0 f̂−1
0 0 0 0 f̂0

 .

A symbol that generates this non-Hermitian matrix A5 = T5(f), is constructed by using
(1.2.2), that is,

f(θ) =
p∑

ω=−p

f̂ωeiωθ = −1 + 2e−iθ − e−i2θ,

where p = 2, f̂1 = f̂2 = 0, f̂0 = f̂−2 = −1, and f̂−1 = 2. This is a symbol for
the second order forward finite difference discretization of the Laplacian in one dimension,
that is,

−∆u = −∂2u

∂x2 ≈ 1
h2 Tn(f)un = 1

h2



−u1 + 2u2 − u3
−u2 + 2u3 − u4

...
−uj + 2uj+1 − uj+2

...
−un−1 + 2un

−un


,

where again h = 1/(n + 1), un = [u1, . . . , un]T, and we are assuming Dirichlet
boundary conditions.
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1.3 Spectrum of Toeplitz Matrices
As mentioned in Section 1.2, there is a close relation between the symbol and
the spectrum of the generated Toeplitz matrices. We present here a brief time-
line of the important historical results that led to the theory on which the current
thesis is based.

Szegő’s limit theorem [70], which dates back to 1920, states that for any
real-valued function f ∈ L∞(−π, π), the eigenvalues of Tn(f), denoted by
λj (Tn(f)), j = 1, . . . , n, satisfy

lim
n→∞

1
n

n∑
j=1

F (λj(Tn(f))) = 1
2π

∫ π

−π
F (f(θ))dθ, (1.3.1)

for every continuous function F : R → C with bounded support. The so-
called Avram–Parter theorem [3, 57], which dates back to the 1980s, extends
Szegő’s limit theorem to complex-valued functions f ∈ L∞(−π, π) and the
singular values, denoted by σj(Tn(f)), j = 1, . . . , n. It states that

lim
n→∞

1
n

n∑
j=1

F (σj(Tn(f))) = 1
2π

∫ π

−π
F (|f(θ)|) dθ, (1.3.2)

for every continuous and compactly supported function F : R → C. In the case
where f is real-valued (and hence the matrices Tn(f) are Hermitian), it can be
shown that the Avram–Parter theorem is equivalent to Szegő’s limit theorem.
At the end of the 1990s, Tyrtyshnikov and Zamarashkin [77] proved, using
matrix-theory arguments, that (1.3.1) holds for all real-valued f ∈ L1(−π, π)
and (1.3.2) holds for all f ∈ L1(−π, π). In 1998, Tilli [74] generalized the
theory to the multivariate and block cases, also allowing rectangular matrices.
The case of preconditioned matrices was treated in [22, 63], also with reference
to block structures [64, 65].

The need to consider matrices arising from the discretization of variable-
coefficient PDEs, defined over generic Peano–Jordan measurable domains [47],
and by means of either uniform or non-uniform meshes, led to the introduction
of the theory of Generalized Locally Toeplitz sequences (GLT sequences) by
Tilli and Serra-Capizzano [67, 68, 73]. The theory of GLT sequences, which
extends the theory of Toeplitz matrices to include Toeplitz-like matrices in a
broad sense, is the mathematical foundation on which this thesis is based. Here
we only recall the essentials of the theory that are needed to understand the
results presented herein. For the interested reader we refer to the more detailed
introductions [16, 39] or to the comprehensive reviews [40, 41, 43].

Figure 1.3.1 presents a conceptual visualization of the results by Tilli [75];
how the eigenvalues of a matrix generated by a symbol f relate to the symbol.
In the left panel we have a symbol f : [−π, π] → C. In the middle panel we see
that the components A and B disconnects the complex plane. We have U0, that
is a unique unbounded connected component of C\E R(f), where E R(f) is

15



f (−π) f (θd)

f (π)

A
B

U0

Figure 1.3.1. Visualization of Tilli’s results [75] on the spectrum of the Toeplitz matrices
generated by f : [−π, π] → C. Left: A discontinuous symbol f ∈ L∞(−π, π).
Middle: Symbol f is discontinuous at θd. The set Z = C\U0, indicated in blue, is
a cluster for the spectrum of Tn(f). Right: The eigenvalues of Tn(f), for n = 500.
Each eigenvalue is represented by a red circle. The convex hull of E R(f) is indicated
in green.

the essential range of f . Tilli proved that the set Z = C\U0 = E R(f)∪A∪B,
indicated in blue, is a cluster for the spectrum of Tn(f). This means that for
every ε > 0 the number of eigenvalues of Tn(f) which do not belong to the
ε-neighborhood of Z is o(n) as n → ∞. In the right panel of Figure 1.3.1 is
shown, as red circles, the eigenvalues of the matrix Tn(f) generated by f for
n = 500. As can be seen, a small number of the eigenvalues lie outside of Z,
but still inside the convex hull of the essential range of f , E R(f), indicated in
green, as stated by Brown and Halmos [19, Theorem 1.18].

If a symbol f is real-valued (and not constant), then any eigenvalue of Tn(f)
belongs to the open set (mf , Mf ) with mf and Mf being the essential infimum
and essential supremum of f , respectively. If Mf > 0 and f is nonnegative
almost everywhere, then Tn(f) is Hermitian positive definite.

1.4 Generalized Locally Toeplitz Sequences
Unlike the notion of Toeplitz matrices, the notion of GLT sequences does not
apply to a single matrix. It is only an asymptotic concept that can be given
for a sequence of matrices of increasing dimension. The original construc-
tion [67, 68, 73] is rather complex; it involves special diagonal matrix-sequences
associated with given weight functions, Toeplitz sequences with their generat-
ing functions (or symbols), Kronecker products, and a notion of approximation
theory for matrix-sequences [66], which induces a convergence in metric spaces

16



(a.c.s. convergence – convergence in measure [4, 5, 40]; approximating classes
of sequences (a.c.s.) are defined in end of this section). Given all these in-
gredients, the definition is a construction made by several steps, including also
topological closures with respect to the a.c.s. convergence.

In this thesis we do not report the original construction, owing to its intrinsic
difficulty. Instead, we report in Table 1.4.1 a set of axioms [16, 39, 40] which
identifies the GLT class and which can be viewed as an alternative, simpler
definition of GLT sequences. Indeed, the axioms can be used in a constructive
way, starting from the basic elements of the GLT class reported in axiom GLT 3
and using axioms GLT 4–GLT 8 as a way for constructing and defining the
whole GLT class. To fully understand the GLT axioms of Table 1.4.1, we now
introduce a few fundamental concepts. In what follows, for any p ∈ [1, ∞]
we denote by ∥ · ∥p the Schatten p-norm of matrices, which is defined as the
p-norm of the vector of singular values [11]; in particular, ∥ · ∥∞ = ∥ · ∥ is
the classical spectral norm. Moreover, for any matrix A we denote by A† the
Moore–Penrose pseudoinverse of A [45].

Matrix-sequences. A matrix-sequence is a sequence of the form {An}n,
where An ∈ Cn×n is a matrix of order n. The matrix-sequence {An}n is
called Hermitian if each An is Hermitian.

Singular value and eigenvalue distribution of a matrix-sequence. We use
the notation {An}n ∼σ f to indicate that the sequence {An}n has a singular
value distribution described by f : D ⊂ Rk → C, a measurable function
defined on a set D with 0 < µk(D) < ∞. This means that

lim
n→∞

1
n

n∑
j=1

F (σj(An)) = 1
µk(D)

∫
D

F (|f(y1, . . . , yk)|) dy1 . . . dyk,

for all F ∈ C0(C). Here µk is the Lesbegue measure in Rk and C0(C) is the
space of continuous complex-valued functions with bounded support.

Analogously, we use the notation {An}n ∼λ f to indicate that the sequence
{An}n has an eigenvalue distribution described by f , that is,

lim
n→∞

1
n

n∑
j=1

F (λj(An)) = 1
µk(D)

∫
D

F (f(y1, . . . , yk)) dy1 . . . dyk,

for all F ∈ C0(C).
Zero-distributed sequences. A matrix-sequence {Zn}n is referred to as a

zero-distributed sequence when {Zn} ∼σ 0 . If ∥Zn∥ → 0 then {Zn}n ∼σ 0.
For further properties of zero-distributed sequences, see [40, Section 3.4]. We
mention that zero-distributed sequences appear in the approximation of integral
operators or, more generally, in the approximation of compact operators; see for
example [1, 34, 44] and [40, Section 10.4].
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Diagonal sampling matrices. If n ∈ N and a : [0, 1] → C, the diagonal
sampling matrix Dn(a) associated with a is the n × n diagonal matrix given by

(Dn(a))i,i = a (i/n) , i = 1, . . . , n.

Approximating classes of sequences. A fundamental concept on which
the theory of GLT sequences is based. Let {An}n be a matrix-sequence, and
let {{Bn,m}n}m be a sequence of matrix-sequences. Then {{Bn,m}n}m is an
a.c.s. for {An}n if, for all sufficiently large m, the sequence {Bn,m}n approxi-
mates {An}n in the sense that An eventually is equal to Bn,m plus a small rank
matrix plus a small norm matrix. The notion of a.c.s. is a notion of conver-
gence in the space of matrix-sequences and for this reason we use the notation
{Bn,m}n

a.c.s.−→ {An}n to indicate that {{Bn,m}n}m is an a.c.s. for {An}n. For
deeper definitions and discussions on a.c.s., see [4, 5] and [40, Chapter 5].

GLT sequences. A GLT sequence {An}n is a special matrix-sequence that is
equipped with a measurable function f : [0, 1] × [0, π] → C, called the symbol
(or kernel). The notation {An}n ∼glt f means that {An}n is a GLT sequence
with symbol f .

In axioms GLT 1–GLT 8 of Table 1.4.1, we summarize the main properties
of the GLT sequences (for further details, see [16, 40]).

1.5 Applying GLT Theory to Approximate the Spectrum
We start by considering the case of Toeplitz matrix-sequences generated by even
trigonometric polynomials f : [0, π] → C. Afterwards, we discuss other cases
where the theory of GLT sequences is applied in more generality.

If {Tn(f)}n ∼λ f , then the eigenvalues λj(Tn(f)) of a matrix Tn(f) can be
approximated by sampling the symbol f(θ), using a grid θj,n, j = 1, . . . , n, for
large enough n. In particular, we have

λj(Tn(f)) = f(θj,n) + Ej,n, (1.5.1)

where Ej,n are the errors of the approximations, typically of order O(h), where
h depends on n. If we let θj,n be an equispaced grid in [0, π], then Ej,n tends
to zero as n → ∞, again of order O(h).

In Table 1.5.1 we list seven examples of uniform grids, with varying n. The
general notation for a grid, where the type is defined by context, is θj,n, where
n is the number of grid points, and j are the indices j ∈ {1, . . . , n}. We
can also define a set of indices jS ⊆ {1, . . . , n}, and then θjS ,n means θj,n

for indices j ∈ jS . The grid fineness parameter h for the respective grids is
also presented in Table 1.5.1. The names of the different grids are chosen in
view of their relations with the τ-algebras [15, see (19), (22), and (23)]. Note
that the τ-algebras are closed under inversion in the sense that if an invertible
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Table 1.4.1. GLT axioms.

GLT 1. If {An}n ∼glt f then {An}n ∼σ f . If, moreover, the matrices An

are Hermitian, then {An}n ∼λ f .

GLT 2. If {An}n ∼glt f and {An}n is quasi-Hermitian, that is,
An = Xn + Yn, where

• ∥Xn∥, ∥Yn∥ ≤ C for some constant C independent of n,
• every Xn is Hermitian,

• lim
n→∞

∥Yn∥1

n
= 0,

then {An}n ∼λ f .

GLT 3. We have
• {Tn(f)}n ∼glt f(x, θ) = f(θ) if f ∈ L1(−π, π),
• {Dn(a)}n ∼glt f(x, θ) = a(x) if a : [0, 1] → C is
continuous almost everywhere,

• {Zn}n ∼glt f(x, θ) = 0 if and only if {Zn}n ∼σ 0.

GLT 4. If {An}n ∼glt f then {A∗
n}n ∼glt f̄ , where A∗

n is the conjugate
transpose of An.

GLT 5. If {An}n ∼glt f and {Bn}n ∼glt g, where An and Bn have the
same size, then

• {αAn + βBn}n ∼glt αf + βg, for all α, β ∈ C,
• {AnBn}n ∼glt fg.

GLT 6. If {An}n ∼glt f and f ̸= 0 a.e. then {A†
n}n ∼glt f−1.

GLT 7. If {An}n ∼glt f and each An is Hermitian, then
{F (An)}n ∼glt F (f) for every continuous function F : C → C.

GLT 8. {An}n ∼glt f if and only if there exist GLT sequences
{Bn,m}n ∼glt fm such that {Bn,m}n

a.c.s.−→ {An}n and fm → f
in measure over [0, 1] × [−π, π].

Table 1.5.1. Seven examples of uniform grids. Typically the τn-grid is the default choice, unless
other grids provide more accurate, or even exact, eigenvalues when sampling the symbol.

Name Grid j h Description

τn jπ/(n + 1) 1, . . . , n 1/(n + 1) τn(0, 0)
τn−1 jπ/n 1, . . . , n − 1 1/n τn−1(0, 0)
τn−2 jπ/(n − 1) 1, . . . , n − 2 1/(n − 1) τn−2(0, 0)
τ0

n−1 (j − 1)π/n 1, . . . , n 1/n τn(1, 1) = 0 ∪ τn−1(0, 0)
τπ

n−1 jπ/n 1, . . . , n 1/n τn(−1, −1) = τn−1(0, 0) ∪ π

τ0,π
n−2 (j − 1)π/(n − 1) 1, . . . , n 1/(n − 1) 0 ∪ τn−2(0, 0) ∪ π

τ0,π
n−1 (j − 1)π/n 1, . . . , n + 1 1/n 0 ∪ τn−1(0, 0) ∪ π
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matrix An belongs to a τ-algebra, then the inverse A−1
n belongs to the same

τ-algebra; this is a consequence of the fact that all τ-algebras are closed under
linear combinations and matrix-matrix multiplication. Unless otherwise stated,
the τn-grid is the default choice in this thesis.

Hence, it has been known for a long time that for some special matrices,
sampling the symbol with the appropriate grid gives the exact eigenvalues. Now
consider a tridiagonal Toeplitz matrix, that is, f̂0, f̂1, f̂−1 ∈ C are the only non-
zero components in the generic central row of the matrix. This matrix belongs
to the τ-algebra [15], and the symbol is

f(θ) = f̂0 + f̂1eiθ + f̂−1e−iθ.

The eigenvalues of the generated matrix Tn(f) are exactly given by sampling a
“symmetrized” symbol g, for which Tn(f) ∼ Tn(g), that is,

λj(Tn(f)) = g(θj,n) = f̂0 + 2
√

f̂1f̂−1 cos(θj,n), (1.5.2)

where θj,n is the τn-grid in Table 1.5.1; see [18, 35, 55]. The eigenvector that
corresponds to the eigenvalue λj(Tn(f)) is

xj,n =
[
x

(j,n)
1 , . . . , x

(j,n)
k , . . . , x(j,n)

n

]T
, (1.5.3)

where

x
(j,n)
k =

(√
f̂1/f̂−1

)k

sin (kθj,n) . (1.5.4)

Remark 1.5.1. It is important to note that
√

f̂1f̂−1 and
√

f̂1/f̂−1 in (1.5.2) and

(1.5.4) should be interpreted as follows: We have in exponential form f̂1 =
∣∣∣f̂1

∣∣∣ eiϕ1

and f̂−1 =
∣∣∣f̂−1

∣∣∣ eiϕ−1 , for ϕ1, ϕ−1 ∈ [0, 2π], and we set

√
f̂1f̂−1 =

√
f̂1

√
f̂−1 =

√∣∣∣f̂1

∣∣∣ ∣∣∣f̂−1

∣∣∣ei(ϕ1+ϕ−1)/2,√
f̂1/f̂−1 =

√
f̂1/
√

f̂−1 =
√∣∣∣f̂1

∣∣∣ / ∣∣∣f̂−1

∣∣∣ei(ϕ1−ϕ−1)/2.

For instance, for the case f̂1 = f̂−1 = −1 = eiπ, we have√
(−1)(−1) =

√
−1

√
−1 = i · i = −1,√

(−1)/(−1) =
√

−1/
√

−1 = i/i = 1.

We now present a few examples to illustrate the type of problems that this thesis
aims to tackle.
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Example 1.5.1. We return to Example 1.2.1 and show that through equations (1.5.2),
(1.5.3), and (1.5.4) we can exactly compute the eigenvalues and eigenvectors of Tn(f).
Recall that in Example 1.2.1 we have n = 5 and f(θ) = 2 − 2 cos(θ). From
(1.5.2) we infer that g(θ) = f(θ), and the τn-grid is θj,5 = jπ/6, for j = 1, . . . , 5.
Table 1.5.2 exhibits the eigenvalues and the corresponding eigenvectors for T5(f); and,
indeed, the equation T5(f)xj,5 = λj(T5(f))xj,5 is true for all j = 1, . . . , 5.

Table 1.5.2. Example 1.5.1: The eigenvalues, and corresponding eigenvectors, for the generated
Toeplitz matrix T5(f), where the symbol is f(θ) = 2 − 2 cos(θ).

j λj(T5(f)) xj,5

1 2 − 2 cos (πh) [sin (πh) , sin (2πh) , sin (3πh) , sin (4πh) , sin (5πh) ]T

2 2 − 2 cos (2πh) [sin (2πh) , sin (4πh) , sin (6πh) , sin (8πh) , sin (10πh)]T

3 2 − 2 cos (3πh) [sin (3πh) , sin (6πh) , sin (9πh) , sin (12πh) , sin (15πh)]T

4 2 − 2 cos (4πh) [sin (4πh) , sin (8πh) , sin (12πh) , sin (16πh) , sin (20πh)]T

5 2 − 2 cos (5πh) [sin (5πh) , sin (10πh) , sin (15πh) , sin (20πh) , sin (25πh)]T

Figure 1.5.1. Example 1.5.1: The symbol f(θ) = 2 − 2 cos(θ) shown for θ ∈ [0, π]
(black line). The eigenvalues λj(T5(f)) (black diamonds), and the samplings of f(θ)
with the τ5-grid (white circles) overlap exactly.

From axiom GLT 1, and the fact that all matrices Tn(f) are Hermitian, we deduce
that this is an example of a matrix-sequence satisfying both {Tn(f)}n ∼glt f and
{Tn(f)}n ∼σ,λ f . Additionally, since we know that the matrix Tn(f) belongs to the
τ -algebra, described in [15] and originally studied in [12], we do know the grid that
gives the exact eigenvalues when sampling the symbol.

We now construct an example of a matrix T̃n(f), belonging to the τn(1, 1)-algebra,
for which the grid τn(1, 1) = τ 0

n−1 gives the exact eigenvalues, when sampling f .
Define T̃n(f) = Tn(f) + Rn, where Tn(f) is the Toeplitz matrix generated by
f , and Rn is a low rank correction. Rn is a matrix with all zeros, except for two
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elements, namely, (Rn)1,1 = f̂1 = −1 and (Rn)n,n = f̂1 = −1. By the same
construction, but with T̃n(f) belonging to the τn(−1, −1)-algebra, we have that the
grid τn(−1, −1) = τπ

n−1 gives the exact eigenvalues when sampling f . Here we have
instead T̃n(f) = Tn(f) − Rn, with Rn defined as before.

Example 1.5.2. In contrast to Examples 1.2.1 and 1.5.1, we now focus on a case
where a tridiagonal matrix Tn(f) is not Hermitian. We construct an example where

{Tn(f)}n ∼glt f, {Tn(f)}n ∼σ f, {Tn(f)}n ̸∼λ f.

In other words, the sequence {Tn(f)}n is a GLT sequence and f describes its singular
value distribution. However, as n → ∞ the errors Ej,n = λj(Tn(f)) − f(θj,n) does
not tend to zero, since f does not describe the eigenvalue distribution of {Tn(f)}n; see
Figure 1.5.2. Consider the symbol

f(θ) = 2 − eiθ + 2ie−iθ,

and the generated Toeplitz matrix of order n = 5,

T5(f) =


2 2i 0 0 0

−1 2 2i 0 0
0 −1 2 2i 0
0 0 −1 2 2i
0 0 0 −1 2

 .

From (1.5.2) we have that a symbol g(θ) is such that Tn(f) ∼ Tn(g); that is, the nth
Toeplitz matrix generated by f shares the same eigenvalues as the nth Toeplitz matrix
generated by g. In this example we have

g(θ) = 2 + 2
√

2ei3π/4 cos(θ),

and the generated Toeplitz matrix of order n = 5,

T5(g) =


2

√
2ei3π/4 0 0 0√

2ei3π/4 2
√

2ei3π/4 0 0
0

√
2ei3π/4 2

√
2ei3π/4 0

0 0
√

2ei3π/4 2
√

2ei3π/4

0 0 0
√

2ei3π/4 2

 .

Note that Tn(g) is a symmetrization of Tn(f), in the sense that there is an invertible
diagonal matrix Dn such that Tn(g) = DnTn(f)D−1

n , see [58]. With f̂1f̂−1 ̸= 0
and n = 5, a possible D5 is given by

D5 =


1 0 0 0 0
0 γ 0 0 0
0 0 γ2 0 0
0 0 0 γ3 0
0 0 0 0 γ4

 ,
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where γ =
√

f̂−1/f̂1 =
√

2i/
√

−1 = 1 − i. To conclude, we have the relations
{Tn(f)}n ∼glt,σ f , {Tn(f)}n ̸∼λ f , {Tn(f)}n ∼λ g, and {Tn(g)}n ∼glt,σ,λ g.

Figure 1.5.2. Example 1.5.2: Left: Eigenvalue distribution. Symbols f (black line) and
g (dashed line) drawn on the complex plane. Sampling g with τ5-grid gives eigenvalues
of T5(f) ∼ T5(g). Right: Singular value distribution. Absolute values of the symbols
|f(θ)| (black line) and |g(θ)| (dashed line) for θ ∈ [−π, π].

In the left panel of Figure 1.5.2, we illustrate the eigenvalue distribution of the generated
matrix Tn(f) (black diamonds). We display the two symbols f : [−π, π] → C (black
line) and g : [−π, π] → C (dashed line). For any n, the eigenvalues of Tn(f)
and Tn(g) lie on the dashed line. Sampling f with the τ5-grid (black circles) gives
bad approximations of the eigenvalues. Sampling g with the τ5-grid (white circles) gives
the exact eigenvalues, both for T5(f) and T5(g) which are similar matrices. In the right
panel of Figure 1.5.2, we show the singular value distribution of Tn(f) (black diamonds)
and Tn(g) (black stars). Absolute values of the symbols |f(θ)| (black line) and |g(θ)|
(dashed line) are shown for θ ∈ [−π, π]. Since |f | and |g| are non-monotone on
θ ∈ [−π, π], the correct sampling grid is not uniquely defined. Three grid-points of the
standard τ5-grid have been shifted to [−π, 0], to define a new sampling grid θ̄j,5. The
samplings |f(θ̄j,5)| (black circles) do not give an exact approximation of σj(T5(f)).
The matrix T5(g) is normal (A∗A = AA∗), and thus σj(T5(g)) are equal to the
moduli of the eigenvalues, |λj(T5(g))|. Both the grid θ̄j,n and the τ5-grid gives the
exact singular values of T5(g) when sampling |g(θ)| (white circles is |g(θ̄j,n)|).

Example 1.5.3. In this example we extend Example 1.2.1, in the sense that we allow
variable coefficients, that is, the matrix we consider does not have constant diagonals.
Consider the differential equation,

{
−(a(x)u′(x))′ = b(x), x ∈ (0, 1),
u(x) = 0, x ∈ {0, 1},

(1.5.5)
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for some a(x) and b(x). Note that if we have a(x) = 1, then we get −u′′(x) on the
left hand side and we are then in the case of Example 1.2.1. When discretizing (1.5.5)
we have

−(a(x)u′(x))′ = −a′(x)u′(x) − a(x)u′′(x) ≈ Anun = bn,

where, by using second order finite differences,

An =



a1/2 + a3/2 −a3/2
−a3/2 a3/2 + a5/2 −a5/2

−a5/2
. . . . . .
. . . . . . −an−1/2

−an−1/2 an−1/2 + an+1/2

 ,

with a generic central row given by

(An)i =
[
0, . . . , 0, −ai−1/2, ai−1/2 + ai+1/2, −ai+1/2, 0, . . . , 0

]
,

where ai = a(xi), xi = ih, i = 0, . . . , n + 1, h = 1/(n + 1), bi = b(xi),
un = [u1, . . . , un]T, and bn = [b1, . . . , bn]T.

Now we show that {An}n is a particular non-trivial example of a GLT sequence.
Let Dn(a) be the diagonal matrix generated by a(x), as defined in axiom GLT 3, and
let Tn(f) be the Toeplitz matrix generated by f(θ) = 2 − 2 cos(θ). We have

Dn(a) =


a1

a2
. . .

an

 , Tn(f) =


2 −1

−1 . . . . . .
. . . . . . −1

−1 2

 ,

and thus

Dn(a)Tn(f) =



2a1 −a1
−a2 2a2 −a2

−a3
. . . . . .
. . . . . . −an−1

−an 2an

 .

We observe that An = Dn(a)Tn(2 − 2 cos(θ)) + En where,

(En)i,j =


a(2i−1)/2 − 2a2i/2 + a(2i+1)/2, i = j, i = 1, . . . , n,

a2i/2 − a(2i−1)/2, i = j + 1, i = 2, . . . , n,

a2i/2 − a(2i+1)/2, i = j − 1, i = 1, . . . , n − 1,

0, otherwise.
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Under the assumption that a(x) is continuous almost everywhere, the norm of the matrix
En is such that ∥En∥ → 0 when n → ∞; see Figure 1.5.3. As a consequence
{En}n ∼σ 0, that is, {En}n is zero-distributed, and hence {En}n ∼glt 0 by axiom
GLT 3. Since {Dn(a)}n ∼glt a(x), {Tn(f)}n ∼glt f(θ), {En}n ∼glt 0 by
axioms GLT 2 and GLT 5, we conclude that {An}n ∼glt a(x)(2 − 2 cos(θ)).
Therefore, by axiom GLT 1 and by the fact that An is real symmetric, we infer that
{An}n ∼σ,λ a(x)(2 − 2 cos(θ)).
As a practical example, consider (1.5.5) with a discontinuous a(x) defined by

a(x) =


2 + x/2, x ∈ [0, 1/3),
eπx/2, x ∈ [1/3, 2/3),
2 + cos(3x), x ∈ [2/3, 1].

(1.5.6)

Figure 1.5.3. Example 1.5.3. Left: Discontinuous a(x) in (1.5.5), defined in (1.5.6).
Right: The spectrum of An and Dn(a)Tn(f) for n = {5, 1000}. Also shown the
samplings ξr, for r = 100, and the interpolated samplings ξr(θj,5).

The left panel of Figure 1.5.3 shows the graph of the function a(x). In the right
panel of Figure 1.5.3, we show the eigenvalues of the matrices A5 (black diamonds) and
D5(a)T5(f) (white diamonds with blue edge). Also shown is an approximation of the
eigenvalues (white circles with red edges), by an interpolated sampling of a vector ξ100 of
length 1002 = 10000, using the τ5-grid. The vector ξr is obtained in the following
way: for a chosen r, define the grid

Gr = {(i/n, j/(n + 1)); i, j = 1, . . . , r} ,

and then compute all the samples of a(x)f(θ) at the points (x, θ) ∈ Gr. These r2

samples are stored, after being sorted in non-decreasing order, in a vector ξr. We assume
that the vector ξr contains samples of some function ξ(θ) and in the limit, as r → ∞,
ξr describes the spectrum of Dn(a)Tn(f). However, we do not know ξ(θ) analytically,
so we cannot sample ξ(θ) with a grid θj,n, but we can interpolate the data in the vector
ξr to the grid points θj,n. In the right panel of Figure 1.5.3, it is clear that for a large
n = 1000, the eigenvalues of the two matrices An and Dn(a)Tn(f) overlap well with
ξ100, over the whole spectrum.
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Various problems, with variable coefficients and discretized with isogeometric analysis
(IgA), are studied in [32]. For further discussion on variable coefficients and quite gen-
eral choices of differential operators and approximation methods, we refer to [40, 41, 43],
and the references therein.

Example 1.5.4. The symbol can also be matrix-valued, that is, each sampling returns
a matrix. In what follows, matrix-valued symbols are denoted in bold, for example
f (s)(θ), and s × s is the size of the matrix returned for each sampling. The size of a
generated matrix Tn(f (s)) is N ×N , where N = ns. The case s = 1, is the scalar case
discussed in previous examples. This type of generated matrices are called block Toeplitz
matrices, that is, we generate a Toeplitz matrix, where the constant diagonal elements,
instead of scalars, are matrices (or blocks) of order s.

We now show how to view a single Toeplitz matrix, namely, T6(f) with symbol
f(θ) = 2 − 2 cos(θ), in several different ways depending on the block structure we
choose. Consequently, we have different generating functions and symbols depending on
our choice. We have

T6(f) =



2 −1 0 0 0 0
−1 2 −1 0 0 0

0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2


= T6(f (1)),

where we have chosen the scalar case s = 1, and thus,

f (1)(θ) =
[

2
]

︸ ︷︷ ︸
f̂ (1)
0

+
[

−1
]

︸ ︷︷ ︸
f̂ (1)
1

eiθ +
[

−1
]

︸ ︷︷ ︸
f̂ (1)
−1

e−iθ =
[

2
]

+ 2
[

−1
]

cos(θ).

We now view the same matrix as a block Toeplitz matrix, with blocks of order s = 2,

T3(f (2)) =



2 −1 0 0 0 0
−1 2 −1 0 0 0

0 −1 2 −1 0 0
0 0 −1 2 −1 0
6 0 0 −1 2 −1
6 0 0 0 −1 2


=

 f̂ (2)
0 f̂ (2)

−1 0
f̂ (2)
1 f̂ (2)

0 f̂ (2)
−1

0 f̂ (2)
1 f̂ (2)

0

 ,

where the matrix-valued symbol is

f (2)(θ) =

 2 −1
−1 2


︸ ︷︷ ︸

f̂ (2)
0

+

 0 −1
0 0


︸ ︷︷ ︸

f̂ (2)
1

eiθ +

 0 0
−1 0


︸ ︷︷ ︸

f̂ (2)
−1

e−iθ.
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Note that f̂ (2)
1 = (f̂ (2)

−1 )T. Thus, T6(f) = T3(f (2)). In general, TN (f) = Tn(f (s)),
where N = ns is the size of the matrix, n is the number of blocks, each of order s. So,
to sample the matrix-valued symbol to get the eigenvalues of T3(f (2)), we here would
use the grid

θj,n = 2θj,2n = 2 jπ

2n + 1
= jπ

n + 1/2
, j = 1, . . . , n,

to get the exact eigenvalues when sampling f (2)(θ). Each sampling yields a local 2 × 2
matrix, for which we need to solve the eigenvalue problem, and get two eigenvalues.

Now choose yet another block structure of the matrix Toeplitz T6(f), consisting of
blocks of order s = 3, with a new symbol f (3),

T2(f (3)) =



2 −1 0 0 0 0
−1 2 −1 0 0 0

0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2


=
[

f̂ (3)
0 f̂ (3)

−1
f̂ (3)
1 f̂ (3)

0

]
,

that is, the symbol for this chosen block size of 3 × 3 is

f (3)(θ) =

 2 −1 0
−1 2 −1

0 −1 2


︸ ︷︷ ︸

f̂ (3)
0

+

 0 0 −1
0 0 0
0 0 0


︸ ︷︷ ︸

f̂ (3)
1

eiθ +

 0 0 0
0 0 0

−1 0 0


︸ ︷︷ ︸

f̂ (3)
−1

e−iθ.

The grid that gives the exact eigenvalues, for a general symbol f (s) with blocks of order
s, for the given tridiagonal structure is

θj,n = sθj,N = jπ

n + 1/s
, j = 1, . . . , n.

In Figure 1.5.4 we show the eigenfunctions for the three different symbols f = f (1),
f (2), and f (3), previously defined in the current example. Each eigenfunction is denoted
as f (s)

q , where s is the order of the blocks of the symbol, and q = 1, . . . , s are the
numbers of the eigenfunctions. As expected, the three symbols describe the same spectrum
as f , but split into different eigenfunctions for s > 1.

We can also get exact information on the spectrum for a Toeplitz-like block matrix
that is not a full block matrix in the sense that its size is not ns × ns. Consider the
matrix-valued symbol f (2)(θ), defined earlier in this example, and generate the matrix
Tn(f (2)). Then remove the last row and column, so as to obtain a matrix AN−1. To get
the exact eigenvalues, do the following procedure: (a) Sample f (2)(θ) with the τπ

n−1-grid,
defined in Table 1.5.1. This results in 2n samplings, but the matrix AN−1 is of order
N −1 = 2n−1. (b) Discard one of the two (equal) samplings from f (2)(θn,n). Hence,

we have used the different grids τn−1 and τπ
n−1 on the two eigenfunctions f (2)

1 and f (2)
2 .
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Figure 1.5.4. Example 1.5.4. The eigenfunctions f (s)
q , q = 1, . . . , s, of the three

symbols f (1), f (2), and f (3) describe the same spectrum.

Note also that in general, we do not know what grid we should use to get exact eigenvalues,
and then we often use the standard τn-grid, unless we can find an “optimal” grid, better
suited for the problem under consideration.

We now consider a more applicable example of a matrix-valued symbol. In [31] we
extend the results of this thesis to matrix-valued symbols, but we also present matrices,
where we get the exact eigenvalues by sampling the symbol with a special grid. Take the
stiffness matrix constructed by discretizing a second order elliptic differential problem by
the Qp Lagrangian finite element method; for details see [42]. For n = 3 and p = 3
we get the following normalized stiffness matrix

K
(3)
3 = 1

40



432 −297 54 0 0 0 0 0
−297 432 −189 0 0 0 0 0

54 −189 296 −189 54 −13 0 0
0 0 −189 432 −297 54 0 0
0 0 54 −297 432 −189 0 0
0 0 −13 54 −189 296 −189 54
0 0 0 0 0 −189 432 −297
0 0 0 0 0 54 −297 432


.

The natural block structure for the matrix K
(3)
3 is shown in different colors, and the

associated symbol is

f (3)(θ) =

 432 −297 54
−297 432 −189

54 −189 296

+

 0 0 −189
0 0 54
0 0 −13

 eiθ

+

 0 0 0
0 0 0

−189 54 −13

 e−iθ.
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As is seen, the matrix K
(3)
3 is not a full block matrix; the last row and column has

been removed due to boundary conditions. Using a special grid we can obtain the exact
eigenvalues of the matrix K

(3)
3 when sampling f (3)(θ); for details see [31].

For further discussion on matrix-valued symbols we refer to [30, 43] and the references
therein.

Example 1.5.5. Symbols that have multiple arguments, such as f(θ1, θ2, . . . , θk),
are called multivariate. Multivariate symbols generate Toeplitz matrices whose elements
themselves are Toeplitz matrices. These structures are referred to as multilevel Toeplitz
matrices [77]. Consider the bi-variate symbol

f(θ1, θ2) = 6 − 6 cos(θ1) − 4 cos(θ2) − 4 cos(θ1) cos(θ2)
= 2(3 − 2 cos(θ2)) − 2 cos(θ1)(3 + 2 cos(θ2)),

where, by convention, θ1 is the “outer” and θ2 is the “inner” variable. The generated
matrix from this symbol has a tensor structure. We denote by I(ω)

n the matrix of size n
with ones on the diagonal ω and zeros elsewhere, that is, the identity matrix of order n

is I(0)
n . We can construct the matrix Tn1,n2(f) as follows, where the Kronecker product

is denoted by ⊗

An2 = Tn2(3 − 2 cos(θ2)) = 3I(0)
n2 −

(
I(1)
n2 + I(−1)

n2

)
,

Bn2 = Tn2(3 + 2 cos(θ2)) = 3I(0)
n2 +

(
I(1)
n2 + I(−1)

n2

)
,

g(θ1) = 2An2 − 2Bn2 cos(θ1),

Tn1,n2(f) = Tn1(g) = 2I(0)
n1 ⊗ An2 −

(
I(1)
n1 + I(−1)

n1

)
⊗ Bn2 ,

and Tn1,n2(f) is then a matrix of size N × N where N = n1n2. The sampling of
the symbol f(θ1, θ2) is done as follows. The sampling grids in each dimension are the
standard τn1 and τn2 , that is,

θ
(1)
j,n1

= jπ

n1 + 1
, j = 1, . . . , n1,

θ
(2)
j,n2

= jπ

n2 + 1
, j = 1, . . . , n2,

and the approximated eigenvalues are

λ̃i,j(Tn1,n2(f)) = f(θ(1)
i,n1

, θ
(2)
j,n2

).
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In this example we have λi,j(Tn1,n2(f)) = λ̃i,j(Tn1,n2(f)), since the symbol gives
rise to tridiagonal structures in both dimensions for which the τn-grid returns the exact
eigenvalues. The matrix Tn1,n2(f) is shown below for n1 = 3 and n2 = 4. Its
“blocks” are matrices of order n2 = 4 and are shown in yellow (2An2) and red (Bn2).

T3,4(f) =



6 −2 0 0 −3 −1 0 0 0 0 0 0
−2 6 −2 0 −1 −3 −1 0 0 0 0 0

0 −2 6 −2 0 −1 −3 −1 0 0 0 0
0 0 −2 6 0 0 −1 −3 0 0 0 0
3 −1 0 0 6 −2 0 0 −3 −1 0 0

−1 −3 −1 0 −2 6 −2 0 −1 −3 −1 0
0 −1 −3 −1 0 −2 6 −2 0 −1 −3 −1
0 0 −1 −3 0 0 −2 6 0 0 −1 −3
0 0 0 0 −3 −1 0 0 6 −2 0 0
0 0 0 0 −1 −3 −1 0 −2 6 −2 0
0 0 0 0 0 −1 −3 −1 0 −2 6 −2
0 0 0 0 0 0 −1 −3 0 0 −2 6


We have the “sequence” of matrices {Tn1,n2(f)}n1,n2 in which n1 and n2 can grow
independently. Often, in the discretization of PDEs we have ni = νci, i = 1, 2, where
ν is related to the fineness, or discretization, parameter and grows to infinity, while the
quantities ci, i = 1, 2, are fixed proportionality constants. In Figure 1.5.5 we show
the spectrum of Tn1,n2(f), for n1 = 10 and n2 = 50, with black dots. The symbol
f(θ1, θ2) is shown in color.

0
π/4

π/2
3π/4

π

0
π/4

π/2
3π/4

π
−10

−5

0

5

10

15

θ1
θ2

Figure 1.5.5. Example 1.5.5. The spectrum of the matrix T10,50(f) (black dots), with
the symbol f(θ1, θ2) = 2(3 − 2 cos(θ2)) − 2 cos(θ1)(3 + 2 cos(θ2)) (colored surface).

For more details on multilevel Toeplitz matrices and their applications we refer the reader
to [8, 30, 41, 42, 51], and the references therein.
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Example 1.5.6. In this example we discuss the case of non-uniform discretizations
in the context of finite differences; for the finite element setting, see [7]. Consider the
problem

−(a(x)u′(x))′ = b(x), x ∈ (0, 1),

with Dirichlet boundary conditions. Suppose we discretize this one-dimensional problem
with the second order central finite difference method based on a non-uniform grid, such
that, 0 = x0 < x1 < . . . < xn+1 = 1, as described in [40, Section 10.5.4].
Suppose further that the non-uniform grid is obtained as the mapping of the uniform grid
0 = x̂0 < x̂1 < . . . < x̂n+1 = 1 through a fixed (increasing and bijective) function
G : [0, 1] → [0, 1], that is, xj = G(x̂j) for all j = 0, . . . , n + 1. We assume
that G ∈ C1([0, 1]) and that there exists at most finitely many points x̂ such that
G′(x̂) = 0. Then, the resulting discretization matrix AG,n is approximately equal to
(n + 1)Dn (a(G(x̂))/G′(x̂)) Tn(2 − 2 cos(θ)) in the sense that

1
n + 1

AG,n = Dn

(
a(G(x̂))
G′(x̂)

)
Tn(2 − 2 cos(θ)) + En,

where {En}n is a zero-distributed sequence. Thus, taking also into account that AG,n

is symmetric, we conclude by axioms GLT 1, GLT 3, and GLT 5 that{ 1
n + 1

AG,n

}
n

∼glt,σ,λ
a(G(x̂))
G′(x̂)

(2 − 2 cos(θ)).

For more details, we refer to [40, Section 10.5.4].
For example, consider the map G(x̂) = 1 − cos(πx̂). Note that the non-uniform

grid generated by G is (almost) the grid consisting of the Chebyshev nodes in [0, 1]. Since
G′ vanishes only at the points x̂ = 0 and x̂ = 1, we have{ 1

n + 1
AG,n

}
n

∼glt,σ,λ
a(1 − cos(πx̂))

π sin(πx̂)
(2 − 2 cos(θ)).

To finalize this section, we here collect a few important references, with further
details on the application of the theory of GLT sequences to different types of
discretizations of differential equations:

• finite difference [40, Section 10.5], [41, Section 8.5], and [16, 67, 68],
• finite volume [9],
• discontinuous Galerkin [8, 30],
• finite element [40, Section 10.6] and [7, 16, 29, 42, 68],
• isogeometric analysis [40, Section 10.7], [41, Section 8.5],
and [26, 32, 37, 38, 60],

• fractional differential equations [27, 52].
Integral equations are treated in [40, Section 10.4], and [1, 61]. Regarding
preconditioning in Krylov methods, GLT based multigrid, and combinations of
these methods in the spirit of multi-iterative solvers [62], see [23, 24, 25, 28, 40]
and references therein.
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1.6 The Approximation Errors
In this section we discuss the approximation errors

Ej,n = λj(An) − f(θj,n),

that arise when {An}n ∼glt,σ,λ f , and θj,n is a grid that does not return the
exact eigenvalues, when used to sample the symbol f .

Example 1.6.1. From Example 1.2.1, we know that the symbol for the second order
finite difference discretization of the Laplacian is f(θ) = 2 − 2 cos(θ). Assume we
apply the Laplacian operator twice, commonly known as the bi-Laplacian or the biharmoic
operator,

∇4u = ∆2u,

and suppose we want to study the spectral properties of this operator. From axiomsGLT 3
and GLT 5, we have {Bn}n ∼glt f2, where

Bn = (Tn(f))2,

g(θ) = f(θ)2 = (2 − 2 cos(θ))2 = 6 − 8 cos(θ) + 2 cos(2θ).

The matrix Bn is the discretized bi-Laplacian, in the sense that we twice apply the
Laplace operator, discretized by second order finite differences. Since {Bn}n ∼glt g, and
Bn is Hermitian, we have from axiom GLT 1 that {Bn}n ∼σ,λ g. We have,

Bn = T5(f)T5(f) =

 2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2



=


5 −4 1 0 0

−4 6 −4 1 0
1 −4 6 −4 1
0 1 −4 6 −4
0 0 1 −4 5

 . (1.6.1)

Indeed, sampling g(θ) with the τn-grid returns the exact eigenvalues of Bn, that is
λj(Bn) = g(θj,n). Note the two corner elements, indicated in red, which deviate from
the pure Toeplitz structure.

We focus now on g(θ) and Tn(g). The generated matrix Tn(g) is the discretized
bi-Laplacian in the classical second order finite difference sense. We have the Fourier
coefficients ĝ0 = 6, ĝ1 = ĝ−1 = −4, and ĝ2 = ĝ−2 = 1, and thus

T5(g) =


ĝ0 ĝ−1 ĝ−2 0 0
ĝ1 ĝ0 ĝ−1 ĝ−2 0
ĝ2 ĝ1 ĝ0 ĝ−1 ĝ−2
0 ĝ2 ĝ1 ĝ0 ĝ−1
0 0 ĝ2 ĝ1 ĝ0

 =


6 −4 1 0 0

−4 6 −4 1 0
1 −4 6 −4 1
0 1 −4 6 −4
0 0 1 −4 6

 . (1.6.2)
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We note the difference between Bn of (1.6.1) and Tn(g) of (1.6.2); the elements
(Bn)1,1 and (Bn)n,n (indicated in red) are not six, but five, a consequence of the
multiplication of the two matrices Tn(f) and Tn(f) to attain Bn. The matrix Bn is
equal to Tn(g) except for a low-rank correction matrix Rn (in this case of rank 2),

Rn = Bn − Tn(g) =


−1 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1

 .

The low-rank correction Rn is zero-distributed according to the definition in Section 1.4.
This means that as n → ∞ the eigenvalues of Bn and Tn(g) are the same. However,
we work with finite-dimensional matrices Tn(g) and we do not know an explicit grid
θj,n, which yields the exact eigenvalues of λj(Tn(g)) when sampling g(θ). Thus,

λj(Tn(g)) = g(θj,n) + Ej,n, j = 1, . . . , n,

where Ej,n are the errors of the approximations.

Figure 1.6.1. Example 1.6.1: The errors Ej,n, when approximating λj(Tn(g)) with
samplings of g(θ) = 6−8 cos(θ)+2 cos(2θ) for different n. Left: The approximation
errors, Ej,n = O(h), decrease as n increases. Right: The scaled errors Ej,n/h, with
h = 1/(n + 1), overlap for the differrent n.

We display the graph of the errors Ej,n in the left panel of Figure 1.6.1, when using the
τn-grid for three different n ∈ {100, 200, 400}. The errors Ej,n are of order O(h),
where h = 1/(n + 1) for each n. Hence, it decreases linearly in n as n increases. It is
also clear that the shape of the “error curve”, given by plotting Ej,n for all j = 1, . . . , n,
is retained as n increases. In the right panel of Figure 1.6.1, we show Ej,n/h for each
n, and the three curves overlap perfectly.
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The overlap of the curves Ej,n/h in the right panel of Figure 1.6.1 is due to
the fact that for many types of symbols we have an asymptotic expansion of the
errors Ej,n of the form

Ej,n = λj(Tn(f)) − f(θj,n)

=
α∑

k=0
ck(θj,n)hk + Ej,n,α,

for some constant α, a set of functions ck(θ), and remaining errors Ej,k,α. Note
that c0(θ) = 0, and the summation is for k = 0, . . . , α, so if we choose α = 0
then Ej,n = Ej,n,0. Hence, the right panel of Figure 1.6.1 shows

Ej,n/h = c1(θj,n) + Ej,n,1/h,

for three different n. Here Ej,n,1/h is small, and Ej,n/h is approximately equal
to the samplings c1(θj,n), and since the function c1(θ) is the same for all n, the
three curves overlap.

The major contribution of this thesis is two-fold. We describe methods that
efficiently estimate the functions ck(θ), and then we use these approximations
to accurately reduce the error of eigenvalue approximations for large structured
matrices. Furthermore, using precomputed estimations c̃k(θ) leads to highly
efficient matrix-less methods. As shown in the following section, our approach
is novel and uses a framework different from well-developed iterative eigenvalue
solvers, such as the Lanczos and Arnoldi methods. We also comment on the
generality of the approach and its applicability to analyze spectral properties of
matrices obtained from differential operators.
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2. Main Results and Contributions

I want to climb this little mountain on my own,
before I see the maps of the great explorers.

Anonymous

The main results and contributions of this thesis are summarized in this section.
Each subsection is dedicated to respective Paper I–V.

2.1 Asymptotic Expansion of the Approximation Errors
In Paper I we investigate the errors of the approximated eigenvalues of banded
symmetric Toeplitz (BST) matrices, given by sampling the generating function
f . The generating function f is also the symbol by Szegő’s limit theorem (1.3.1),
since f is bounded and real-valued.

Introduction
We first recall a few fundamental facts from Section 1. Consider a real cosine
trigonometric polynomial (RCTP)

f(θ) = f̂0 + 2
p∑

ω=1
f̂ω cos(ωθ), f̂0, . . . , f̂p ∈ R,

whose (possible) nonzero Fourier coefficients are f̂ω, ω = 0, . . . , p. This RCTP
is the generating function and the symbol of the sequence of BST matrices

Tn(f) =



f̂0 . . . f̂p 0 . . . 0
...

. . . . . . . . . . . .
...

f̂p
. . . . . . . . . . . . 0

0 . . . . . . . . . . . . f̂p
...

. . . . . . . . . . . .
...

0 . . . 0 f̂p . . . f̂0


, n = 1, 2, . . .

If we sample f(θ) on a uniform grid in [0, π], for example θj,n = jπh with
j = 1, . . . , n and h = 1/(n+1), we obtain an approximation of the eigenvalues
of the matrix Tn(f), that is,

λj(Tn(f)) = f(θj,n) + Ej,n, j = 1, . . . , n,
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where Ej,n are the errors associated with the chosen grid points θj,n. These
errors Ej,n are typically of order O(h), a fact that can be proved by using matrix-
theory arguments such as the embedding in the τn-algebra; see [12]. However,
when certain conditions are met, we show that one can approximate the errors
in an efficient way with the asymptotic expansion

Ej,n =
α∑

k=0
ck(θj,n)hk + Ej,n,α,

where ck(θ) are functions associated with the chosen grid type, c0(θ) = 0, and
Ej,n = Ej,n,0. We thus have an expression for the eigenvalues of the matrix
Tn(f), namely

λj(Tn(f)) = f(θj,n) + Ej,n

= f(θj,n) +
α∑

k=0
ck(θj,n)hk + Ej,n,α. (2.1.1)

The errors Ej,n,α are of order O(hα+1), or more precisely, as shown in Paper I,
we have |Ej,n,α| ≤ Cαhα+1, where Cα is a constant depending on α and f .

The Algorithm to Approximate ck(θ), k = 1, . . . , α
In Paper I we introduce Algorithm 1, defined below, to find an approximation
c̃k(θ) of the functions ck(θ), for k = 1, . . . , α. Assume we have a monotone
non-decreasing RCTP f(θ), and we choose an integer α, and an integer n1,
typically small. In Paper I we only studied the τn1-grid, that is θj1,n1 = j1πh1
for the set of indices j1 = {1, . . . , n1} and h1 = 1/(n1 + 1), however, Algo-
rithm 1 can be modified to work for other types of grids. From (2.1.1) and the
fact that c0(θ) = 0 and α > 0, we have

Ej1,n1 = λj1(Tn1(f)) − f(θj1,n1) =
α∑

k=1
ck(θj1,n1)hk

1 + Ej1,n1,α,

where it is assumed that the eigenvalues of each Toeplitz matrix generated by
f(θ) are sorted in non-decreasing order. We now define α−1 additional matrix
sizes by the rule nk = 2k−1(n1 + 1) − 1, which is then true for k = 1, . . . , α.
We also define hk = 1/(nk + 1) and the sets of indices jk = 2k−1j1, for all
k = 1, . . . , α, because then, θjk,nk

= jkπhk is the same for all k. Thus, we
have for all k = 1, . . . , α,

Ejk,nk
= λjk

(Tnk
(f)) − f(θj1,n1) =

α∑
k=1

ck(θj1,n1)hk
k + Ejk,nk,α.

Now, assuming n1 is small enough, we compute all the errors Ejk,nk
using any

standard solver. This is done, for all k, by generating the matrix Tnk
(f) and

using an eigenvalue solver to find all eigenvalues λj(Tnk
(f)), sorted in non-

decreasing order. Then, we sample the symbol f(θ) on the grid points θj,nk
. If
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the samples f(θj,nk
) are not sorted in non-decreasing order, that is, if f(θ) is not

non-decreasing and monotone, we introduce a permutation σ on {1, . . . , nk}
that sorts the samples in non-decreasing order. We then consider the inverse
permutation ρ = σ−1, that sorts the eigenvalues λρ(j)(Tnk

(f)) according to
the samples f(θj,nk

). Then, Ejk,nk
= λρ(j)(Tnk

(f)) − f(θj,nk
). However, the

assumption was that f(θ) is non-decreasing and monotone, so for clarity we
omit ρ henceforth.

Because the error terms Ejk,nk,α are of order O(hα+1
k ), we decide to remove

them from the system since they are small enough for our given purposes; by
the choice of α and n1. We then introduce c̃k(θ) instead of ck(θ), since we no
longer solve the exact system, after ignoring all the error terms Ejk,nk,α. Hence,
we have

Ej1,n1 = c̃1(θj1,n1)h1 + c̃2(θj1,n1)h2
1 + . . . + c̃α(θj1,n1)hα

1 ,

...
...

...
...

Ejk,nk
= c̃1(θj1,n1)hk + c̃2(θj1,n1)h2

k + . . . + c̃α(θj1,n1)hα
k ,

...
...

...
...

Ejα,nα = c̃1(θj1,n1)hα + c̃2(θj1,n1)h2
α + . . . + c̃α(θj1,n1)hα

α,

which is written in compact form as

E = VC, (2.1.2)

where E ∈ Rα×n1 , V ∈ Rα×α, C ∈ Rα×n1 are given by

E =


Ej1,n1

Ej2,n2
...

Ejα,nα

 , V =


h1 h2

1 . . . hα
1

h2 h2
2 . . . hα

2
...

...
. . .

...
hα h2

α . . . hα
α

 , C =


c̃1(θj1,n1)
c̃2(θj1,n1)

...
c̃α(θj1,n1)

 .

By solving the system (2.1.2) we obtain our desired approximation of c(θj1,n1),

C = V−1E.

The Vandermonde matrix V is typically ill-conditioned and the system (2.1.2) is
commonly solved using LAPACK [2] or similar packages, and not by inversion
of the matrix V. In Algorithm 1, we present the process for computing the
approximations of the ck(θ) functions in a flowchart, for a specified input of α,
n1, and f .
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Algorithm 1 Approximate ck(θj,n1) for specified α, n1, and f(θ).

Input: α, n1, f(θ) for k = 1, . . . , α

nk = 2k−1(n1 +1)− 1

Tnk
(f)

eig(Tnk
(f))

λj(Tnk
(f))

λρ(j)(Tnk
(f))

Ejk,nk
= λρ(jk)(Tnk

(f)) − f(θj1,n1
)

E
(k)
j1,n1

= Ejk,nk
,∀k

hk = 1/(nk + 1),∀k

j1 = {1, . . . , n1}

jk = 2k−1j1,∀k

E = [E
(k)
j,n1

]α,n1

k,j=1

θj,nk
= jπhk,∀k

f(θj,nk
),∀k

V = [hj
i ]
α
i,j=1

1.2.

3.

permutation ρ,∀k

C = V−1E Output: C = [c̃k(θj,n1
)]α,n1

k,j=1

Step Description
Input to algorithm: α ∈ N, n1 ∈ N, and f(θ) monotone RCTP.

1. Loop over k = 1, . . . , α.
1.1 Define nk = 2k−1(n1 + 1) − 1.
1.2 Generate matrix Tn1(f).
1.3 Compute eigenvalues of Tn1(f).
1.4 Sort eigenvalues in non-decreasing order, λj(Tn1(f)).
1.5 Input: ρ (2.1.3). Reorder with permutation ρ, λρ(j)(Tn1(f)).
1.6 Input: f(θj1,n1) (2.1.2), jk (2.2.1). Compute errors Ejk,nk

.

2. Input: nk (1.1).
2.1 Define hk = 1/(nk + 1).
2.1.1 Define θj,nk

= jπhk.
2.1.2 Compute f(θj,nk

) for j = 1, . . . , n.
2.1.3 Define permutation ρ.
2.2 Define j1 = {1, . . . , n1}.
2.2.1 Define jk = 2k−1j1.

3. Input: Ejk,nk
(1.6), hk (2.1).

3.1 Define E
(k)
j1,n1

= Ejk,nk
.

3.2 Define error matrix E = [E(k)
j,n1

]α,n1
k,j=1.

3.3 Define Vandermonde matrix V = [hj
i ]αi,j=1.

3.4 Compute C by solving VC = E.

Output of algorithm: C = [c̃k(θj , n1)]α,n1
k,j=1.
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Example 2.1.1. We consider the same RCTP symbol as in Example 1.6.1, namely,
f(θ) = (2 − 2 cos(θ))2 = 6 − 8 cos(θ) + 2 cos(2θ), and use Algorithm 1 to com-
pute an approximation to the expansion (2.1.1), that is, c̃k(θj1,n1). First we focus on
a simple case, that is, α = 3 and n1 = 5.

Figure 2.1.1. Example 2.1.1: τnk
-grids and symbol f(θ) = 6 − 8 cos(θ) + 2 cos(2θ).

Left: Three grids, θj,nk
, where n1 = 5, n2 = 11, and n3 = 23. Blue circles are grid

points θjk,nk
. Colored vertical lines are grid points that give exact eigenvalues, when

sampling f(θ). Right: Symbol f(θ), and the three grids, θj,nk
.

In the left panel of Figure 2.1.1, we show the three grids θj,nk
that correspond to the

sizes nk = 2k−1(n1 + 1) − 1, k = 1, 2, 3, that is, n1 = 5 (blue), n2 = 11 (red),
and n3 = 23 (yellow). The blue circles are the three sets of indices j1, j2, and j3, such
that θjk,nk

is the same for all k. In addition, with vertical colored lines we show the
grid points for which the exact eigenvalues λj(Tnk

(f)) are obtained, when sampling the
symbol f(θ). In the right panel of Figure 2.1.1, we plot the symbol (black line), and
the three sampling grids, with the same coloring as in the left panel.

Figure 2.1.2. Example 2.1.1: Errors when approximating eigenvalues by sampling the
symbol, with grids of sizes n1 = 5 (blue), n2 = 11 (red), and n3 = 23 (yellow).
Left: Absolute errors, Ej,nk,0 = λj(Tnk

(f)) − f(θj,nk
). Right: Relative errors,

f(θj,nk
)/λj(Tnk

(f)) − 1.
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In Figure 2.1.2 we show the errors that arise when approximating the eigenvalues by
sampling the symbol with the grids θj,nk

, for k = 1, 2, 3. In the left panel we visualize
the absolute errors Ej,nk,0 = λj(Tnk

(f)) − f(θj,nk
). Note that the errors Ejk,nk,0

(blue circles) are the errors used in Algorithm 1. In the right panel we present the relative
errors, that is, f(θj,nk

)/λj(Tnk
(f)) − 1.

Remark 2.1.1. Since the symbol f(θ) does not comply with the simple-loop conditions
described, for example, in [6, 13, 14] — which require that f ′(θ) ̸= 0 for θ ∈ (0, π)
and f ′′(θ) ̸= 0 for θ ∈ {0, π} — because f ′′(θ) = 8 cos(θ) − 8 cos(2θ) = 0 for
θ = 0, the expansion (2.1.1) is point-wise not true for all eigenvalues, which are close to
zero [6]. We now demonstrate why this in practice, when using standard double precision
computations, is not a problem when using Algorithm 1.

Figure 2.1.3. Example 2.1.1: The approximations c̃k(θj,n1), k = 1, . . . , α, for α = 4,
and the symbol f(θ) = 6−8 cos(θ)+2 cos(2θ). Point-wise erratic approximations are
removed. Left: Smooth behavior for all four c̃k when n1 = 100. Right: For n1 = 403,
we have oscillatory behavior in c̃4, due to the double precision computations.

Now we use Algorithm 1 to compute approximations of ck(θ) for α = 4, and two
different n1; n1 = 100 and n1 = 23−1(100 + 1) − 1 = 403. In Figure 2.1.3 we
show the resulting approximations, c̃k. The points c̃3(θ1,n1), c̃4(θ1,n1), and c̃4(θ2,n1)
have been removed from both panels, because of their erratic behavior, as mentioned in
Remark 2.1.1. In the left panel of Figure 2.1.3, we show the results with n1 = 100,
and in the right panel n1 = 403. As is shown, the functions c̃3 and c̃4 behave well in
the domain and the erratic behavior is only point-wise, close to zero for the three removed
approximations. Moreover, c̃4 in the right panel shows an erratic behavior in the right
part of the domain [0, π], but this is due to using double precision arithmetic for the
computations. Increasing n1 would make c̃4 oscillatory, unless we increase the precision
of the computations.

Another approach to remedy the issue of point-wise errors in the expansion, is to
simply increase α in the computations. The resulting approximated c̃k for larger ks
are oscillatory for standard double precision arithmetics, so they are in themselves not
useful. However, as is demonstrated in Figure 2.1.4, the point-wise error for c̃3(θ1,n1)
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is effectively suppressed. In the left panel, we see the behavior of c̃3 in a neighborhood
of zero, when computed for four different n1. We choose n

(q)
1 = 2q−1(n(1)

1 + 1) − 1
where n

(1)
1 = 100 and q = 1, . . . , 4, since then the resulting approximations c̃k

overlap. Clearly the first eigenvalue for each n
(q)
1 behaves erratically, in the sense that the

expansion point-wise does not work as expected; this behavior is described in detail in [6].
In the right panel, we see the same approximations c̃k as in the left panel, however, we
have used α = 6 to compute them. The erratic behavior of the approximation of c̃3 for
the first grid point has been suppressed enough to be considered negligibly small.

Figure 2.1.4. Example 2.1.1: Erratic behavior for the approximation c̃3(θ1,n
(q)
1

), for
q = 1, . . . , 4. Left: Computations with α = 3. Erratic c̃3(θ1,n

(q)
1

), for all q. Right:

Computations with α = 6 suppresses the erratic c̃3(θ1,n
(q)
1

), for all q.

In Figure 2.1.5 we show the results of Algorithm 1 with α = 3 and n1 = 100. As
usual, we define nk = 2k−1(n1 +1)−1, hk = 1/(nk +1), j1 = {1, . . . , n1}, and
jk = 2k−1j1. In the top left panel, the errors Ejk,nk,0 = λjk

(Tn(f)) − f(θjk,nk
),

for k = 1, 2, 3, are shown. In the middle left panel, we present the computed er-
rors Ẽjk,nk,1 = Ejk,nk,0 − c̃1(θjk,nk

)hk. In the bottom left panel, we finally show
Ẽjk,nk,2 = Ẽjk,nk,1 − c̃2(θjk,nk

)h2
k. The errors Ẽjk,nk,3 = Ẽjk,nk,2 − c̃3(θjk,nk

)h3
k

are not shown since they are zero, to machine precision. In the right panels of Fig-
ure 2.1.5, we show Ejk,nk,0/hk, Ẽjk,nk,1/h2

k, and Ẽjk,nk,2/h3
k. These curves are in

essence the computed c̃k for k = 1, 2, 3; compare with the c̃k in Figure 2.1.3.

We now consider how many of the functions ck that we need to approximate, in
order to obtain “good” results when we use them to approximate the eigenvalues
of a large matrix. Assume we are interested in the eigenvalues, which are of
order O(1), of a large matrix, say in the order of n = O(106), and as seen in
Figure 2.1.3, the ck are of order O(1). Then, when using the approximated c̃k

in (2.1.1), and h = O(10−6), we have c̃3h3 = O(10−18). For standard double
precision arithmetic computations, this is beyond machine precision, which is
in the order of O(10−16). Hence, it is usually sufficient to approximate the first
two or three ck, and we should do it as accurately as possible.
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Figure 2.1.5. Example 2.1.1: The symbol f(θ) = 6−8 cos(θ)+2 cos(2θ), α = 3, and
n1 = 100. Left: Ejk,nk,0, Ẽjk,nk,1, and Ẽjk,nk,2 for k = 1, 2, 3. Right: Ejk,nk,0/hk,
Ẽjk,nk,1/h2

k, and Ẽjk,nk,2/h3
k for k = 1, 2, 3. The errors Ẽjk,nk,3 are zero for all k.

Using Approximations c̃k(θj1,n1) on a Large Matrix
When we have the approximations c̃k(θj1,n1) from Algorithm 1, we use them to
approximate the errors for a subset of the eigenvalues of a much larger matrix.
We are restricted to the matrices of size nm = 2m−1(n1 − 1) + 1, for some
integer m > α. The eigenvalues for which we estimate the approximation, are
the ones corresponding to indices jm = 2m−1j1. With hm = 1/(nm + 1), we
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have

λjm(Tnm(f)) ≈ λ̃jm(Tnm(f)) = f(θj1,n1) +
α∑

k=1
c̃k(θj1,n1)hk

m. (2.1.3)

Example 2.1.2. In this example, we use approximations c̃k(θj1,n1), from Exam-
ple 2.1.1, to approximate the eigenvalues with indices jm of matrices Tnm(f) by (2.1.3).

Figure 2.1.6. Example 2.1.2: Matrix Tn(f). Reducing the errors for indices jm, for
matrix orders nm = 104323 (left) and nm = 827391 (right). Different (α, n1, m).
Errors Ejm,nm,0 (black) and reduced errors Ẽjm,nm,1 (blue), Ẽjm,nm,2 (red), and
Ẽjm,nm,3 (yellow). Top: α and n1 are too small to obtain a reduction to O(10−14).
Middle: α increased; a reduction to O(10−14) is attained. Bottom: n1 increased in-
stead of α; a reduction to O(10−14) is attained for more eigenvalues, than in middle
panels, and at a lower cost.
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In Figure 2.1.6 we show the errors for different sets of parameters (α, n1, m). The left
panels are associated with a large matrix of order nm = 104323, whereas in the right
panels the order is nm = 827391. We use only c̃1, c̃2 and c̃3 to approximate the errors
Ejm,nm,0 (black). Since, as explained earlier, the term c̃3h3

m is too small to affect the
approximation in any significant way, we only include it for demonstrating this point. In
the two top panels, we compute the approximations c̃k using α = 3 and n1 = 100. The
resulting errors Ẽjm,nm,3 (yellow) is relatively large, especially close to zero. In the two
middle panels, we instead compute the approximations c̃k using α = 6 and n1 = 100.
The result is clearly better than in the top panels, also in the region close to zero. In the
two bottom panels, we compute the approximations c̃k using α = 3 and n1 = 807.
The order of the errors is the same as for the computations in the middle panels, however,
we now have 807 approximations, compared to 100, and we have computed them with
less work; computing the eigenvalues of Tnk

(f) for nk = 2k−1(100 + 1) − 1 and
k = 1, . . . , 6 in the middle panels, and only k = 4, 5, 6 in the bottom panels. This
confirms the general rule that it is better to increase n1 than to increase α to attain a
better approximation of the ck functions. It is also advantageous to increase α beyond the
number of desired ck approximations.

Example 2.1.3. As is seen in Figure 2.1.3, in Example 2.1.1, we quickly reach
the limit of machine precision even for moderate n1, when using standard 64 bit double
precision computations. In this example we construct an artificial case, namely we use
the symbol from Example 1.5.2, that is, f(θ) = 2 − 2 cos(θ). For this symbol we
can, as stated in (1.5.2), attain the exact eigenvalues of the generated matrix Tn(f), by
sampling with the τn-grid. We now sample the symbol with the τπ

n−1-grid instead, and
approximate the expansion with Algorithm 1. The matrix sizes, used in Algorithm 1,
are then defined as nk = 2k−1n1, indices jk = 2k−1j1 where j1 = {1, . . . , n1},
hk = 1/nk, and θjk,nk

= jkπ/nk.

Figure 2.1.7. Example 2.1.3: High precision computations, 4096 bits, n1 = 100. Left:
The eight first approximations c̃k(θj1,n1). Right: The errors of eigenvalue approxi-
mations for a matrix of order nm = n500 = 2500−1 · 100, when using the computed
c̃k(θj1,n1) in (2.1.3). Black line is Ejm,nm,0 = Ẽjm,nm,0 = λjm(Tnm(f))−f(θj1,n1),
and each consecutive colored line is Ẽjm,nm,k = Ẽjm,nm,k−1 − c̃k(θj1,n1)hk

m, for
k = 1, . . . , 8. Accuracy to machine precision of order O(10−1233) is attained.
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In the left panel of Figure 2.1.7 the first eight c̃k are presented. These computations are
performed with α = 100 and n1 = 100, and with 4096 bit precision (machine precision
is 1.915 ·10−1233) in Julia [10]. On double precision it is not possible to compute more
than five c̃k, with n1 = 100, before the accuracy is disturbed by machine limitation.
The right panel of Figure 2.1.7 shows the errors when applying the first eight of the 100
computed c̃k using (2.1.3), to the errors of a large matrix 1 of order n500 = 2500−1 ·100,
that is, hm = O(10−153). As expected this is enough to attain close to machine precision
accuracy of order O(10−1233), since Ẽjm,nm,8 ≈ Ejm,nm,8 ≤ C8h9

m = O(10−1377).

Asymptotic Expansion of Errors for Non-Monotone Symbols
In Paper I, we also discuss the case of symbols that are non-monotone in parts
of the domain, and the possibility of using the expansion of the errors for them.
We show through numerical experiments that it is possible to use the expansion
in subintervals of the domain where the symbol is monotone. In Paper V, we
compute the spectrum for a class of non-monotone symbols, where a technique
of multiple sub-grids can be used to obtain a solution also for non-monotone
symbols.

Example 2.1.4. Consider the same partially non-monotone symbol as in Example 6
of Paper I, namely f(θ) = 2 − cos(θ) − cos(3θ). The left panel of Figure 2.1.8
shows the graph of the symbol f . The non-monotone region, corresponding to the interval
[θ̂, π − θ̂], is depicted in red. In the right panel, we present the computed c̃k(θj1,n1),
for α = 5 and n1 = 100. Compare with Figure 7 of Paper I, where we only compute
c̃1. For an α > 5, the computed c̃k for k > 5, if only double precision is used, have
oscillatory behavior due to the low precision arithmetics.

Figure 2.1.8. Example 2.1.4: Symbol f(θ) = 2 − cos(θ) − cos(3θ). Left: The symbol
f , with monotone regions (yellow and green) and non-monotone region (red). Right:
The five computed c̃k(θj1,n1), being smooth (yellow and green) and oscillatory (red).

1
n500 = 2500−1 · 100 = 16366953039480709350065948484137995761083210230215323947416456840480

6689820233727744163504616295207857544334206378003550460862827294269652666426379468800.
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2.2 Extending the Expansion to the Preconditioned Case
In Paper II we extend the results from Paper I to a more general case, which we
refer to as the preconditioned case. More precisely, in Paper II we are inter-
ested in the eigenvalues of a “preconditioned” matrix of the form T −1

n (g)Tn(f),
where f and g are real-valued cosine trigonometric polynomials (RCTPs). This
is the definition of the term preconditioned matrix in this thesis, unless other-
wise stated. Recall from axiom GLT 6 that if {An}n ∼glt f and f ̸= 0
a.e., then {A†

n}n ∼glt f−1. In particular, assuming that g ̸= 0 a.e., we have
{T −1

n (g)Tn(f)}n ∼glt g−1f . We show that the same type of asymptotic ex-
pansion of the errors as (2.1.1) holds in the preconditioned case, namely

λj(T −1
n (g)Tn(f)) = f(θj,n)

g(θj,n)
+ Ej,n

= f(θj,n)
g(θj,n)

+
α∑

k=0
ck(θj,n)hk + Ej,n,α. (2.2.1)

It is important to note that if we define r(θ) = f(θ)/g(θ), then we are here
approximating the eigenvalues of the matrix T −1

n (g)Tn(f) and not the Toeplitz
matrix Tn(r), generated by r.

The motivation to study the spectrum of these types of matrices arises in
several different settings. When using an iterative method to numerically solve
the system Anun = bn, where An is symmetric positive definite, one measure
of the difficulty is the so-called spectral condition number,

κ(An) = λmax(An)
λmin(An)

.

If κ(An) is large, that is, the quotient of the largest and smallest eigenvalue is
large, it is in general difficult to solve the system by iterative methods. One can
then introduce a preconditioner, that is, a matrix P −1 such that

P −1Anun = P −1bn,

is easier to solve, because P −1 is chosen such that κ(P −1An) = O(1). Ideally
P = An, since then the system is solved. Examples of applications of the GLT
theory to the design of preconditioners can be found in [23, 24, 25, 28, 40, 62]
and the references therein.

In Paper IV, described in Section 2.4, we use the results of Paper II to solve
the eigenvalue problem −∆u = λu, which in discretized form, by isogeometric
analysis (IgA), reads as the following generalized eigenvalue problem

K [p]
n un = λM [p]

n un ⇒
(
M [p]

n

)−1
K [p]

n︸ ︷︷ ︸
L

[p]
n

un = λun
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The discretized system is solved by approximating the eigenvalues of L
[p]
n , and

this can be done since we have the symbols of nM
[p]
n and n−1K

[p]
n , and thus we

accurately find the eigenvalues of n−2L
[p]
n by using (2.2.1).

Example 2.2.1. We now extend Example 2.1.1 further, by preconditioning the matrix
T5(f) by a matrix T −1

5 (g), which is the inverse of the matrix T5(g) generated by a
symbol g. We consider the following specific choices of symbols

f(θ) = (2 − 2 cos(θ))2 = 6 − 8 cos(θ) + 2 cos(2θ),
g(θ) = 3 + 2 cos(θ),

r(θ) = f(θ)
g(θ)

= (2 − 2 cos(θ))2

3 + 2 cos(θ)
.

The matrix of interest is thus T −1
n (g)Tn(f), with the symbol r = g−1f .

Remark 2.2.1. The symbol g in this example is arbitrary, in the sense that it only
serves to demonstrate the applicabilty of Algorithm 1 to approximate the spectrum of
matrices of the form T −1

n (g)Tn(f), when r = g−1f is monotone. The design and
construction of preconditioners to improve iterative solution methods is out of the scope of
this thesis.

Figure 2.2.1. Example 2.2.1: Preconditioned matrix T −1
n (g)Tn(f). Left: Symbols f ,

g, and r = g−1f . Right: Eigenvalues λj(T −1
5 (g)T5(f)), symbol r(θ) = f(θ)/g(θ),

and samplings r(θj,5) with the τ5-grid.

In the left panel of Figure 2.2.1, we show the graphs of the three symbols f , g,
and r = g−1f . In the right panel of Figure 2.2.1, we see the five eigenvalues
λj(T −1

5 (g)T5(f)), the symbol r, and samplings of r(θj,5), where θj,5 is the τ5-grid.
From axiom GLT 1, we have {Tn(f)}n ∼glt,σ,λ f , {Tn(g)}n ∼glt,σ,λ g,{

Tn(g−1)
}

n ∼glt,σ,λ g−1,
{
Tn(g−1f)

}
n ∼glt,σ,λ g−1f , and from axiom GLT 6,

we have
{
T −1

n (g)
}

n ∼glt,σ,λ g−1. Finally, from axiom GLT 5, GLT 7 and with
the same symmetrization argument as in [40, solution of Exercise 8.4, pp. 291–292]
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we obtain
{
T −1

n (g)Tn(f)
}

n ∼glt,σ,λ g−1f . When n = 5 we have

T5(f) =


6 −4 1 0 0

−4 6 −4 1 0
1 −4 6 −4 1
0 1 −4 6 −4
0 0 1 −4 6

 , T5(g) =


3 1 0 0 0
1 3 1 0 0
0 1 3 1 0
0 0 1 3 1
0 0 0 1 3

 ,

and the inverse of T5(g) is

T −1
5 (g) = 1

144


55 −21 8 −3 1

−21 63 −24 9 −3
8 −24 64 −24 8

−3 9 −24 63 −21
1 −3 8 −21 55



≈


0.3819 −0.1458 0.0556 −0.0208 0.0069

−0.1458 0.4375 −0.1667 0.0625 −0.0208
0.0556 −0.1667 0.4444 −0.1667 0.0556

−0.0208 0.0625 −0.1667 0.4375 −0.1458
0.0069 −0.0208 0.0556 −0.1458 0.3819

 .

By computing the Fourier coefficients for g−1 through (1.2.1), we have

T5(g−1) ≈


0.4472 −0.1708 0.0652 −0.0249 0.0095

−0.1708 0.4472 −0.1708 0.0652 −0.0249
0.0652 −0.1708 0.4472 −0.1708 0.0652

−0.0249 0.0652 −0.1708 0.4472 −0.1708
0.0095 −0.0249 0.0652 −0.1708 0.4472

 .

The resulting preconditioned matrix is thus

T −1
5 (g)T5(f) = 1

144


422 −381 200 −75 26

−402 567 −456 225 −78
208 −456 592 −456 208

−78 225 −456 567 −402
26 −75 200 −381 422



≈


2.9306 −2.6458 1.3889 −0.5208 0.1806

−2.7917 3.9375 −3.1667 1.5625 −0.5417
1.4444 −3.1667 4.1111 −3.1667 1.4444

−0.5417 1.5625 −3.1667 3.9375 −2.7917
0.1806 −0.5208 1.3889 −2.6458 2.9306

 .
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The corresponding generated matrix by the same symbol g−1f is

T5(g−1f) ≈


4.1803 −3.2705 1.6312 −0.6231 0.2380

−3.2705 4.1803 −3.2705 1.6312 −0.6231
1.6312 −3.2705 4.1803 −3.2705 1.6312

−0.6231 1.6312 −3.2705 4.1803 −3.2705
0.2380 −0.6231 1.6312 −3.2705 4.1803

 .

Remark 2.2.2. For comparison reasons, to see how well our matrix-less method works,
we need to compute the eigenvalues of the matrix T −1

n (g)Tn(f) as a reference solution. A
standard procedure is to solve the generalized eigenvalue problem, Tn(f)u = λTn(g)u
where λj(T −1

n (g)Tn(f)) are the solutions, with for example LAPACK. As noted,
the matrix T −1

n (g)Tn(f) is full, but since we know that both Tn(f) and Tn(g) are
banded, we can use Crawford’s algorithm [21] and split Cholesky [48, 79], to transform
the problem into a standard eigenvalue problem Anu = λu, where An has the same
bandwidth as the largest bandwidth of Tn(f) and Tn(g). This standard eigenvalue
problem is then solved efficiently. To compute the reference solutions in this thesis we use
Julia with BandedMatrices.jl [56], which is a wrapper to LAPACK.

We now use Algorithm 1 to approximate the functions ck(θ) in (2.2.1), but for the
preconditioned matrix. Note again that now r = g−1f is no longer the generating
function of the matrix in question, so in Step 1.2 we generate Tn(f) and Tn(g) instead of
Tn(r). In Step 1.3 we solve the generalized eigenvalue problem by eig(Tn(f), Tn(g))
instead of the more numerically sensitive and costly eig(T −1

n (g)Tn(f)).
We have the same behavior of the errors in the left and right panels of Figure 2.2.2

as in the equivalent Figure 2.1.3, but with the new symbol r = g−1f .

Figure 2.2.2. Example 2.2.1: Preconditioned matrix T −1
n (g)Tn(f). The approxima-

tions c̃k(θj,n1), for α = 4, and the symbol r(θ) = (2 − 2 cos(θ))2/(3 + 2 cos(θ)).
Point-wise erratic approximations are removed. Left: Smooth behavior for all four c̃k

when n1 = 100. Right: For n1 = 403, compare oscillatory behavior in Figure 2.1.3.
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In Figure 2.2.3 we present the same computations as in Figure 2.1.6, but with the
preconditioned matrix T −1

nm
(g)Tnm(f). We thus have,

λ̃jm(T −1
nm

(g)Tnm(f)) = f(θj1,n1)/g(θj1,n1) +
α∑

k=1
c̃k(θj1,n1)hk

m, (2.2.2)

where hm = 1/(nm + 1).

Figure 2.2.3. Example 2.2.1: Preconditioned matrix T −1
n (g)Tn(f). Reducing the

errors for indices jm, for matrix orders nm = 104323 (left) and nm = 827391 (right).
Different (α, n1, m). Errors Ejm,nm,0 (black) and reduced errors Ẽjm,nm,1 (blue),
Ẽjm,nm,2 (red), and Ẽjm,nm,3 (yellow). Top: a reduction to O(10−13) is attained
except close to zero. Middle: α increased; a reduction to O(10−13) is attained, also
close to zero. Bottom: n1 increased instead of α; a reduction to O(10−13) is attained
for more eigenvalues, than in the middle panels, and at a lower cost.
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2.3 Extending the Expansion to the Whole Spectrum
In Paper III we show how to utilize the computed c̃k(θj1,n1), from Algorithm 1,
to accurately approximate a subset, or all, of the eigenvalues for a matrix of the
same type and of arbitrary order n. The procedure is explained as a flowchart
in Algorithm 2, and relies on efficient interpolation–extrapolation of the data
c̃k(θj1,n1) to c̃k,jS (θjS ,n), where jS ⊆ {1, . . . , n}. As in Paper II, we allow the
matrix to be of the form Xn = T −1

n (g)Tn(f), with symbol r = g−1f .

Algorithm 2 Approximate the eigenvalues λj(Xn) = λj(T −1
n (g)Tn(f)), for

j ∈ jS ⊆ {1, . . . , n} by interpolation–extrapolation of c̃k(θj1,n1) to c̃k(θjS ,n).

Input: c̃(θj1,n1
), n, jS , f(θ), g(θ)

h = 1/(n + 1)

θjS ,n = jSπh

for j ∈ jS

for k = 1, . . . , α

θ(1), . . . , θ(α−k+1) ∈ θj1,n1

c̃k,j(θj,n)

λ̃jS (Xn)

Output: λ̃jS (Xn)

1. 2.

3.

Step Description
Input to algorithm: c̃k(θj1,n1) from Algorithm 1, n ∈ N, jS , f(θ), g(θ).

1. Input: n and jS .
1.1 Define h = 1/(n + 1).
1.2 Define θjS,n

= jSπh.

2. Loop over indices j ∈ jS .
2.1 Loop over k = 1, . . . , α.
2.1.1 Input: θjS ,n (1.2). Determine the α − k + 1 points

θ(1), . . . , θ(α−k+1) ∈ θj1,n1 , which are closest to θj,n.
2.1.2 Compute c̃k,j(θj,n), where c̃k,j(θ) is interpolation polynomial of(

θ(1), c̃k(θ(1))
)

, . . . ,
(
θ(α−k+1), c̃k(θ(α−k+1))

)
.

3 Input: f(θ), g(θ), h (1.1), θjS,n
(1.2), and c̃k,jS (θjS ,n) (2.1.2).

3.1 Compute λ̃jS (Xn) = f(θjS ,n)/g(θjS ,n) +
∑α

k=1 c̃k,jS (θjS ,n)hk.

Output of algorithm: λ̃jS (Xn).
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Algorithm 2 outputs the approximation of the eigenvalues λjS (Xn) by a formula
like (2.2.2), namely, in Step 3.1

λ̃jS (Xn) = f(θjS ,n)/g(θjS ,n) +
α∑

k=0
c̃k,jS (θjS ,n)hk, (2.3.1)

where h = 1/(n+1). When r is non-monotone, Algorithm 2 should be slightly
modified. Then we define a set ja of admissible indices j for θj,n1 in Step 2.1.1
in Algorithm 2. The indices j in ja are those for which the corresponding
points θj,n1 lie in monotone regions of r. For example, in Figure 2.1.8 of
Example 2.1.4 we have the red region where r is non-monotone, we define ja

such that θj,n1 ∈ [0, θ̂] or θj,n1 ∈ [π − θ̂, π], for all j ∈ ja.

Example 2.3.1. We here further extend Examples 2.1.1 and Example 2.2.1, by
interpolating–extrapolating the approximations c̃k to the whole spectrum, and use them
to reduce the errors for all approximated eigenvalues of different large matrices. Hence, we
use (2.3.1) to compute λ̃jS (Xn) for the two examples.

In Figure 2.3.1 we show the symbol f(θ) = 6 − 8 cos(θ) + 2 cos(θ) from Ex-
ample 2.1.1. By Algorithm 1 we compute c̃k by α = 3 and n1 = 807. We then use
Algorithm 2 for different large n. In the left panel we have n = 105 and in the right
panel n = 106. The black line shows the errors Ej,n,0 = λj(Tn(f)) − λ̃j(Tn(f)),
where λ̃j(Tn(f)) = f(θj,n), given by (2.3.1) with α = 0. The yellow line is
Ẽj,n,3 = λj(Tn(f)) − λ̃j(Tn(f)), where λ̃j(Tn(f)), given by (2.3.1) with α = 3.
To avoid clutter in the figures, we only show these two errors.

Figure 2.3.1. Example 2.3.1: Reducing errors for the whole spectrum of two large
matrices Tn(f). Symbol f(θ) = (2 − 2 cos(θ))2. Left: c̃k computed with α = 3 and
n1 = 807. Matrix order n = 105. Errors of order O(10−12). Right: c̃k computed
with α = 3 and n1 = 807. Matrix order n = 106. Errors of order O(10−13).

In Figure 2.3.2 we make the same computations as in Figure 2.3.1, but for the symbol
f(θ) = (6 − 8 cos(θ) + 2 cos(θ))/(3 + 2 cos(θ)) from Example 2.2.1.

Note that in all computations for Figures 2.1.6, 2.2.3, 2.3.1, and 2.3.2 the point-
wise erratic expansion approximations c̃k, described in Section 2.1, are not removed.
The reason is to demonstrate their low impact on the solution.
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Figure 2.3.2. Example 2.3.1: Reducing errors for the whole spectrum of two large
preconditioned matrices T −1

n (g)Tn(f). Symbol r(θ) = (2−2 cos(θ))2/(3+2 cos(θ)).
Left: c̃k computed with α = 3 and n1 = 807. Matrix order n = 105. Errors of order
O(10−12). Right: c̃k computed with α = 3 and n1 = 807. Matrix order n = 106.
Errors of order O(10−13).

Remark 2.3.1. The timings presented in Paper III show that computing the spectrum
using Algorithms 1 and 2 is faster thanMatlab’s eig command. For the computations in
Example 2.3.1 we use Julia with BandedMatrices.jl to call LAPACK, in order to
solve the standard and generalized eigenvalue problems for banded matrices. Proper timing
experiments have not been conducted, but for the examples of n = 106, LAPACK takes
in the order of 10 hours of computations, whereas our matrix-less method takes in the
order of 10 minutes, where the bottleneck is a naive sorting algorithm in Step 2.1.1 of the
Algorithm 2. For computer specifications see the Colophon at the end of this thesis. A
more efficient implementation of Algorithms 1 and 2, and taking into account algorithmic
optimization and parallelization, should significantly reduce the execution time of the
matrix-less method. The accuracy, as seen in Figures 2.3.1 and 2.3.2, is enough for
many real world problems. Further implementation and research is warranted, for more
complex symbols and discretizations.

2.4 Solving a Model Differential Eigenvalue Problem
In Paper IV we apply the results from Papers I–III to analyze and solve the
discrete eigenvalue problem, resulting from the discretization of the Laplacian
eigenproblem −∆u = λu with isogeometric analysis (IgA). In addition, we
prove several spectral and structural properties of the associated discretization
matrices.

In this section we focus on the one-dimensional version of the Laplacian
eigenvalue problem, namely{

−u′′(x) = λu(x), x ∈ (0, 1),
u(x) = 0 x ∈ {0, 1}.

(2.4.1)
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We want to find eigenvalues λ ∈ R+ and eigenfunctions u ∈ H1
0 (0, 1) such

that, for all v ∈ H1
0 (0, 1),∫ 1

0
v′(x)u′(x)dx = λ

∫ 1

0
v(x)u(x)dx.

Discretizing this problem with IgA based on B-splines — for a more complete
description of the method, see Paper IV and [36] — we have

K [p]
n un = λM [p]

n un,

where the two matrices K
[p]
n and M

[p]
n are respectively the stiffness and the mass

matrix. Here n is a size parameter and p is the degree of the used B-splines.
The size of the matrices is N × N where N = n + p − 2. Multiplying both
sides by the inverse of M

[p]
n , we obtain

L[p]
n un = λun,

where L
[p]
n = (M [p]

n )−1K
[p]
n is the preconditioned matrix whose eigenvalues

converge to the eigenvalues of the original problem (2.4.1) as n → ∞. From
[40, Section 10.7] we know that the normalized matrices n−1K

[p]
n and nM

[p]
n

have an approximate Toeplitz structure. Indeed,

n−1K [p]
n = Tn+p−2(fp) + R[p]

n , rank(R[p]
n ) ≤ 4(p − 1),

nM [p]
n = Tn+p−2(gp) + V [p]

n , rank(V [p]
n ) ≤ 4(p − 1),

where fp and gp are RCTPs which depend on the spline degree p. In addition,

{n−1K [p]
n }n ∼glt,σ,λ fp,

{nM [p]
n }n ∼glt,σ,λ gp,

{n−2L[p]
n }n ∼glt,σ,λ g−1

p fp = ep.

Assuming the asymptotic expansion for the eigenvalues of the normalized and
preconditioned matrix n−2L

[p]
n , we use Algorithms 1 and 2, with slight modi-

fications, to approximate ck(θ) in (2.2.1). For p > 2 there are outliers among
the eigenvalues of n−2L

[p]
n , that is, eigenvalues that lie outside the range of ep.

The number of outliers is nout
p = p + mod(p, 2) − 2, and each outlier always

has multiplicity two. The outliers are constant to machine precision even for
small n, so they are easily computed, and then used for any large n. We denote
the number of eigenvalues that are not outliers by

N̂p = N − nout
p = n − mod(p, 2).

In Paper IV it is proved that an approximation of all the eigenvalues, that are
not outliers, is obtained by sampling the symbol with the following grid,

θj,n,p = jπ

n
, j = 1, . . . , N̂p. (2.4.2)
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Using the notation of Table 1.5.1, this is a τn−1-grid for odd p and τπ
n−1-grid for

even p. For the two cases p = 1, 2, the grid (2.4.2) gives the exact eigenvalues
when sampling the symbol. To the best of the authors’ knowledge, the result
for p = 2 was not known before Paper IV. Indeed, the matrices for p = 1
belong to the τn−1(0, 0)-algebra, and the matrices for p = 2 belong to the
τn(−1, −1)-algebra [15].

Example 2.4.1. In this example, we investigate some structural properties of the stiffness
and mass matrices from the IgA discretization of the Laplacian eigenproblem, when p = 2
and n = 5 (the following is true for any n). This presents a slightly different viewpoint
than in Section 2.3 of Paper IV, and rather reflects a practical example how the connection
to the τn(−1, −1)-algebra was discovered. The normalized stiffness matrix is

5−1K
[2]
5 = 1

6


8 −1 −1 0 0

−1 6 −2 −1 0
−1 −2 6 −2 −1

0 −1 −2 6 −1
0 0 −1 −1 8



=


3 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 3


︸ ︷︷ ︸

F5

1
6


3 1 0 0 0
1 4 1 0 0
0 1 4 4 0
0 0 1 4 1
0 0 0 1 3


︸ ︷︷ ︸

G5

,

where the red elements indicate deviations from the pure Toeplitz structures.
We have {n−1K

[2]
n }n ∼glt f2, where

f2(θ) = 1 − 2
3

cos(θ) − 1
3

cos(2θ) = (2 − 2 cos(θ))︸ ︷︷ ︸
f1

1
6

(4 + 2 cos(θ))︸ ︷︷ ︸
g1

.

The Toeplitz-like matrices F5 and G5 are

F5 = T5(f1) + Rf
5 ,

G5 = T5(g1) + Rg
5,

where Rf
5 and Rg

5 are the low-rank corrections that change T5(f1) and T5(g1), which
belong to the τ5(0, 0)-algebra, into the respective matrices F5 and G5, which belong to
the τ5(−1, −1)-algebra. The non-zero elements of Rf

5 and Rg
5 are

(Rf
5 )1,1 = (Rf

5 )5,5 = −(T5(f1))1,2 = 1,

(Rg
5)1,1 = (Rg

5)5,5 = −(T5(g1))1,2 = −1/6.
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The same decomposition is done for the normalized mass matrix,

5M
[2]
5 = 1

120


40 25 1 0 0
25 66 26 1 0
1 26 66 26 1
0 1 26 66 25
0 0 1 25 40



=


α − γ γ 0 0 0

γ α γ 0 0
0 γ α γ 0
0 0 γ α γ
0 0 0 γ α − γ


︸ ︷︷ ︸

G
(1)
5


β − γ γ 0 0 0

γ β γ 0 0
0 γ β γ 0
0 0 γ β γ
0 0 0 γ β − γ


︸ ︷︷ ︸

G
(2)
5

,

where α = (13 −
√

105)/
√

120, β = (13 +
√

105)/
√

120, and γ = 1/
√

120.
We have {nM

[2]
n }n ∼glt g2, where

g2(θ) = 1
120

(66 + 52 cos(θ) + 2 cos(2θ))

= 1√
120

(
13 −

√
105 + 2 cos(θ)

)
︸ ︷︷ ︸

g
(1)
2

1√
120

(
13 +

√
105 + 2 cos(θ)

)
︸ ︷︷ ︸

g
(2)
2

.

Thus, 5M
[2]
5 also belongs to the τ5(−1, −1)-algebra. Since the τ -algebras are closed

under inversion, and 5M
[2]
5 is symmetric positive definite, (5M

[2]
5 )−1 exists and belongs

to the τ5(−1, −1)-algebra. Hence, also 5−2L
[2]
5 = (5M

[2]
5 )−15−1K

[2]
5 belongs to the

same algebra. This is why we can sample the symbol e2(θ) = f2(θ)/g2(θ) to attain
the exact eigenvalues of L

[2]
5 , by the use of the τπ

4 -grid.

In Paper IV we also show the successful application of Algorithms 1 and 2 for the
IgA matrices n−1K

[p]
n , nM

[p]
n , and n−2L

[p]
n for p > 2, with slight modifications

since we do not use the standard τn-grid.
A last interesting fact regarding the symbols of the normalized IgA matrices

n−1K
[p]
n and nM

[p]
n is that we do not just have a closed form expression for fp

(the symbol associated with n−1K
[p]
n ), but we also have a general expression for

gp (the symbol associated with nM
[p]
n ). Indeed,

fp(θ) = (2 − 2 cos(θ))gp−1(θ),

gp(θ) = 1
(2p + 1)!

2p∑
k=0

⟨
2p + 1

k

⟩
cos((p − k)θ).
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Here, ⟨
n

m

⟩
=

m+1∑
k=0

(−1)k

(
n + 1

k

)
(m + 1 − k)n

is the formula for the Eulerian numbers [33], and

(2p + 1)! =
2p∑

k=0

⟨
2p + 1

k

⟩
.

This result regarding the symbol gp was previously known, but was rediscovered
by the author in part by the use of [69]. The relationship between the Eulerian
numbers, splines, and IgA is discussed, for example, in [46, 49, 78]. Moreover,
the factorization fp(θ) = (2 − 2 cos(θ))gp−1(θ) was originally proved in [36].

2.5 Some Analytical Results
In Paper V we present formulae for the exact eigenvalues, and the corresponding
eigenvectors, for a special class of matrices that we call symmetrically sparse
tridiagonal (SST). These matrices have a symbol of form

f(θ) = f̂0 + f̂ωeiωθ + f̂−ωe−iωθ,

where f̂0, f̂ω, f̂−ω ∈ C, 0 < ω < n, and ω ∈ Z+. In Paper V, we also put this
result into a wider context, that is, f(θ) is a non-monotone symbol of which
we know the exact sampling grid for computing the eigenvalues of Tn(f). The
nth Toeplitz matrix generated by f is shown below to the left,

Tn(f) =

f̂0 0 . . . 0 f̂−ω 0 . . . 0

0 . . . . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . . . . 0

0 . . . . . . . . . . . . . . . . . . f̂−ω

f̂ω . . . . . . . . . . . . . . . . . . 0

0 . . . . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . . . . 0

0 . . . 0 f̂ω 0 . . . 0 f̂0





f̂0 0 . . . 0 f̂−ω 0 . . . 0

0 . . . . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . . . . 0

0 . . . . . . . . . . . . . . . . . . f̂−ω

f̂ω . . . . . . . . . . . . . . . . . . 0

0 . . . . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . . . . 0

0 . . . 0 f̂ω 0 . . . 0 f̂0





∼

ĝ0 0 . . . 0 ĝω 0 . . . 0

0 . . . . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . . . . 0

0 . . . . . . . . . . . . . . . . . . ĝω

ĝω . . . . . . . . . . . . . . . . . . 0

0 . . . . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . . . . 0

0 . . . 0 ĝω 0 . . . 0 ĝ0





ĝ0 0 . . . 0 ĝω 0 . . . 0

0 . . . . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . . . . 0

0 . . . . . . . . . . . . . . . . . . ĝω

ĝω . . . . . . . . . . . . . . . . . . 0

0 . . . . . . . . . . . . . . . . . . ...
... . . . . . . . . . . . . . . . . . . 0

0 . . . 0 ĝω 0 . . . 0 ĝ0





= Tn(gω).

By symmetrizing the matrix Tn(f), we attain a similar matrix, sharing all the
eigenvalues of Tn(f). This can be done in the same way as in the tridiagonal case
presented in (1.5.2); that is, we define a new symbol gω(θ) = ĝ0 +2ĝω cos(ωθ),
where ĝ0 = f̂0 and ĝω =

√
f̂ω

√
f̂−ω. The nth Toeplitz matrix generated by

gω is shown above, to the right.
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In Paper V we construct a grid that, when sampling a third symbol g, gives the
exact eigenvalues of Tn(f) ∼ Tn(gω). The new modified symbol is defined
as g(θ) = ĝ0 + 2ĝω cos(θ), that is, we have removed the constant ω from the
symbol gω(θ). Here follows the construction of this special grid, for a given ω
and n. First define

β = mod(n, ω), nω = n − β

ω
. (2.5.1)

Then define the two sub-grids, τnω and τnω+1 ,

θj,nω = jπ

nω + 1
, j = 1, . . . , nω, (2.5.2)

θj,nω+1 = jπ

nω + 2
, j = 1, . . . , nω + 1. (2.5.3)

The matrices of interest have eigenvalues of different multiplicity depending on
n and ω in the following way. We have the two sub-grids repeated as follows

θ̃
(1)
r1,j,nω(ω−β) = θj,nω , r1 = 1, . . . , ω − β, j = 1, . . . , nω,

θ̃
(1)
r2,j,(nω+1)β = θj,nω+1, r2 = 1, . . . , β, j = 1, . . . , nω + 1,

that is, the first grid (2.5.2) is repeated ω − β times, which when sampling g(θ)
gives eigenvalues of this multiplicity. The second grid is repeated β times. Now
define the following two grids,

θ̃
(1)
nω(ω−β) =

{{
θ̃

(1)
r1,j,nω(ω−β)

}ω−β

r1=1

}nω

j=1
,

θ̃
(2)
(nω+1)β =

{{
θ̃

(2)
r2,j,(nω+1)β

}β

r2=1

}nω+1

j=1
,

of which the union is our final sampling grid for g(θ),

θ̃n = θ̃
(1)
nω(ω−β)

∪
θ̃

(2)
(nω+1)β. (2.5.4)

Note again that the grid (2.5.4) typically consists of many grid points with
the same value. An addition to Paper V is that, for cases when it is desirable
to retain the original symmetrized symbol gω(θ), instead of g(θ), and to have
a corresponding grid over θn ∈ [0, π], we can use the following (non-unique)
grid construction. This new grid has the advantage of not having any grid points
of multiplicity greater than one, and is used for example in [31]. We have the
same definition of the parameters β and nω as in (2.5.1), and the same sub-grids
as in (2.5.2) and (2.5.3). We now introduce the notation n1 = nω(ω − β), and
n2 = (nω + 1)β, for the total number of grid points corresponding to the two
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sub-grid types, and n = n1 + n2. Then,

θ(1)
n1 =


ω−β∪
r1=1

(θnω + (r1 − 1)π)

 ,

θ(2)
n2 =


β∪

r2=1
(θnω+1 + (r2 − 1)π + (ω − β)π)

 .

The final grid, now associated with gω(θ), is defined as

θn = 1
ω

{
θ(1)

n1 , θ(2)
n2

}
. (2.5.5)

The corresponding eigenvectors are constructed as follows, where the non-zero
components x

(j,n)
k of an eigenvector xj , for the eigenpair (λj , xj), are defined

below. For j = 1, . . . , n1 we have

r1 = j + mod(n1 − j, nω)
nω

,

x
(j,n)
ω(k1−1)+r1+β =

( √
fω√

f−ω

)k1

sin (ωk1θj,n) , k1 = 1, . . . , nω, (2.5.6)

and for j = n1 + 1, . . . , n we have

r2 = j − n1 + mod(n − j, nω + 1)
nω + 1

,

x
(j,n)
ω(k2−1)+r2

=
( √

fω√
f−ω

)k2

sin (ωk2θj,n) , k2 = 1, . . . , nω + 1. (2.5.7)

Example 2.5.1. We illustrate the use of the grid (2.5.5) with the following symbol

g5(θ) = 2 − 2 cos(5θ).

Since ω = 5, and by choosing n = 17, we obtain β = 2 and nω = 3 from (2.5.1).
We thus have three (ω − β) sub-grids derived from θnω of (2.5.2) and two (β) sub-
grids derived from θnω+1 of (2.5.3). The complete grid, defined by (2.5.5) on [0, π]
has these five sub-grids; in Figure 2.5.1 we see the sub-intervals associated with θnω in
yellow, and the sub-intervals associated with θnω+1 in green.

If the grids (2.5.4) or (2.5.5) were not known, and we use the standard τn-grid to
estimate the eigenvalues, we have errors, as described in Paper V. Figure 2.5.2 shows the
errors Ej,n,0, for n = 102, for two different permutations. The order n is chosen such
that we have the same β = mod(n, ω) = 2 as in Figure 2.5.1. The left panel presents
the “error modes” described in Section 3.1 of Paper V, that is, we order the samplings
gω(θj,n) in a non-decreasing order, by the permutation σ, and compute the errors Ej,n,0.
We define the ω = 5 error modes by associating the indices jq = q, q + ω, q + 2ω, . . .
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Figure 2.5.1. Example 2.5.1: Symbol g5(θ) = 2 − 2 cos(5θ), for n = 17 and ω = 5,
and thus, β = 2 and nω = 3. Intervals colored for sub-grids of size nω (yellow)
and nω + 1 (green). Eigenvalues, λj(T17(g5)) (black diamonds) and samplings of the
symbol, g5(θj,5) (white circles), with grid θj,5 from (2.5.5), match exactly.

for q = 1, . . . , 5 to the respective error mode E{q} = Ejq ,n,0. This ordering of the
errors gave a hint of the existence, and consequently the discovery, of the grids (2.5.4)
and (2.5.5). As is seen in Figure 2 of Paper V, we observe this oscillatory behavior
also for some other non-monotone cases, albeit in some more complex fashion, which
warrants further research. The right panel of Figure 2.5.2 shows the errors Ej,n,0 when
the eigenvalues are ordered as the samplings gω(θj,n), with a permutation ρ = σ−1.
By the coloring of the errors we indicate what error mode the individual error belongs to;
i.e. E

{5}
j,20, E

{1}
j,21, E

{4}
j,20, E

{2}
j,21, and E

{3}
j,20 as shown in the left panel. The background

coloring indicates, as in Figure 2.5.1, the number of grid points in the interval, that is,
nω (yellow) or nω + 1 (green).

Figure 2.5.2. Example 2.5.1: Different errors depending on ordering, with symbol
g5(θ) = 2 − 2 cos(5θ). Left: Permutation of g5(θj,n), by σ, to match the ordering
of λj(Tn(f)). Errors Ej,102 are split into five error modes. Right: Permutation of
λj(Tn(f)), by ρ = σ−1, to match the ordering of g5(θj,n). The colors of the circles
indicate, for each error, the corresponding error mode in the left panel.

60



An alternative viewpoint for explaining the grid (2.5.4), originally presented in
Paper V, is the following: Consider the symbol

f(θ) = f̂0 + 2f̂1 cos(3θ),

that is, ω = 3. Now generate the Toeplitz matrix of order n = 9,

T9(f) =



f̂0 0 0 f̂1 0 0 0 0 0
0 f̂0 0 0 f̂1 0 0 0 0
0 0 f̂0 0 0 f̂1 0 0 0
f̂1 0 0 f̂0 0 0 f̂1 0 0
0 f̂1 0 0 f̂0 0 0 f̂1 0
0 0 f̂1 0 0 f̂0 0 0 f̂1

0 0 0 f̂1 0 0 f̂0 0 0
0 0 0 0 f̂1 0 0 f̂0 0
0 0 0 0 0 f̂1 0 0 f̂0



.

We have β = 0 and nω = 3 from (2.5.1). As indicated by the coloring, we view
the matrix T9(f) as a block matrix where the blocks are of order s = ω = 3.
We thus have T9(f) = T3(f (3)), where

f (3)(θ) = f̂ (3)
0 + f̂ (3)

1 cos(θ) =

 f̂0 0 0
0 f̂0 0
0 0 f̂0

+ 2

 f̂1 0 0
0 f̂1 0
0 0 f̂1

 cos(θ)

= (f̂0 + 2f̂1 cos(θ))I3.

The eigenvalues are given exactly by sampling the symbol f with the τnω-grid,
given in (2.5.2). By a similarity transformation, we obtain a block diagonal
matrix T̃9(f) = P −1T9(f)P ∼ T9(f), by some matrix P , for example

P =



0 0 9 0 0 0 0 0 0
0 0 0 0 0 −9 0 0 0
0 0 0 0 0 0 0 0 9
0 6 0 0 0 0 0 0 0
0 0 0 0 −6 0 0 0 0
0 0 0 0 0 0 0 6 0
4 0 0 0 0 0 0 0 0
0 0 0 −4 0 0 0 0 0
0 0 0 0 0 0 4 0 0


.
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We then have,

T̃9(f) =



f̂0 f̂1 0 0 0 0 0 0 0
f̂1 f̂0 f̂1 0 0 0 0 0 0
0 f̂1 f̂0 0 0 0 0 0 0
0 0 0 f̂0 f̂1 0 0 0 0
0 0 0 f̂1 f̂0 f̂1 0 0 0
0 0 0 0 f̂1 f̂0 0 0 0
0 0 0 0 0 0 f̂0 f̂1 0
0 0 0 0 0 0 f̂1 f̂0 f̂1
0 0 0 0 0 0 0 f̂1 f̂0



,

which can be viewed as a block diagonal matrix of the form

T̃9(f) =

B(1)

B(1)

B(1)

 ,

where the block B(1) is

B(1) =

 f̂0 f̂1 0
f̂1 f̂0 f̂1
0 f̂1 f̂0

 .

Hence, the multiplicity of eigenvalues is the same as the number of blocks which
is three (ω −β = 3), and the exact eigenvalues of one block B(1) is given, since
it is tridiagonal, by sampling the symbol g(θ) = f̂0 + 2f̂1 cos(θj,3), where θj,3
corresponds to (2.5.2), with nω = 3.

We now consider the generated matrix of order n = 10, that is, β = 1 and

T10(f) =



f̂0 0 0 f̂1 0 0 0 0 0 0
0 f̂0 0 0 f̂1 0 0 0 0 0
0 0 f̂0 0 0 f̂1 0 0 0 0
f̂1 0 0 f̂0 0 0 f̂1 0 0 0
0 f̂1 0 0 f̂0 0 0 f̂1 0 0
0 0 f̂1 0 0 f̂0 0 0 f̂1 0
0 0 0 f̂1 0 0 f̂0 0 0 f̂1
0 0 0 0 f̂1 0 0 f̂0 0 0
0 0 0 0 0 f̂1 0 0 f̂0 0
0 0 0 0 0 0 f̂1 0 0 f̂0



.
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It is not possible to write it as a block Toeplitz matrix with blocks of order
s = 3. We “extend” the matrix T10(f) with two rows and two columns of
zeros, and call the new matrix T̄10(f). This does not change the spectrum of
the matrix, except adding two zeros. Thus,

T̄10(f) =



f̂0 0 0 f̂1 0 0 0 0 0 0 0 0
0 f̂0 0 0 f̂1 0 0 0 0 0 0 0
0 0 f̂0 0 0 f̂1 0 0 0 0 0 0
f̂1 0 0 f̂0 0 0 f̂1 0 0 0 0 0
0 f̂1 0 0 f̂0 0 0 f̂1 0 0 0 0
0 0 f̂1 0 0 f̂0 0 0 f̂1 0 0 0
0 0 0 f̂1 0 0 f̂0 0 0 f̂1 0 0
0 0 0 0 f̂1 0 0 f̂0 0 0 0 0
0 0 0 0 0 f̂1 0 0 f̂0 0 0 0
0 0 0 0 0 0 f̂1 0 0 f̂0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



.

The matrix T̄10(f) is not a Toeplitz or block Toeplitz matrix, but Toeplitz-like.

We now use a new matrix P such that ˜̄T10(f) = P −1T̄10(f)P ∼ T̄10(f), so

˜̄T10(f) =



f̂0 f̂1 0 0 0 0 0 0 0 0 0 0
f̂1 f̂0 f̂1 0 0 0 0 0 0 0 0 0
0 f̂1 f̂0 f̂1 0 0 0 0 0 0 0 0
0 0 f̂1 f̂0 0 0 0 0 0 0 0 0
0 0 0 0 f̂0 f̂1 0 0 0 0 0 0
0 0 0 0 f̂1 f̂0 f̂1 0 0 0 0 0
0 0 0 0 0 f̂1 f̂0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 f̂0 f̂1 0 0
0 0 0 0 0 0 0 0 f̂1 f̂0 f̂1 0
0 0 0 0 0 0 0 0 0 f̂1 f̂0 0
0 0 0 0 0 0 0 0 0 0 0 0



,

which is block diagonal, with the two blocks

B̄(1) =


f̂0 f̂1 0 0
f̂1 f̂0 f̂1 0
0 f̂1 f̂0 0
0 0 0 0

 , B(2) =


f̂0 f̂1 0 0
f̂1 f̂0 f̂1 0
0 f̂1 f̂0 f̂1
0 0 f̂1 f̂0

 ,
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and

˜̄T10(f) =

B(2)

B̄(1)

B̄(1)

 .

The block B̄(1) is the “extended” block B(1), with an extra row and column
of zeros. The block B̄(1) is repeated twice (ω − β = 2) and the block B(2)

is repeated once (β = 1). The eigenvalues of B̄(1) are the same, except for a
zero, as for B(1), so we use the τnω −grid in (2.5.2), where nω = 3, to sample
g(θ). The eigenvalues of B(2) are given by sampling g(θ) with the τnω+1-grid
in (2.5.3).

Finally, we study the generated matrix of order n = 11, for which β = 2,

T11(f) =



f̂0 0 0 f̂1 0 0 0 0 0 0 0
0 f̂0 0 0 f̂1 0 0 0 0 0 0
0 0 f̂0 0 0 f̂1 0 0 0 0 0
f̂1 0 0 f̂0 0 0 f̂1 0 0 0 0
0 f̂1 0 0 f̂0 0 0 f̂1 0 0 0
0 0 f̂1 0 0 f̂0 0 0 f̂1 0 0
0 0 0 f̂1 0 0 f̂0 0 0 f̂1 0
0 0 0 0 f̂1 0 0 f̂0 0 0 f̂1
0 0 0 0 0 f̂1 0 0 f̂0 0 0
0 0 0 0 0 0 f̂1 0 0 f̂0 0
0 0 0 0 0 0 0 f̂1 0 0 f̂0



.

Extending the matrix T11(f) with one row and one column of zeros, in a similar
way as for extending T10(f) to T̄10(f), we obtain the matrix

T̄11(f) =



f̂0 0 0 f̂1 0 0 0 0 0 0 0 0
0 f̂0 0 0 f̂1 0 0 0 0 0 0 0
0 0 f̂0 0 0 f̂1 0 0 0 0 0 0
f̂1 0 0 f̂0 0 0 f̂1 0 0 0 0 0
0 f̂1 0 0 f̂0 0 0 f̂1 0 0 0 0
0 0 f̂1 0 0 f̂0 0 0 f̂1 0 0 0
0 0 0 f̂1 0 0 f̂0 0 0 f̂1 0 0
0 0 0 0 f̂1 0 0 f̂0 0 0 f̂1 0
0 0 0 0 0 f̂1 0 0 f̂0 0 0 0
0 0 0 0 0 0 f̂1 0 0 f̂0 0 0
0 0 0 0 0 0 0 f̂1 0 0 f̂0 0
0 0 0 0 0 0 0 0 0 0 0 0



.
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Again we follow the same procedure as for T̄10(f), that is, we choose a matrix

P such that ˜̄T11(f) = P −1T̄11(f)P ∼ T̄11(f), where

˜̄T11(f) =



f̂0 f̂1 0 0 0 0 0 0 0 0 0 0
f̂1 f̂0 f̂1 0 0 0 0 0 0 0 0 0
0 f̂1 f̂0 f̂1 0 0 0 0 0 0 0 0
0 0 f̂1 f̂0 0 0 0 0 0 0 0 0
0 0 0 0 f̂0 f̂1 0 0 0 0 0 0
0 0 0 0 f̂1 f̂0 f̂1 0 0 0 0 0
0 0 0 0 0 f̂1 f̂0 f̂1 0 0 0 0
0 0 0 0 0 0 f̂1 f̂0 0 0 0 0
0 0 0 0 0 0 0 0 f̂0 f̂1 0 0
0 0 0 0 0 0 0 0 f̂1 f̂0 f̂1 0
0 0 0 0 0 0 0 0 0 f̂1 f̂0 0
0 0 0 0 0 0 0 0 0 0 0 0



,

that has the block structure

˜̄T11(f) =

B(2)

B(2)

B̄(1)

 .

The previously defined block B̄(1) is repeated once (ω − β = 1), and block
B(2) is repeated twice (β = 2). Again, the grids for the blocks correspond
to (2.5.4), and is used to sample g(θ) for obtaining the exact eigenvalues. For
n = 12 we are again back to the case β = 0. This procedure can be done for
any combination of ω and n.
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3. Conclusions and Future Works

Snerik räknar ägg!

Rita von Hofsten

This thesis presents various aspects of the conjectured asymptotic expansion for
the eigenvalues of large Toeplitz-like matrices. This topic was first addressed
in Paper I for the case of pure Toeplitz matrices. In Paper II we extended
the results from Paper I to the case of preconditioned Toeplitz matrices. In
Paper III we developed an efficient “matrix-less” and parallel interpolation–
extrapolation algorithm, based on the asymptotic expansion, for computing
the whole spectrum of large preconditioned Toeplitz matrices. In Paper IV we
applied the results from Papers I–III to the Toeplitz-like matrices arising from the
isogeometric analysis (IgA) discretization of second-order differential problems;
we also computed the exact eigenvalues of these matrices in some special cases.
In Paper V we derived closed formulae for the exact eigenvalues and eigen-
vectors of so-called “symmetrically sparse tridiagonal” Toeplitz matrices.

We conclude this thesis by listing a few topics of interest for future research,
which are closely related to the content of the present thesis.

1. Extend the results of [31] for preconditioned block Toeplitz-like matrices.
2. Explore the existence of expansions for the eigenvalues of Toeplitz-like

matrices related to non-monotone spectral symbols; develop appropriate
techniques to exploit these expansions for the design of fast interpolation–
extrapolation algorithms for computing the spectrum of such matrices.
Note that this was implemented for monotone symbols in Papers I–IV.

3. Perform the previous item for multivariate Toeplitz-like matrices.
4. Study so-called “non-symmetrically sparse tridiagonal” Toeplitz matrices,

in analogy with what has been done in Paper V for “symmetrically sparse
tridiagonal” Toeplitz matrices.

Beside these specific items, there are of course many other open questions re-
garding the spectrum of Toeplitz and Toeplitz-like matrices. We here mention a
few additional topics of interest, related to the contents of this thesis in a broader
sense: (a) the application of the results presented herein to improve existing solu-
tion methods, for example deflation techniques, multigrid, and iterative solvers
such as the Chebyshev iteration method; (b) the study of outlier eigenvalues for
Toeplitz-like matrices; (c) a deeper study of “optimal” and exact sampling grids
for approximating the spectrum of various Toeplitz and Toeplitz-like matrices;
(d) further studies using high precision computations.
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5. Svensk sammanfattning

Modellering av fysikaliska fenomen ger ofta i ett lineärt ekvationssystem som
kan representeras av en eller flera matriser. Matrisernas egenvärden kan vara
av intresse rent fysikaliskt, men även som hjälpmedel för att analysera och lösa
ekvationssystemet. Att numeriskt räkna fram egenvärden för en matris är oftast
tidsödande och kostsamt, speciellt om matrisen är stor.

Teorin omGeneralized Locally Toeplitz-sekvenser (GLT-sekvenser) beskriver
egenvärdenas beteende för sekvenser av så kallade Toeplitz och Toeplitz-liknande
matriser. I denna avhandling använder vi oss av denna teori för att utveckla nya
noggranna och effektiva metoder för att beräkna stora matrisers egenvärden. En
Toeplitz-matris är av formen

Tn(f) = [f̂i−j ]ni,j=1 =



f̂0 f̂−1 f̂−2 . . . . . . f̂1−n

f̂1 f̂0 f̂−1
. . .

...

f̂2 f̂1 f̂0
. . . . . .

...
...

. . . . . . . . . . . . f̂−2
...

. . . . . . . . . f̂−1

f̂n−1 . . . . . . f̂2 f̂1 f̂0


, (5.1)

det vill säga en kvadratisk matris (av storleken n × n) med konstanta diago-
naler. Toeplitz-matrisen Tn(f) genereras av en funktion f , kallad symbolen,
när matrisens element, enligt (5.1), är Fourier-koefficienterna för f

f̂ω = 1
2π

∫ π

−π
f(θ)e−iωθdθ, i2 = −1, ω ∈ Z.

Egenvärdena för den genererade Toeplitz-matrisen Tn(f) betecknas λj(Tn(f)).
Toeplitz-liknande matriser har samma grundstruktur som (5.1), men kan t.ex.
ha ändringar av låg rank, vara av block-typ, ha variabla koefficienter eller vara
av andra typer av subklasser. Ett antal varianter av Toeplitz-liknande matristyper
behandlas i denna avhandling.

För en Toeplitz eller Toeplitz-liknande matris kan man använda symbolen
f(θ) för att effektivt uppskatta egenvärdena (eller singulärvärdena). För mono-
tona symboler som är reella trigonometriska polynom, bestående av cosinus-
termer, görs detta genom att man beräknar symbolens funktionsvärden på ett
likformigt nät θj,n ∈ [0, π], där j = 1, . . . , n. För dessa approximationer är
felen Ej,n = λj(Tn(f)) − f(θj,n) av ordning O(h), där h = 1/(n + 1). Felen

71



Ej,n kan beskrivas av en asymptotisk expansion

λj(Tn(f)) = f(θj,n) + Ej,n

= f(θj,n) +
α∑

k=0
ck(θj,n)hk + Ej,n,α, (5.2)

där f(θ) ∈ L1(−π, π). Felen Ej,n,α är av ordning O(hα+1). Genomgående
i denna avhandling används varianter av (5.2) för att beräkna egenvärdena för
olika typer av strukturerade matriser. De metoder vi utvecklar approximerar
funktionerna ck(θ), som sedan används för att beräkna egenvärdena för stora
matriser, med stor noggrannhet. Vi kallar dessa nya metoder för ”matris-lösa”;
då man varken behöver skapa matrisen vars egenvärden man söker, eller ut-
föra några matris-vektor-multiplikationer vilket görs i så kallade ”matris-fria”
metoder. Det enda som behövs för att beräkna dessa egenvärden är funktions-
evalueringar av symbolen, och de approximerade funktionerna ck(θ).

I den första artikeln (Paper I) beskrivs en algoritm som, genom valet av
parametrarna α och n1, kan uppskatta funktionsvärdena ck(θj1,n1) i (5.2), där
k = 1, . . . , α (c0(θ) = 0) och j1 = {1, . . . , n1}. Dessa beräkningar kräver
endast lösningen av ett fåtal små egenvärdesproblem. För en stor matris av stor-
leken nm × nm där nm = 2m−1(n1 + 1) − 1 (antag m ∈ Z+ och m > α), kan
de beräknade c̃k(θj1,n1) användas för en bättre approximation av egenvärdena
med index jm = 2m−1j1. Felen Ẽj1,n1,α är i storleksordningen O(hα+1). I
den andra artikeln (Paper II) beskrivs hur man kan använda expansionen (5.2)
när matrisen är förkonditionerad. Förkonditionerad betyder här att matrisen
har formen T −1

n (g)Tn(f). Symbolen är r = g−1f och det är egenvärdena
för matrisen T −1

n (g)Tn(f) som vi approximerar, och inte för den genererade
matrisen Tn(g−1f). I den tredje artikeln (Paper III) introduceras en algoritm,
som bygger på interpolation och extrapolation, för att approximera hela spekt-
rumet, för förkonditionerade matriser av godtycklig ordning n. I den fjärde
artikeln (Paper IV) används resultaten från de tre första artiklarna (Paper I–III)
för att beräkna egenvärdena för olika matriser som fås genom diskretiseringar
med isogeometrisk analys (IgA). Även exakta uttryck för egenvärdena ges för
vissa av matriserna. De beaktade matriserna är Toeplitz-liknande, då de är
Toeplitz-matriser plus lågranks-korrektioner. I den femte och sista artikeln i
avhandlingen (Paper V) presenteras analytiska uttryck för både egenvärden och
egenvektorer för en speciell klass av matriser – ”symmetriskt glesa tridiagonala”
Toeplitz-matriser. Vi diskuterar även expansionen (5.2), då matriserna genereras
av icke-monotona symboler.

I avhandlingen presenteras olika aspekter, både teoretiska och numeriska, av
expansionen (5.2) för Toeplitz och Toeplitz-liknande matriser. Effektiva matris-
lösa metoder utvecklas för att beräkna egenvärdena för stora matriser. Det finns
stor potential för att kunna nyttja dessa tekniker för att förbättra och analysera
existerande metoder, samt för att utveckla nya.
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List of Examples

Example 1.2.1. Generate a Toeplitz matrix Tn(f), for a given generating func-
tion f and matrix order n. Construction of the symbol f from a given
banded Toeplitz matrix Tn(f).

Example 1.5.1. Approximation of eigenvalues of a generated Toeplitz matrix
Tn(f) (tridiagonal and symmetric), by sampling the symbol f .

Example 1.5.2. How to symmetrize a generated matrix Tn(f) (tridiagonal and
non-symmetric). Eigenvalue and singular value distribution.

Example 1.5.3. Toeplitz-like matrices with variable coefficients.
Example 1.5.4. Block Toeplitz matrices, generated by matrix valued symbols.
Example 1.5.5. Multilevel Toeplitz-like matrices, generated by multivariate

symbols.
Example 1.5.6. Toeplitz-like matrices, from non-uniform discretization.
Example 1.6.1. The approximation error Ej,n = λj(Tn(f)) − f(θj,n).
Example 2.1.1. The asymptotic expansion of the eigenvalues of a matrix Tn(f),

generated by f , and how to approximate the functions ck(θ).
Example 2.1.2. Use approximations c̃k(θj1,n1), for the asymptotic expansion of

the eigenvalues with indices jm of a large matrix of order nm ≫ n1. The
indices jm = 2m−1j1 and the order is restricted to nm = 2m−1(n1+1)−1.

Example 2.1.3. Asymptotic expansion of eigenvalues of a very large matrix,
using high precision arithmetic computations.

Example 2.1.4. Approximation of functions ck(θ) for matrices generated by a
symbol, which has both monotone and non-monotone regions.

Example 2.2.1. Asymptotic expansion of eigenvalues for preconditioned ma-
trices, of the form T −1

n (g)Tn(f) with symbol r = g−1f .
Example 2.3.1. Using interpolation–extrapolation to approximate functions ck(θ)

over the whole spectrum for preconditionedmatrices of the form T −1
n (g)Tn(f)

of order n ≫ n1. There is no restriction on n.
Example 2.4.1. Analysis of IgA matrices K

[2]
n , M

[2]
n , and L

[2]
n .

Example 2.5.1. Exact eigenvalues for “symmetrically sparse tridiagonal” Toeplitz
matrices, given by sampling a symbol with a new non-uniform grid.
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Papers

Contributions by the Author
Here is presented a summary of the contributions by the author of this thesis in
each of Papers I–V.

Paper I
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ABSTRACT
Bogoya, Böttcher, Grudsky, and Maximenko have recently obtained for the eigenvalues of a Toeplitz
matrix, under suitable assumptions on the generating function, the precise asymptotic expansion
as the matrix size goes to infinity. In this article we provide numerical evidence that some of these
assumptions can be relaxed. Moreover, based on the eigenvalue asymptotics, we devise an extrapo-
lation algorithm for computing the eigenvalues of banded symmetric Toeplitz matrices with a high
level of accuracy and a relatively low computational cost.

1. Introduction

A matrix of the form

[ai− j]ni, j=1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a−1 a−2 · · · · · · a−(n−1)

a1
. . . . . . . . . ...

a2
. . . . . . . . . . . . ...

... . . . . . . . . . . . . a−2

... . . . . . . . . . a−1
an−1 · · · · · · a2 a1 a0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

whose entries are constant along each diagonal, is called
a Toeplitz matrix. Given a function f : [−π , π] → C
belonging to L1([−π , π]), the nth Toeplitz matrix asso-
ciated with f is defined as

Tn( f ) = [ f̂i− j]ni, j=1,

where the numbers f̂k are the Fourier coefficients of f ,

f̂k = 1
2π

∫ π

−π

f (θ ) e−ikθdθ , k ∈ Z.

We refer to {Tn( f )}n as the Toeplitz sequence generated
by f , which in turn is called the generating function or
the symbol of {Tn( f )}n. In the case where f is real, all
the matrices Tn( f ) are Hermitian and much is known
about their spectral properties, from the localization of
the eigenvalues to the asymptotic spectral distribution in
the Weyl sense; see [Böttcher and Silbermann 99, Garoni
and Serra-Capizzano 17] and the references therein.

CONTACT Sven-Erik Ekström sven-erik.ekstrom@it.uu.se Department of Information Technology, Division of Scientific Computing, Uppsala University,
ITC, Lägerhyddsv. , Hus , P.O. Box , SE-  Uppsala, Sweden.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uexm.

The present article focuses on the case where f is a real
cosine trigonometric polynomial (RCTP), that is, a func-
tion of the form

f (θ ) = f̂0 + 2
m∑

k=1

f̂k cos(kθ ), f̂0, f̂1, . . . , f̂m ∈ R,

m ∈ N.

We say that the RCTP f is monotone if it is either increas-
ing or decreasing over the interval [0, π]. The nth Toeplitz
matrix generated by f is the real symmetric banded
matrix given by

Tn( f ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̂0 f̂1 · · · f̂m
f̂1

. . . . . . . . .
... . . . . . . . . . . . .

f̂m
. . . . . . . . . . . .

. . . . . . . . . . . . . . .
f̂m · · · f̂1 f̂0 f̂1 · · · f̂m

. . . . . . . . . . . . . . .
. . . . . . . . . . . . f̂m

. . . . . . . . . . . . ...
. . . . . . . . . f̂1

f̂m · · · f̂1 f̂0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In [Bogoya et al. 15a, Bogoya et al. 17, Böttcher et al. 10]
it was proved that if the RCTP f is monotone and

©  Taylor & Francis
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satisfies certain additional assumptions, which include
the requirements that f ′(θ ) ̸= 0 for θ ∈ (0, π ) and
f ′′(θ ) ̸= 0 for θ ∈ {0, π}, then, for every integer α ≥ 0,
every n and every j = 1, . . . , n, the following asymptotic
expansion holds:

λ j(Tn( f )) = f (θ j,n) +
α∑

k=1

ck(θ j,n)hk + Ej,n,α, (1–1)

where:! The eigenvalues of Tn( f ) are arranged in non-
decreasing or non-increasing order, depending on
whether f is increasing or decreasing.! {ck}k=1,2,... is a sequence of functions from [0, π] to
R which depends only on f .! h = 1

n+1 and θ j,n = jπ
n+1 = jπh.! Ej,n,α = O(hα+1) is the remainder (the error), which

satisfies the inequality |Ej,n,α| ≤ Cαhα+1 for some
constantCα depending only on α and f .

The symbols

fq(θ ) = (2 − 2 cos θ )q, q = 1, 2, . . . (1–2)

arise in the discretization of differential equations and are
therefore of particular interest. Unfortunately, for these
symbols the requirement that f ′′(0) ̸= 0 is not satisfied if
q ≥ 2. Thefirst purpose of this article is to provide numer-
ical evidence that the higher-order approximation (1–1)
holds even in this “degenerate case.”Actually, based onour
numerical experiments, we conjecture that (1–1) holds for
all monotone RCTPs f .

In [Bogoya et al. 15a], the authors also briefly men-
tioned that the asymptotic expansion (1–1) can be used
to compute an accurate approximation of λ j(Tn( f )) for
very large n, provided the valuesλ j1 (Tn1 ( f )),λ j2 (Tn2 ( f )),
λ j3 (Tn3 ( f )) are available for moderately sized n1, n2, n3
with θ j1,n1 = θ j2,n2 = θ j3,n3 = θ j,n. The second and main
purpose of this article is to carry out this idea and to
support it by numerical experiments accompanied by
an appropriate error analysis. In particular, we devise
an algorithm to compute λ j(Tn( f )) with a high level of
accuracy and a relatively low computational cost. The
algorithm is completely analogous to the extrapolation
procedure which is employed in the context of Romberg
integration to obtain high precision approximations of
an integral from a few coarse trapezoidal approximations
[Stoer and Bulirsch 02, Section 3.4]. In this regard, the
asymptotic expansion (1–1) plays here the same role
as the Euler–Maclaurin summation formula [Stoer and
Bulirsch 02, Section 3.3].

In the case where the monotonicity assumption on f
is violated, a first-order asymptotic formula for the eigen-
values was established by Bogoya, Böttcher, Grudsky, and

Maximenko in [Bogoya et al. 15b]. In particular, follow-
ing the argument used for the proof of [Bogoya et al. 15b,
Theorem 1.6], one can show that for every RCTP f , every
n and every j = 1, . . . , n, we have

λρn( j)(Tn( f )) = f (θ j,n) + Ej,n,0, (1–3)

where:! The eigenvalues of Tn( f ) are arranged in non-
decreasing order, λ1(Tn( f )) ≤ · · · ≤ λn(Tn( f )).! ρn = σ−1

n , where σn is a permutation of {1, . . . , n}
such that f (θσn(1),n) ≤ · · · ≤ f (θσn(n),n).! h = 1

n+1 and θ j,n = jπ
n+1 = jπh.! Ej,n,0 = O(h) is the error, which satisfies the

inequality |Ej,n,0| ≤ C0h for some constant C0
depending only on f .

The third and last purpose of this article is to formulate,
on the basis of numerical experiments, a conjecture on the
higher-order asymptotics of the eigenvalues if the mono-
tonicity assumption on f is not in force. We also illustrate
how this conjecture can be used along with our extrapo-
lation algorithm in order to compute some of the eigen-
values of Tn( f ) in the case where f is non-monotone.

1.1. Ideas from numerical linear algebra

Before entering into the details of the article, we allow us
a digression. Our aim is to highlight that the first-order
expansion (1–3) may be proved by purely linear algebra
arguments in combination with the results about the so-
called quantile function obtained in [Bogoya et al. 15b,
Bogoya et al. 16]. Let us outline the schemeof a linear alge-
bra proof of this kind. We will make use of the so-called
τ matrices and the related properties [Bini and Capovani
83, Serra-Capizzano 96].

Let τn( f ) be the τ matrix of size n generated by f .
Then, τn( f ) is a real symmetric matrix with the follow-
ing properties:! Tn( f ) = τn( f ) + R+

n + R−
n , where R+

n is a symmet-
ric nonnegative definite matrix of rank k+, R−

n is a
symmetric nonpositive definite matrix of rank k−,
and k+ + k− ≤ 2(m − 1), with m being the degree
of f .! The eigenvalues of τn( f ) are f (θ j,n), j = 1, . . . , n.

Using a classical interlacing theorem for the eigenvalues
(see [Bhatia 97, Exercise III.2.4] or [Garoni and Serra-
Capizzano 17, Theorem 2.12]), we obtain

f (θσn( j−k−),n) ≤ λ j(Tn( f )) ≤ f (θσn( j+k+),n),

j = k− + 1, . . . , n − k+. (1–4)

Moreover, it is known that

λ j(Tn( f )) ∈ [mf ,Mf ], j = 1, . . . , n, (1–5)
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Figure . Example : Errors E j,n,0 and scaled errors E j,n,0/h versus θ j,n for j = 1, . . . , n and n = 100, 200, 400 in the case of the symbol
f (θ ) = (2 − 2 cos θ )2.

where mf = min f and Mf = max f ; see [Böttcher and
Silbermann 99, Garoni and Serra-Capizzano 17]. Consid-
ering that f is an RCTP and hence a Lipschitz continuous
function, the result (1–3) intuitively follows from (1–4)
and (1–5). For a formal derivation, however, it is necessary
to resort to the quantile function of f , which is monotone
and Lipschitz continuous whenever f is Lipschitz contin-
uous; see [Bogoya et al. 15b, Proposition 2.7].

The relation (1–4) is known in the numerical linear
algebra community since more than 30 years and was
used in [Serra-Capizzano 96] to study the asymptotics of
the extreme eigenvalues of Toeplitz matrices. In particu-
lar, if α ≥ 2 denotes the minimum order of the zeros of
f − min f , it was proved in [Serra-Capizzano 96] that the
errors Ej,n,0 corresponding to the smallest eigenvalues of
Tn( f ) areO(hα ) andnot onlyO(h).More precisely, when-
ever j is constant with respect to n, we have |Ej,n,0| ≤ c jhα

for some constant c j depending only on f and j.

2. Numerical experiments in support of the
asymptotic expansion

We present in this section a few numerical examples, with
the purpose of supporting the conjecture that the asymp-
totic expansion (1–1) is satisfied for all monotone RCTPs
f , including those which do not meet the requirements
f ′(θ ) ̸= 0 for θ ∈ (0, π ) and f ′′(θ ) ̸= 0 for θ ∈ {0, π}.

Example 1. Let f be the monotone RCTP defined by
(1–2) for q = 2,

f (θ ) = f2(θ ) = (2 − 2 cos θ )2

= 6 − 8 cos θ + 2 cos(2θ ).

Note that f ′′(0) = 0. The expansion (1–1) with α = 1
would say that, for every n and every j = 1, . . . , n,

λ j(Tn( f )) − f (θ j,n) = Ej,n,0

= c1(θ j,n)h + Ej,n,1, (2–6)

where |Ej,n,1| ≤ C1h2 and both the function c1 : [0, π] →
R and the constant C1 depend only on f . In partic-
ular, the scaled errors Ej,n,0/h should be equal to the
equispaced samples c1(θ j,n) (and should therefore repro-
duce the graph of the function c1) in the limit where
n → ∞. In Figure 1 we plot the errors Ej,n,0 and the
scaled errors Ej,n,0/h versus θ j,n for j = 1, . . . , n and n =
100, 200, 400. It is clear that the scaled errors overlap per-
fectly, thus supporting the conjecture that the expansion
(2–6) holds despite the fact that f ′′(0) = 0. In particular,
the right pane of Figure 1 displays the graph of c1 over
[0, π].

Example 2. Let

f (θ ) = 1 + 24 cos θ − 12 cos(2θ ) + 8 cos(3θ )

−3 cos(4θ ).

The function f is a monotone decreasing RCTP such that
f ′(π/2) = f ′′(π/2) = f ′′(0) = 0. Figure 2 is obtained in
the same way as Figure 1. Again, we see that the scaled
errors overlap perfectly, thus supporting the conjecture
that the expansion (2–6) holds even for this function
f , despite the fact that f violates both the conditions
f ′(θ ) ̸= 0 for θ ∈ (0, π ) and f ′′(θ ) ̸= 0 for θ ∈ {0, π}.

Example 3. Let f be the same as in Example 2. The expan-
sion (1–1) with α = 2 would say that, for every n and

Figure . Example : Errors E j,n,0 and scaled errors E j,n,0/h versus θ j,n for j = 1, . . . , n and n = 100, 200, 400 in the case of the symbol
f (θ ) = 1 + 24 cos θ − 12 cos(2θ ) + 8 cos(3θ ) − 3 cos(4θ ).
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every j = 1, . . . , n,

λ j(Tn( f )) − f (θ j,n) − c1(θ j,n)h = Ej,n,1

= c2(θ j,n)h2 + Ej,n,2,

(2–7)

where |Ej,n,2| ≤ C2h3 and both the function c2 : [0, π] →
R and the constant C2 depend only on f . In particular,
the scaled errors Ej,n,1/h2 should be equal to the equis-
paced samples c2(θ j,n) (and should therefore reproduce
the graph of the function c2) in the limit where n → ∞.
Unfortunately, the values Ej,n,1 are not available, because
the function c1 is unknown. Towork around this problem,
we fix n′ ≫ n such that (n′ + 1) is a multiple of (n + 1)
and we approximate Ej,n,1 by

Ẽ j,n,1 = λ j(Tn( f )) − f (θ j,n) − c̃1(θ j,n)h,

where c̃1 is the approximation of c1 obtained from the
scaled errors Ej′,n′,0/h′ corresponding to the fine param-
eter n′. In other words, c̃1 is defined at every point θ j′,n′

as

c̃1(θ j′,n′ ) =
Ej′,n′,0

h′ =
λ j′ (Tn′ ( f )) − f (θ j′,n′ )

h′

= c1(θ j′,n′ ) +
Ej′,n′,1

h′ , j′ = 1, . . . , n′, h′ = 1
n′ + 1

.

Note that c̃1 is also defined at every point θ j,n, because
(n′ + 1) is a multiple of (n + 1) and hence every θ j,n is
equal to some θ j′,n′ (indeed, θ j,n = θ j′,n′ for j′ = j n′+1

n+1 ).
When approximating c2(θ j,n) by Ẽ j,n,1/h2 instead of
Ej,n,1/h2, the error can be estimated as follows:

∣∣∣∣∣
Ẽ j,n,1

h2
− c2(θ j,n)

∣∣∣∣∣

=
∣∣∣∣∣
Ej,n,1 + h

[
c̃1(θ j,n) − c1(θ j,n)

]

h2
− c2(θ j,n)

∣∣∣∣∣

≤
∣∣∣∣
Ej,n,1

h2
− c2(θ j,n)

∣∣∣∣ + 1
h
∣∣c̃1(θ j,n) − c1(θ j,n)

∣∣

=
∣∣∣∣
Ej,n,2

h2

∣∣∣∣ + 1
h
∣∣c̃1(θ j′,n′ ) − c1(θ j′,n′ )

∣∣

(here j′ = j n′+1
n+1 so that θ j′,n′ = θ j,n)

=
∣∣∣∣
Ej,n,2

h2

∣∣∣∣ + 1
h

∣∣∣∣
Ej′,n′,1

h′

∣∣∣∣

≤ C2h +C1
h′

h
.

We may then expect that the errors |Ẽ j,n,1/h2 − c2(θ j,n)|
are of the same order as the errors |Ej,n,1/h2 − c2(θ j,n)| =
|Ej,n,2/h2| provided that h′ = O(h2). In Figure 3 we plot
the approximated errors Ẽ j,n,1 and the approximated
scaled errors Ẽ j,n,1/h2 versus θ j,n for j = 1, . . . , n and
n = 100, 200, 400, with n′ = ⌈ n+1

12 ⌉(n + 1) − 1. With
this choice of n′, we ensure that (n′ + 1) is a multiple of
(n + 1) and h′ ≈ 12h2 for all n. The figure reveals that
the approximated scaled errors converge to a limit func-
tion c2, thus supporting the conjecture that the expansion
(2–7) holds despite the fact that f violates both the con-
ditions f ′(θ ) ̸= 0 for θ ∈ (0, π ) and f ′′(θ ) ̸= 0 for θ ∈
{0, π}.

3. Algorithm for computing the eigenvalues
with high accuracy

In Section 2 we showed through numerical examples
that the asymptotic expansion (1–1) is likely to be satis-
fied for every monotone RCTP f . We now illustrate how
(1–1) can be used to compute an accurate approximation
of λ j(Tn( f )) for large n.

Let f be a monotone RCTP, fix n ∈ N and
j ∈ {1, . . . , n}. Suppose λ j1 (Tn1 ( f )), . . . , λ jm (Tnm ( f ))
are available for some ( j1, n1), . . . , ( jm, nm) such that
j1h1 = · · · = jmhm = jh, where h1 = 1

n1+1 , . . . , hm =
1

nm+1 , h = 1
n+1 . In this situation we have

θ j1,n1 = · · · = θ jm,nm = θ j,n = θ̄ for some θ̄ ∈ (0, π ),
and the application of (1–1) with α = m yields

Eji,ni,0 = λ ji (Tni ( f )) − f (θ̄ )

=
m∑

k=1

ck(θ̄ )hki + Eji,ni,m, i = 1, . . . ,m, (3–8)

Ej,n,0 = λ j(Tn( f )) − f (θ̄ )

=
m∑

k=1

ck(θ̄ )hk + Ej,n,m, (3–9)

Figure . Example : Approximated errors Ẽ j,n,1 and approximated scaled errors Ẽ j,n,1/h
2 versus θ j,n for j = 1, . . . , n and n =

100, 200, 400 in the case of the symbol f (θ ) = 1 + 24 cos θ − 12 cos(2θ ) + 8 cos(3θ ) − 3 cos(4θ ).
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where

|Eji,ni,m| ≤ Cmhm+1
i , i = 1, . . . ,m, (3–10)

|Ej,n,m| ≤ Cmhm+1. (3–11)

We are interested in a linear combination of the errors
Eji,ni,0 which “reconstructs” as much as possible the error
Ej,n,0. More precisely, we look for a linear combination

m∑

i=1

aiE ji,ni,0 =
m∑

k=1

ck(θ̄ )

m∑

i=1

aihki +
m∑

i=1

aiE ji,ni,m

(3–12)
such that

m∑

i=1

aihki = hk, k = 1, . . . ,m. (3–13)

If [â1, . . . , âm] is a vector satisfying the conditions (3–13),
then

m∑

i=1

âiE ji,ni,0 = Ej,n,0 +
m∑

i=1

âiE ji,ni,m − Ej,n,m, (3–14)

and in view of (3–10) and (3–11) the linear combination∑m
i=1 âiE ji,ni,0 is supposed to be an accurate reconstruc-

tion of Ej,n,0. This immediately yields the following high
precision approximation for λ j(Tn( f )):

λ j(Tn( f )) = f (θ̄ ) + Ej,n,0 ≈ f (θ̄ ) +
m∑

i=1

âiE ji,ni,0.

(3–15)
By (3–10), (3–11), and (3–14), an estimate for the error of
this approximation is given by

∣∣∣∣∣λ j(Tn( f )) − f (θ̄ ) −
m∑

i=1

âiE ji,ni,0

∣∣∣∣∣

=
∣∣∣∣∣Ej,n,0 −

m∑

i=1

âiE ji,ni,0

∣∣∣∣∣ =
∣∣∣∣∣

m∑

i=1

âiE ji,ni,m − Ej,n,m

∣∣∣∣∣

≤ Cm

[ m∑

i=1

|âi|hm+1
i + hm+1

]

. (3–16)

Theorem 1. There exists a unique vector [â1, . . . , âm] ∈
Rm satisfying the conditions (3–13) and, moreover, the
special linear combination

∑m
i=1 âiE ji,ni,0 coincides with

hp(h), where p(x) is the interpolation polynomial for the
data (h1,Ej1,n1,0/h1), . . . , (hm,Ejm,nm,0/hm).

Proof. Let V (h1, . . . , hm) be the Vandermonde matrix
corresponding to the nodes h1, . . . , hm:

V (h1, . . . , hm) =

⎡

⎢⎢⎢⎣

1 h1 · · · hm−1
1

1 h2 · · · hm−1
2

...
...

...
1 hm · · · hm−1

m

⎤

⎥⎥⎥⎦
.

We recall two properties of V (h1, . . . , hm) that can
be found, e.g., in [Bevilacqua et al. 92, Chapter 5]
or [Davis 75, Chapter II]. First, since it is implicitly
assumed that n1, . . . , nm (and hence also h1, . . . , hm)
are all distinct, the matrix V (h1, . . . , hm) is invertible.
Second, for any y = [y1, . . . , ym]T ∈ Rm, the vector q =
[V (h1, . . . , hm)]−1y = [q1, . . . , qm]T is such that q(x) =
q1 + q2x + · · · + qmxm−1 is the interpolation polynomial
for the data (h1, y1), . . . , (hm, ym).

The conditions (3–13) can be rewritten as
⎡

⎢⎢⎢⎣

h1 h2 · · · hm
h21 h22 · · · h2m
...

...
...

hm1 hm2 · · · hmm

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

a1
a2
...
am

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

h
h2
...
hm

⎤

⎥⎥⎥⎦
. (3–17)

If we define

D =

⎡

⎢⎢⎢⎣

h1
h2

. . .
hm

⎤

⎥⎥⎥⎦
,

then the matrix A of the linear system (3–17) satisfies

A = AD−1D = [V (h1, . . . , hm)]TD.

It follows that A is invertible and so the linear system
(3–17) has a unique solution [â1, . . . , âm]T . Moreover, we
have

A

⎡

⎢⎢⎢⎣

â1
â2
...
âm

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

h
h2
...
hm

⎤

⎥⎥⎥⎦

⇐⇒ [â1, â2, . . . , âm]AT = [h, h2, . . . , hm]
⇐⇒ [â1, â2, . . . , âm] = h[1, h, . . . , hm−1]A−T .

If we denote by p(x) = p1 + p2x + · · · + pmxm−1 the
interpolation polynomial for the data (h1,Ej1,n1,0/h1),
. . . , (hm,Ejm,nm,0/hm), then

m∑

i=1

âiE ji,ni,0

= [â1, â2, . . . , âm]

⎡

⎢⎢⎢⎢⎣

Ej1,n1,0

Ej2,n2,0
...

Ejm,nm,0

⎤

⎥⎥⎥⎥⎦

= h[1, h, . . . , hm−1]A−T

⎡

⎢⎢⎢⎢⎣

Ej1,n1,0

Ej2,n2,0
...

Ejm,nm,0

⎤

⎥⎥⎥⎥⎦
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= h[1, h, . . . , hm−1][V (h1, . . . , hm)]−1D−1

⎡

⎢⎢⎢⎢⎣

Ej1,n1,0

Ej2,n2,0
...

Ejm,nm,0

⎤

⎥⎥⎥⎥⎦

= h[1, h, . . . , hm−1][V (h1, . . . , hm)]−1

⎡

⎢⎢⎢⎢⎣

Ej1,n1,0/h1
Ej2,n2,0/h2

...
Ejm,nm,0/hm

⎤

⎥⎥⎥⎥⎦

= h[1, h, . . . , hm−1]

⎡

⎢⎢⎢⎢⎣

p1
p2
...
pm

⎤

⎥⎥⎥⎥⎦
= h

m∑

i=1

pihi−1 = hp(h).

!

We remark that n is normally much larger than
n1, . . . , nm. Indeed, the idea behind the algorithm we
are describing here is to obtain a high precision approx-
imation of λ j(Tn( f )) at the sole price of comput-
ing a few eigenvalues λ j1 (Tn1 ( f )), . . . , λ jm (Tnm ( f )) with
n1, . . . , nm ≪ n. Due to the moderate sizes n1, . . . , nm,
the latter eigenvalues can be efficiently computed by a
standard eigensolver, and the desired approximation of
λ j(Tn( f )) is then obtained via equation (3–15) with the
âi given by Theorem 1, i.e.,

λ j(Tn( f )) = f (θ̄ ) + Ej,n,0 ≈ f (θ̄ ) +
m∑

i=1

âiE ji,ni,0

= f (θ̄ ) + hp(h). (3–18)

An estimate for the error of this approximation is given by
(3–16):

∣∣λ j(Tn( f )) − f (θ̄ ) − hp(h)
∣∣

≤ Cm

[ m∑

i=1

|âi|hm+1
i + hm+1

]

. (3–19)

The procedure of evaluating the interpolation polyno-
mial p(x) at x = h is referred to as extrapolation, because
p(x) is evaluated at a point which lies outside the con-
vex hull of the interpolation nodes h1, . . . , hm. A com-
pletely analogous extrapolation procedure is employed in
the context of Romberg integration to obtain high pre-
cision approximations of an integral from a few coarse
trapezoidal approximations; see [Stoer and Bulirsch 02,
Section 3.4]. For more details on extrapolation methods,
we refer the reader to [Brezinski and Redivo Zaglia 91].

Algorithm 1. With the notation of this article, given f
and m + 1 pairs ( j1, n1), . . . , ( jm, nm), ( j, n) such that
j1h1 = · · · = jmhm = jh, we compute a high precision
approximation of λ j(Tn( f )) as follows:! Compute the eigenvalues λ j1 (Tn1 ( f )), . . . ,

λ jm (Tnm ( f )) using a standard eigensolver.

! Compute the errors Eji,ni,0 = λ ji (Tni ( f )) − f (θ̄ ) for
i = 1, . . . ,m, where θ̄ = θ j,n = jπh.! Compute p(h), where p(x) is the interpolation poly-
nomial for the data (hi,Eji,ni,0/hi), i = 1, . . . ,m.! Return f (θ̄ ) + hp(h).

Example 4. As in Examples 2 and 3, let f be themonotone
decreasing RCTP defined by

f (θ ) = 1 + 24 cos θ − 12 cos(2θ ) + 8 cos(3θ )

−3 cos(4θ ).

Suppose we are interested in the jth largest eigenvalue
λ j(Tn( f )) for ( j, n + 1) = (100, 1000). Note that n is
not dramatically large in this case, so we may compute
λ j(Tn( f )) by a standard eigensolver, thus obtaining

λ j(Tn( f )) = 17.89119035373482 . . . (3–20)

Let us now compute the approximation of λ j(Tn( f ))
given by Algorithm 1 with ( j1, n1 + 1) = (4, 40),
( j2, n2 + 1) = (5, 50), ( j3, n3 + 1) = (10, 100). We
follow the algorithm step by step.! Due to the small size of n1, n2, n3, the eigenvalues

λ j1 (Tn1 ( f )), λ j2 (Tn2 ( f )), λ j3 (Tn3 ( f )) can be effi-
ciently computed by, say, theMatlab eig function,
which yields the values

λ j1 (Tn1 ( f )) = 17.86119786677332 . . .

λ j2 (Tn2 ( f )) = 17.86764984932256 . . .

λ j3 (Tn3 ( f )) = 17.88024043750535 . . .! In this example we have θ̄ = θ j,n = π/10, and the
errors Ej1,n1,0, Ej2,n2,0, Ej3,n3,0 are given by

Ej1,n1,0 = λ j1 (Tn1 ( f )) − f (θ̄ )

= −0.03118562702593 . . .

Ej2,n2,0 = λ j2 (Tn2 ( f )) − f (θ̄ )

= −0.02473364447669 . . .

Ej3,n3,0 = λ j3 (Tn3 ( f )) − f (θ̄ )

= −0.01214305629390 . . .! Let p(x) be the interpolation polynomial for the data
(h1,Ej1,n1,0/h1), (h2,Ej2,n2,0/h2), (h3,Ej3,n3,0/h3).
The value p(h) can be computed from the Lagrange
form of p(x):

p(h) =
Ej1,n1,0

h1
(h − h2)(h − h3)

(h1 − h2)(h1 − h3)

+
Ej2,n2,0

h2
(h − h1)(h − h3)

(h2 − h1)(h2 − h3)

+
Ej3,n3,0

h3
(h − h1)(h − h2)

(h3 − h1)(h3 − h2)
= −1.19315109114712 . . .
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Table . Example : Comparison between λ j(Tn(f )) and f (θ̄ ) + hp(h) for several RCTPs f .

f λ j (Tn(f )) f (θ̄ ) + hp(h) Error
∣∣λ j (Tn(f )) − f (θ̄ ) − hp(h)

∣∣ Error EstimateC3
[∑3

i=1 |âi|h4i + h4
]

f2 . . 9.94 · 10−11 C3 · 9.47 · 10−10

f3 . . 1.25 · 10−9 C3 · 9.47 · 10−10

f4 . . 4.05 · 10−8 C3 · 9.47 · 10−10

! The approximation of λ j(Tn( f )) returned by the
algorithm is

λ j(Tn( f )) ≈ f (θ̄ ) + hp(h)

= 17.89119034270811 . . . (3–21)

A direct comparison between (3–20) and (3–21)
shows that |λ j(Tn( f )) − f (θ̄ ) − hp(h)| ≈ 1.10 · 10−8(!).
Assuming we have no information about the exact value
(3–20), we can estimate the error |λ j(Tn( f )) − f (θ̄ ) −
hp(h)| via (3–19). The coefficients â1, â2, â3 are easily
computed by solving the linear system (3–17), which in
this case becomes

⎡

⎢⎣
h1 h2 h3
h21 h22 h23
h31 h32 h33

⎤

⎥⎦

⎡

⎢⎣
â1
â2
â3

⎤

⎥⎦ =

⎡

⎢⎣
h
h2

h3

⎤

⎥⎦

⇐⇒

⎡

⎢⎣
â1
â2
â3

⎤

⎥⎦ =

⎡

⎢⎣
0.0912
−0.216
0.304

⎤

⎥⎦ .

By (3–19),

|λ j(Tn( f )) − f (θ̄ ) − hp(h)| ≤ C3 · 7.33 · 10−8,

whereC3 is a constant depending only on f .

Example 5. In this example, for several RCTPs f and
for the fixed pair ( j, n) = (1700, 5000), we compare
λ j(Tn( f )) to its approximation f (θ̄ ) + hp(h) provided
by Algorithm 1 with ( j1, n1 + 1) = (17, 50), ( j2, n2 +
1) = (34, 100), ( j3, n3 + 1) = (68, 200). The results of
this comparison are collected in Table 1 for f = fq and
q = 2, 3, 4, where fq is defined in (1–2). Note that the
error estimate in the last column seems to be the same
in all cases, but it must be recalled that the constant C3
depends on f .

4. Numerical experiments and a conjecture for
the non-monotone case

Consider the non-monotone RCTP f (θ ) = 2 +
2 cos θ − 2 cos(2θ ), whose graph over [0, π] is depicted
in Figure 4. Note that f restricted to the interval
I = (2π/3, π] is monotone and f−1( f (I)) = I, where
f (I) = { f (θ ) : θ ∈ I} = [−2, 2) and f−1( f (I)) = {θ ∈
[0, π] : f (θ ) ∈ f (I)}. Let λ1(Tn( f )), . . . , λn(Tn( f )) be

the eigenvalues of Tn( f ) arranged in non-decreasing
order, and let σn be a permutation of {1, . . . , n}
which sorts the samples f (θ1,n), . . . , f (θn,n) in non-
decreasing order, i.e., f (θσn(1),n) ≤ · · · ≤ f (θσn(n),n).
Note that the inverse permutation ρn = σ−1

n is supposed
to sort the eigenvalues λ1(Tn( f )), . . . , λn(Tn( f )) so
that they match the samples f (θ1,n), . . . , f (θn,n), i.e.,
λρn( j)(Tn( f )) should be approximately equal to f (θ j,n)

for all j = 1, . . . , n. In Figure 5 we plot the errors

Ej,n,0 = λρn( j)(Tn( f )) − f (θ j,n) (4–22)

and the scaled errors Ej,n,0/h versus θ j,n for j = 1, . . . , n
and n = 100, 200, 400. The fundamental observation is
that, as long as θ j,n ∈ I, the errors Ej,n,0 draw a smooth
curve and the scaled errors Ej,n,0/h overlap perfectly,
just as in the case of monotone RCTPs (see Figures 1
and 2). We may therefore conjecture that the asymp-
totic expansion (1–1) holds for the eigenvalues of Tn( f )
corresponding in (4–22) to the samples f (θ j,n) with
θ j,n ∈ I. These are essentially the eigenvalues belonging
to f (I) = [−2, 2). The precise statement of our con-
jecture is reported below along with a further example
supporting it.

Conjecture 1. Let f be an RCTP such that f restricted
to the interval I ⊆ [0, π] is monotone and f−1( f (I)) =
I. Then, for every integer α ≥ 0, every n and every
j = 1, . . . , n such that θ j,n ∈ I, the following asymptotic
expansion holds:

λρn( j)(Tn( f )) = f (θ j,n) +
α∑

k=1

ck(θ j,n)hk + Ej,n,α,

(4–23)
where:

Figure . Graph of f (θ ) = 2 + 2 cos θ − 2 cos(2θ ) over [0,π ].
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Figure . Errors E j,n,0 and scaled errors E j,n,0/h versus θ j,n for j = 1, . . . , n and n = 100, 200, 400 in the case of the symbol f (θ ) =
2 + 2 cos θ − 2 cos(2θ ).

Figure . Example : Graph of f (θ ) = 2 − cos θ − cos(3θ ) over
[0,π ].! The eigenvalues of Tn( f ) are arranged in non-

decreasing order, λ1(Tn( f )) ≤ · · · ≤ λn(Tn( f )).! ρn = σ−1
n , where σn is a permutation of {1, . . . , n}

such that f (θσn(1),n) ≤ · · · ≤ f (θσn(n),n).! {ck}k=1,2,... is a sequence of functions from I to R
which depends only on f .! h = 1

n+1 and θ j,n = jπ
n+1 = jπh.! Ej,n,α = O(hα+1) is the error, which satisfies the

inequality |Ej,n,α| ≤ Cαhα+1 for some constant Cα

depending only on α and f .
Forα = 0, this conjecture is the same as Bogoya, Böttcher,
Grudsky, and Maximenko’s result (1–3).

Example 6. Let

f (θ ) = 2 − cos θ − cos(3θ ).

The graph of f is depicted in Figure 6. The hypotheses
of Conjecture 1 are satisfied with either I = [0, θ̂ ) or I =

(π − θ̂ , π], where θ̂ = 0.61547970867038 . . . . To fix the
ideas, let I = [0, θ̂ ). Conjecture 1 with α = 1 would say
that, for everyn and every j = 1, . . . , n such that θ j,n ∈ I,

λρn( j)(Tn( f )) − f (θ j,n) = Ej,n,0 = c1(θ j,n) + Ej,n,1,

where |Ej,n,1| ≤ C1h2 and both the function c1 : I → R
and the constant C1 depend only on f . In particular, the
scaled errors Ej,n,0/h corresponding to the points θ j,n
in I should be equal to the equispaced samples c1(θ j,n)

(and should therefore reproduce the graph of c1) in the
limit where n → ∞. In Figure 7 we plot the errors and
the scaled errors versus θ j,n for j = 1, . . . , n and n =
100, 200, 400. Clearly, the scaled errors overlap perfectly
over I, thus supporting Conjecture 1. We remark that
nothing would have changed in the reasoning if we had
chosen I = (π − θ̂ , π].

Assuming Conjecture 1, we can follow the derivation
of Section 3 to work out an algorithm, analogous to
Algorithm 1, for computing a high precision approx-
imation of λρn( j)(Tn( f )) from λρn1 ( j1)(Tn1 ( f )), . . . ,
λρnm ( jm)(Tnm ( f )), provided the corresponding point
θ j1,n1 = · · · = θ jm,nm = θ j,n = θ̄ belongs to an interval
I ⊆ [0, π] such that f|I is monotone and f−1( f (I)) = I.
We report here the algorithm for the reader’s conve-
nience.
Algorithm 2. With the notation of this article, given f
and m + 1 pairs ( j1, n1), . . . , ( jm, nm), ( j, n) such that
j1h1 = · · · = jmhm = jh, we compute a high precision
approximation of λρn( j)(Tn( f )) as follows:

Figure . Example : Errors E j,n,0 and scaled errors E j,n,0/h versus θ j,n for j = 1, . . . , n and n = 100, 200, 400 in the case of the symbol
f (θ ) = 2 − cos θ − cos(3θ ).
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Table . Example : Comparison between λ j(Tn(f )) and f (θ̄ ) + hp(h) form = 1, . . . , 5.

m λ j (Tn(f )) f (θ̄ ) + hp(h) Error
∣∣λ j (Tn(f )) − f (θ̄ ) − hp(h)

∣∣ Error estimateCm
[∑m

i=1 |âi|h
m+1
i + hm+1

]

 . . 7.61 · 10−6 C1 · 3.34 · 10−6

 . . 2.94 · 10−7 C2 · 2.65 · 10−7

 . . 8.76 · 10−9 C3 · 1.08 · 10−8

 . . 2.13 · 10−10 C4 · 3.01 · 10−10

 . . 8.27 · 10−12 C5 · 6.39 · 10−12

! Compute the eigenvalues λρn1 ( j1)(Tn1 ( f )), . . . ,
λρnm ( jm)(Tnm ( f )) using a standard eigensolver.! Compute the errors Eji,ni,0 = λρni ( ji)(Tni ( f )) −
f (θ̄ ) for i = 1, . . . ,m, where θ̄ = θ j,n = jπh.! Compute p(h), where p(x) is the interpolation poly-
nomial for the data (hi,Eji,ni,0/hi), i = 1, . . . ,m.! Return f (θ̄ ) + hp(h).

Example 7. Let f be the same as in Example 6.
Suppose we are interested in the jth smallest eigen-
value λ j(Tn( f )) for ( j, n + 1) = (1000, 10000). The
point θ̄ = θ j,n = π/10 lies in I = [0, θ̂ ), f|I is mono-
tone and f−1( f (I)) = I (see Figure 6). Moreover, it
is clear that the permutation σn which sorts the sam-
ples f (θ1,n), . . . , f (θn,n) in non-decreasing order is
such that σn(ℓ) = ℓ for all ℓ = 1, 2, . . . , ℓ̂, where ℓ̂

is the first index such that θ
ℓ̂+1,n ≥ θ̂ . As a conse-

quence, ρn( j) = j. In Table 2 we compare λ j(Tn( f ))
to its approximations f (θ̄ ) + hp(h) provided by Algo-
rithm 2 with m = 1, . . . , 5 and ( j1, n1 + 1) = (3, 30),
( j2, n2 + 1) = (5, 50), ( j3, n3 + 1) = (7, 70), ( j4, n4 +
1) = (9, 90), ( j5, n5 + 1) = (11, 110). Note that, for the
same reasoning as above, ρnm ( jm) = jm for all m =
1, . . . , 5.

5. Conclusions and perspectives

After supporting through numerical experiments
the conjecture that the higher-order approximation
(1–1) holds for all monotone RCTPs f , we illustrated
how (1–1) can be used along with an extrapolation pro-
cedure to compute high precision approximations of the
eigenvalues of Tn( f ) for large n. Moreover, based on
numerical experiments, we formulated a conjecture on
the eigenvalue asymptotics of Tn( f ) in the case where
f is non-monotone, and we showed how the conjecture
can be used, again in combination with an extrapolation
procedure, to compute high precision approximations of
some eigenvalues of Tn( f ) for large n.

We conclude this work with a list of possible future
lines of research.! Conjecture 1 does not say anything about “fully non-

monotone” symbols such as f (θ ) = 2 − 2 cos(ωθ ),
where ω ≥ 2 is an integer. However, based on

numerical experiments, it seems that even in this
case a “regular” asymptotics is available for the eigen-
values of Tn( f ). For more insights into this topic we
refer the reader to papers [Barrera and Grudsky 17]
and [Ekström and Serra-Capizzano].! A noteworthy theoretical objective would be to
obtain a precise analytic expression for the error of
Algorithm 1, namely |λ j(Tn( f )) − f (θ̄ ) − hp(h)|.
A way to achieve this goal could be to exploit
the information about the functions ck provided in
[Bogoya et al. 15a, Bogoya et al. 17, Böttcher et al.
10] and follow the steps in the derivation of the ana-
lytic expression for the error of Romberg integration
[Bauer 61, Bauer et al. 63].! With any multi-index n = (n1, . . . , nd ) ∈ Nd

and any multivariate matrix-valued function
f : [−π , π]d → Cs×s whose components fi j belong
to L1([−π , π]d ), we associate the so-called multi-
level block Toeplitz matrix Tn( f ), which is defined,
e.g., in [Tilli 98]. In view of the design of fast
extrapolation algorithms for the computation of
the eigenvalues, it would be interesting to know
whether an asymptotic expansion such as (1–1) or
(4–23) holds even for this kind of matrices. Numer-
ical evidence indicates that the answer should be
affirmative if

f (θ1, . . . , θd ) =
d∑

i=1

fq(θi), q = 1, 2, . . . (5–24)

where fq is given by (1–2). The d-variate function
f is especially interesting as it arises in the dis-
cretization of partial differential equations over d-
dimensional domains. For this function, however,
we do not need any asymptotic expansion to effi-
ciently compute the eigenvalues of Tn( f ). Indeed,
due to the specific structure of f , it can be shown
that

Tn( f ) =
d∑

i=1

In1 ⊗ · · · ⊗ Ini−1 ⊗ Tni ( fq)

⊗ Ini+1 ⊗ · · · ⊗ Ind ,

where Im is them × m identitymatrix and⊗ denotes
the (Kronecker) tensor product of matrices. By the
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properties of tensor products, the eigenvalues of
Tn( f ) are given by

λ j(Tn( f )) =
d∑

i=1

λ ji (Tni ( fq)),

1 ≤ j1 ≤ n1, . . . , 1 ≤ jd ≤ nd,

and their computation reduces to the computation
of the eigenvalues of the unilevel Toeplitz matrices
Tm( fq), which can be performed through Algorithm
1. For functions f more general than (5–24), the
reduction to the unilevel setting is not possible. In
this case, an extrapolation algorithm for the com-
putation of the eigenvalues of Tn( f ) should directly
rely on the asymptotic expansion, and establishing
whether the latter exists or not is an interesting sub-
ject for future research.
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in the nonpreconditioned case. Moreover, based on the eigenvalue asymptotics, we
devise an extrapolation algorithm for computing the eigenvalues of preconditioned
banded symmetric Toeplitz matrices with a high level of accuracy, with a relatively
low computational cost, and with potential application to the computation of the
spectrum of differential operators.

Keywords (Preconditioned) Toeplitz matrix ·Mass and stiffness matrix ·
Eigenvalues · Eigenvalue asymptotics · Polynomial interpolation · Extrapolation

Mathematics Subject Classifications (2010) 15B05 · 65F15 · 65D05 · 65B05

1 Introduction

A matrix of size n, having a fixed entry along each diagonal, is called Toeplitz and
enjoys the expression

[
ai−j

]n
i,j=1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a−1 a−2 · · · · · · a−(n−1)

a1
. . .

. . .
. . .

...

a2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . a−2
...

. . .
. . .

. . . a−1
an−1 · · · · · · a2 a1 a0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Given a complex-valued Lebesgue integrable function φ : [−π,π ] → C, the nth
Toeplitz matrix generated by φ is defined as

Tn(φ) =
[
φ̂i−j

]n
i,j=1,

where the quantities φ̂k are the Fourier coefficients of φ, which means

φ̂k =
1
2π

∫ π

−π
φ(θ) e−ikθdθ, k ∈ Z.

We refer to {Tn(φ)}n as the Toeplitz sequence generated by φ, which in turn is called
the generating function of {Tn(φ)}n. In the case where φ is real-valued, all the matri-
ces Tn(φ) are Hermitian and much is known about their spectral properties, from
the localization of the eigenvalues to the asymptotic spectral distribution in the Weyl
sense: in particular φ is the spectral symbol of {Tn(φ)}n, see [7, 14] and the references
therein.

More in detail, if φ is real-valued and not identically constant, then any eigenvalue
of Tn(φ) belongs to the open set (mφ,Mφ), withmφ ,Mφ being the essential infimum,
the essential supremum of φ, respectively. The case of a constant φ is trivial: in that
case if φ = m almost everywhere then Tn(φ) = mIn with In denoting the identity
of size n. Hence if Mφ > 0 and φ is nonnegative almost everywhere, then Tn(φ) is
Hermitian positive definite.

In this paper, we focus our attention on the following setting.
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• We consider two real-valued cosine trigonometric polynomials (RCTPs) f, g,
that is

f (θ) = f̂0 + 2
m1∑

k=1

f̂k cos(kθ), f̂0, f̂1, . . . , f̂m1 ∈ R, m1 ∈ N,

g(θ) = ĝ0 + 2
m2∑

k=1

ĝk cos(kθ), ĝ0, ĝ1, . . . , ĝm2 ∈ R, m2 ∈ N,

so that Tn(f ), Tn(g) are both real symmetric.
• We assume thatMg = max g > 0 and mg = min g ≥ 0, so that Tn(g) is positive

definite.
• We consider Pn(f, g) = T −1

n (g)Tn(f ) the “preconditioned” matrix and we
define the new symbol r = f/g.

The nth Toeplitz matrix generated by φ ∈ {f, g} is the real symmetric banded
matrix of bandwidth 2m + 1, m ∈ {m1,m2} (m = m1 if φ = f and m = m2 if
φ = g), given by

Tn(φ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ̂0 φ̂1 · · · φ̂m

φ̂1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

φ̂m
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

φ̂m · · · φ̂1 φ̂0 φ̂1 · · · φ̂m

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . φ̂m

. . .
. . .

. . .
. . .

...
. . .

. . .
. . . φ̂1

φ̂m · · · φ̂1 φ̂0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Matrices of the form Pn(f, g) are important for the fast solution of large Toeplitz
linear systems (in connection with the preconditioned conjugate gradient method [9–
11, 18] or of more general preconditioned Krylov methods [15, 16]). Furthermore,
up to low rank corrections, they appear in the context of the spectral approximation
of differential operators in which a low rank correction of Tn(g) is the mass matrix
and a low rank correction of Tn(f ) is the stiffness matrix.

Their spectral features have been studied in detail. More precisely, under the
assumption that r = m identically Pn(f, g) = rIn, while if mr < Mr , then any
eigenvalue of Pn(f, g) belongs to the open set (mr,Mr), see [11], and the whole
sequence {Pn(f, g)}n is spectrally distributed in the Weyl sense as r = f/g (see
[19]).
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In our context, we say that a function is monotone if it is either increasing or
decreasing over the interval [0,π ].

Under the assumption that r = f/g is monotone, in this paper, we show experi-
mentally that for every integer α ≥ 0, every n and every j = 1, . . . , n, the following
asymptotic expansion holds:

λj (Pn(f, g)) = r(θj,n)+
α∑

k=1

ck(θj,n)h
k + Ej,n,α, (1)

where:

• the eigenvalues of Pn(f, g) are arranged in nondecreasing or nonincreasing
order, depending on whether r is increasing or decreasing;

• {ck}k=1,2,... is a sequence of functions from [0,π ] to R which depends only on r;
• h = 1

n+1 and θj,n = jπ
n+1 = jπh;

• Ej,n,α = O(hα+1) is the remainder (the error), which satisfies the inequality
|Ej,n,α| ≤ Cαh

α+1 for some constant Cα depending only on α and r .

In the pure Toeplitz case, that is for g = 1 identically, so that Pn(f, g) = Tn(f )

and r = f , the result is proven in [4–6], if the RCTP f is monotone and satisfies
certain additional assumptions, which include the requirements that f ′(θ) ̸= 0 for
θ ∈ (0,π) and f ′′(θ) ̸= 0 for θ ∈ {0,π}. The symbols

fq(θ) = (2 − 2 cos θ)q, q = 1, 2, . . . , (2)

arise in the discretization of differential equations and are therefore of particular
interest. Unfortunately, for these symbols, the requirement that f ′′(0) ̸= 0 is not sat-
isfied if q ≥ 2. In [13], several numerical evidences are reported, showing that the
higher order approximation (1) holds even in this “degenerate case.”

Here, as first purpose, we show numerically the same for the preconditioned
matrices Pn(f, g) and, from a theoretical point of view, the numerical testing is
complemented by the proof of the above conjecture in the basic case of α = 0.

Furthermore, in [13], the authors employed the asymptotic expansion (1) for com-
puting an accurate approximation of λj (Tn(f )) for very large n, provided that the
values λj1(Tn1(f )), . . . , λjs (Tns (f )) are available for moderate sizes n1, . . . , ns with
θj1,n1 = · · · = θjs ,ns = θj,n, s ≥ 2. The second and main purpose of this paper is
to carry out this idea and to support it by numerical experiments, accompanied by
an appropriate error analysis in the more general case of the preconditioned matri-
ces Pn(f, g). In particular, we devise an algorithm to compute λj (Pn(f, g)) with
a high level of accuracy and a relatively low computational cost. The algorithm is
completely analogous to the extrapolation procedure, which is employed in the con-
text of Romberg integration (to obtain high precision approximations of an integral
from a few coarse trapezoidal approximations [20, Section 3.4], see also [8] for more
advanced algorithms). In this regard, the asymptotic expansion (1) plays here the
same role as the Euler–Maclaurin summation formula [20, Section 3.3].

The third and last purpose of this paper is to formulate, on the basis of numerical
experiments, a conjecture on the higher-order asymptotic of the eigenvalues if the
monotonicity assumption on r = f/g is not in force. We also illustrate how this
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conjecture can be used along with our extrapolation algorithm in order to compute
some of the eigenvalues of Pn(f, g) in the case where r is nonmonotone.

2 Error bounds for the coefficients ck in the asymptotic expansion

We start this section by manipulating the error expression implicitly given in (1),
the goal being that of using extrapolation methods [8]. In fact, if we assume that the
relations in (1) hold, then we can write

Ej,n,0 =
α∑

k=1

ck(θj,n) h
k + Ej,n,α , (3)

where Ej,n,0 = λj (Pn(f, g)) − r(θj,n).
We now suppose to know the eigenvalues for different (small) ni

namely {(n1, λj1(Pn1(f, g))), (n2, λj2(Pn2(f, g))), · · · , (nα, λjα (Pnα (f, g)))},
where n1, n2, · · · , nα and j1, j2, · · · , jα are chosen in such a way that
j1/(n1 + 1) = j2/(n2 + 1) = · · · = jα/(nα + 1).

By defining h1 = 1/(n1+ 1), h2 = 1/(n2+ 1), . . . , hα = 1/(nα + 1), for a given
set of eigenvalues, (3) can be written as

Ej1,n1,0 =
α∑

k=1
ck(θj1,n1) h

k
1 + Ej1,n1,α,

Ej2,n2,0 =
α∑

k=1
ck(θj2,n2) h

k
2 + Ej2,n2,α,

Ej3,n3,0 =
α∑

k=1
ck(θj3,n3) h

k
3 + Ej3,n3,α,

...

Ejα,nα,0 =
α∑

k=1
ck(θjα,nα ) h

k
α + Ejα,nα,α.

(4)

Let c, c̃ be the vectors

c = [c1, c2, . . . , cα]T ; c̃ = [c̃1, c̃2, . . . , c̃α]T ,
and let A be the coefficient matrix of size α × α with (A)i,j = h

j
i . Hence, the set of

(4) can be written in matrix form as

Ac = b0 − bα , (5)

where b0 = [Ej1,n1,0, Ej2,n2,0, . . . , Ejα,nα,0]T and bα =
[Ej1,n1,α, Ej2,n2,α, . . . , Ejα,nα,α]T . Furthermore, by neglecting the higher order
errors, we may define an approximation c̃ of c according to the expression below

Ac̃ = b0 . (6)

By solving the linear system of equations above, the approximation of c is easily
obtained since the matrix size is very small. In a subsequent step, we derive upper-
bounds for |c̃ − c|: in reality, (5) and (6) leads to

A(c̃ − c) = bα. (7)
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If we define &c = c̃ − c and ηi = Eji ,ni ,α

hα+1
i

for i = 1, . . . ,α, then the system (7) can

be written as

A&c =

⎡

⎢⎢⎢⎣

η1h
α+1
1

η2h
α+1
2
...

ηαh
α+1
α

⎤

⎥⎥⎥⎦
, (8)

with |ηi | ≤ Cα for i = 1, . . . ,α, where Cα is a constant. The coefficient matrix can
be expressed as

A =

⎡

⎢⎢⎢⎣

h1 h21 . . . hα
1

h2 h22 . . . hα
2

...
...

...

hα h2α . . . hα
α

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

h1
h2

. . .

hα

⎤

⎥⎥⎥⎦
V (h1, . . . , hα),

where V (h1, . . . , hα) is the Vandermonde matrix of order α corresponding to
h1, . . . , hα .
By assumingW = V −1(h1, . . . , hα), we deduce

(W)i,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)α−i

⎛

⎜⎜⎜⎜⎜⎝

∑

1≤ k1 <...< kα−i ≤α
k1,...,kα−i ̸=j

hk1 · · ·hkα−i

∏

1≤ k≤ α
k ̸=j

(
hj − hk

)

⎞

⎟⎟⎟⎟⎟⎠
1 ≤ i < α,

1
∏

1≤ k≤α
k ̸=j

(
hj − hk

) i = α.

(9)

Therefore for the inversion of the matrix A, we have

(A−1)i,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)α−i

⎛

⎜⎜⎜⎜⎜⎝

∑

1≤ k1 <...< kα−i ≤α
k1,...,kα−i ̸=j

hk1 · · · hkα−i

hj
∏

1≤ k≤ α
k ̸=j

(
hj − hk

)

⎞

⎟⎟⎟⎟⎟⎠
1 ≤ i < α,

1

hj
∏

1≤ k≤α
k ̸=j

(
hj − hk

) i = α,

(10)

and we can obtain an explicit expression for (&c)i , i = 1, . . . ,α, that is

(&c)i =
α∑

j=1

(A−1)i,jηj h
α+1
j . (11)
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Case 1 If i = α, then

(&c)α =
α∑

j=1

ηj h
α+1
j

hj
∏

1≤ k≤α
k ̸=j

(
hj − hk

) .

Whence, from the fact that |ηi | ≤ Cα for i = 1, . . . ,α,

|(&c)α| ≤
α∑

j=1

|ηj |hα+1
j

hj
∏

1≤ k≤ α
k ̸=j

|hj − hk|
≤

α∑

j=1

Cαh
α
j∏

1≤ k≤α
k ̸=j

|hj − hk|
.

With the choice hj = 1
mj−1 h1 for j = 1, . . . ,α, m positive integer, we have

|(&c)α | ≤ Cα
∑α

j=1
(

h1
mj−1 )

α

∏

1≤ k≤ α
k ̸=j

h1

∣∣∣∣
1

mj−1 − 1
mk−1

∣∣∣∣
= Cαh

α
1
∑α

j=1
( 1
mj−1 )

α

hα−1
1

∏

1≤ k≤ α
k ̸=j

∣∣∣∣
1

mj−1 − 1
mk−1

∣∣∣∣

= h1Cα
∑α

j=1
( 1
mj−1 )

α

∏

1≤ k≤ α
k ̸=j

∣∣∣∣
1

mj−1 − 1
mk−1

∣∣∣∣
= O(h1).

Case 2 If i = 1, . . . ,α − 1, then

(&c)i =
α∑

j=1

(−1)α−iηj h
α+1
j

∑

1≤ k1 <...< kα−i ≤α
k1,...,kα−i ̸=j

hk1 · · ·hkα−i

hj
∏

1≤ k≤ α
k ̸=j

(
hj − hk

) ,

that is different from the case i = α just for the numerator
∑

1≤ k1 <...< kα−i ≤ α
k1,...,kα−i ̸=j

hk1 · · ·hkα−i .

As a consequence,

|(&c)i | ≤ Cα

α∑

j=1

hα
j

∑

1≤ k1 <...< kα−i ≤α
k1,...,kα−i ̸=j

hk1 · · ·hkα−i

∏

1≤ k≤α
k ̸=j

∣∣hj − hk
∣∣

.
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With the choice hj = 1
mj−1 h1 for j = 1, . . . ,α, we infer

|(&c)i | ≤ Cα
∑α

j=1

(
h1

mj−1

)α

∑

1≤ k1 <...< kα−i ≤ α
k1,...,kα−i ̸=j

hα−i
1

(
1

mk1−1

1
mk2−1 . . .

1
mkα−i−1

)

∏

1≤ k≤ α
k ̸=j

h1

∣∣∣∣
1

mj−1 − 1
mk−1

∣∣∣∣

= Cα
∑α

j=1

(
1

mj−1

)α
(

hα
1h

α−i
1

hα−1
1

)

∑

1≤ k1 <...< kα−i ≤ α
k1,...,kα−i ̸=j

(
1

mk1−1

1
mk2−1 . . .

1
mkα−i−1

)

∏

1≤ k≤ α
k ̸=j

∣∣∣∣
1

mj−1 − 1
mk−1

∣∣∣∣

=hα−i+1
1 Cα

∑α
j=1

(
1

mj−1

)α

∑

1≤ k1 <...< kα−i ≤ α
k1,...,kα−i ̸=j

(
1

mk1−1

1
mk2−1 . . .

1
mkα−i−1

)

∏

1≤ k≤ α
k ̸=j

∣∣∣∣
1

mj−1 − 1
mk−1

∣∣∣∣
=O(hα−i+1

1 ).

As a conclusion, with the choice hj = 1
mj−1 h1 for j = 1, . . . ,α and under the

assumption that the asymptotic expansion reported in (1) is true, we deduce

|(&c)i | = O(hα−i+1
1 ), (12)

for i = 1, . . . ,α.

3 Error bounds for numerically approximated eigenvalues

The goal of this short section is to provide error bounds based on the linear system in
(6) for the computation of the eigenvalues of Pn(f, g): of course, these error bounds
are based on the conjecture that the relations reported in (1) are true. However, as we
can see in Section 4, the numerical tests fully support the existence of the considered
asymptotic expansion.

Indeed, as already observed, by solving (6), we can approximate ck . Once we have
the values of ck , we can approximate the eigenvalues λjβ of a large dimension matrix
of size nβ , here nβ +1 = mβ−1(n1+1). The asymptotic expansion (3) can be written
as

Ejβ ,nβ ,0 = h̄Tβ c + Ejβ ,nβ ,α . (13)

By subtraction h̄Tβ c̃ from both sides of the equation above, we find

Ejβ ,nβ ,0 − h̄Tβ c̃ = h̄Tβ (c − c̃)+ Ejβ ,nβ ,α,

λj (Pnβ (f, g)) − r(θj,nβ ) − h̄Tβ c̃ = h̄Tβ &c + Ejβ ,nβ ,α,∣∣∣λj (Pnβ (f, g)) − r(θj,nβ ) − h̄Tβ c̃
∣∣∣ ≤

α∑
i=1

hiβ |(&c)i | + |Ejβ ,nβ ,α|,
∣∣∣λj (Pnβ (f, g)) − r(θj,nβ ) − h̄Tβ c̃

∣∣∣ ≤
α∑

i=1
hiβ |(&c)i | + Cαh

α+1
β ,

(14)
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where h̄β = [hβ , h
2
β , · · · , hα

β ]T , |Ejβ ,nβ ,α| ≤ Cαh
α+1
β for some constant Cα and

|(&c)i | is given in (12).

4 Numerical tests

In this section, we want to present a few numerical experiments to support the asymp-
totic expansion (1) in the case where one or more properties of the following list are
satisfied:

1. f ′′(0) ̸= 0 (see Example 1, Example 3, and Example 5),
2. f ′′(0) = 0 (see Example 2 and Example 4),
3. min g > 0 (see Example 1, Example 2, and Example 5),
4. min g = 0 (see Example 3 and Example 4),
5. r = f/g is non monotone (see Example 5).

The approximation of eigenvalues of large matrices in each case is also computed.
The expansion (1) for α = 4 is

λj (Pn(f, g)) = r(θj,n)+c1(θj,n) h+c2(θj,n) h
2+c3(θj,n) h

3+c4(θj,n) h
4+Ej,n,4,

Ej,n,0 = λj (Pn(f, g)) − r(θj,n) = c1(θj,n) h+ c2(θj,n) h
2 + c3(θj,n) h

3

+c4(θj,n) h
4 + Ej,n,4 . (15)

In all numerical examples, we choose four matrix-size values, that is ni for i ∈
{1, 2, 3, 4}, in a way that they satisfy ni = mi−1(n1+ 1)− 1, withm being a positive
integer. The expansion (15) for the set of the four dimensions ni can be written as

Ej1,n1,0 = c1(θj1,n1) h1 + c2(θj1,n1) h
2
1 + c3(θj1,n1) h

3
1 + c4(θj1,n1) h

4
1 + Ej1,n1,4,

Ej2,n2,0 = c1(θj2,n2) h2 + c2(θj2,n2) h
2
2 + c3(θj2,n2) h

3
2 + c4(θj2,n2) h

4
2 + Ej2,n2,4,

Ej3,n3,0 = c1(θj3,n3) h3 + c2(θj3,n3) h
2
3 + c3(θj3,n3) h

3
3 + c4(θj3,n3) h

4
3 + Ej3,n3,4,

Ej4,n4,0 = c1(θj4,n4) h4 + c2(θj4,n4) h
2
4 + c3(θj4,n4) h

3
4 + c4(θj4,n4) h

4
4 + Ej4,n4,4,

(16)
where hi = 1

ni+1 and ji = mi−1 j1 for i ∈ {1, 2, 3, 4}. Notice that θji ,ni = θj1,n1 = θ̄

for a fixed j1 ∈ {1, 2, · · · , n1}. We are interested in the numerical approximation
of ci(θ̄) for i ∈ {1, 2, 3, 4} and then in the precise numerical approximation of the
eigenvalue of Pn(f, g) for large n. The set of (16) can be written as

Ej1,n1,0 = c̃1(θ̄) h1 + c̃2(θ̄) h
2
1 + c̃3(θ̄) h

3
1 + c̃4(θ̄) h

4
1,

Ej2,n2,0 = c̃1(θ̄) h2 + c̃2(θ̄) h
2
2 + c̃3(θ̄) h

3
2 + c̃4(θ̄) h

4
2,

Ej3,n3,0 = c̃1(θ̄) h3 + c̃2(θ̄) h
2
3 + c̃3(θ̄) h

3
3 + c̃4(θ̄) h

4
3,

Ej4,n4,0 = c̃1(θ̄) h4 + c̃2(θ̄) h
2
4 + c̃3(θ̄) h

3
4 + c̃4(θ̄) h

4
4.

(17)

We solve the system of linear equations above for j1 ∈ {1, 2, · · · , n1} to compute
c̃i (θ̄). The computed c̃i are used to approximate the eigenvalues of large size nβ by
exploiting the following relation

λ̃jβ (Pnβ (f, g)) = r(θjβ ,nβ )+ h̄Tβ c̃ . (18)
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Example 1 Let g, f , and r be the functions defined as

f (θ) = 4 − 2 cos(θ) − 2 cos(2θ) = (2 − 2 cos(θ))(3+ 2 cos(θ)) ,

g(θ) = 3+ 2 cos(θ) ,

r(θ) = f (θ)

g(θ)
= 2 − 2 cos(θ) ,

where θ ∈ [0,π ]. The graphs of generating functions are shown in left panel of
Fig. 1, and the approximations c̃k , for k = 1, 2, 3, 4 are shown in the right panel.
Note that g(θ) > 0, ∀ θ ∈ [0,π ], f ′′(0) ̸= 0, and furthermore r is monotone. We set
n = n1 ∈ {40, 60, 80, 100} and m = 2.

Example 2 Let g, f , and r be the functions defined as

f (θ) = 20 − 30 cos(θ)+ 12 cos(2θ) − 2 cos(3θ) = (2 − 2 cos(θ))3 ,

g(θ) = 3+ 2 cos(θ) ,

r(θ) = f (θ)

g(θ)
= (2 − 2 cos(θ))3

3+ 2 cos(θ)
,

where θ ∈ [0,π ]. The graphs of generating functions are shown in left panel of
Fig. 2, and the approximations c̃k , for k = 1, 2, 3, 4 are shown in the right panel.
Remark that g(θ) > 0, ∀ θ ∈ [0,π ], f ′′(0) = 0, and furthermore r is monotone. We
set n = n1 ∈ {40, 60, 80, 100} and m = 2.

There is an important issue to discuss here. Both the functions f and r attain
the minimum at θ = 0 with a very high order. Indeed, we have f (θ), r(θ) ≈ θ6,
with φ1 ≈ φ2 being the symmetric, transitive relation telling that there exist positive
constants c, C > 0 such that cφ1 ≤ φ2 ≤ Cφ1 on the whole definition domain [0,π ].
Therefore for fixed j (independent of n) the j th smallest eigenvalue of Pn(f, g) is
asymptotic to kjh

6, kj positive constant depending on j but not on n: the reader is
refereed to [17] for the preconditioned case with the limitation j = 1 and to [1] and
references therein for very elegant and precise estimates regarding the pure Toeplitz
case.

Fig. 1 Example 1: Generating functions (f, g, and r) and c̃k for k = 1, 2, 3, 4
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Fig. 2 Example 2: generating functions (f, g, and r) and c̃k for k = 1, 2, 3, 4

Now if we fix j and we put together λj (Pn(f, g)) ≈ h6 with relations (3)–
(4), then the only possibility for avoiding a contradiction is that the functions
c1(θ), c2(θ), c3(θ), c4(θ), c5(θ) all vanish at θ = 0.

The approximations c̃k , for k = 1, 2, 3, 4 shown in the right panel of Fig. 2 are
coherent with the above mathematical conclusion and in fact all these approximations
vanish simultaneously at θ = 0 (the fifth is not displayed, but we computed it and it
also equals to zero at θ = 0, while, as expected from an extension of the results by
[1] to the preconditioned Toeplitz case, the sixth is nonzero at θ = 0).

Since the argument and the conclusions are the very same, we anticipate that
the discussion can be repeated verbatim for Example 4, where the functions f and
r attain the minimum at θ = 0 with order 10. As a consequence, we expect that
the functions c1(θ), . . . , c9(θ) all simultaneously vanish at θ = 0, while c10(0) ̸=
0: this is confirmed for the first four of them as reported in the right panel of
Fig. 4.

Fig. 3 Example 3: generating functions (f, g, and r) and c̃k for k = 1, 2, 3, 4
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Fig. 4 Example 4: generating functions (f, g, and r) and c̃k for k = 1, 2, 3, 4

Example 3 Let g, f , and r be the functions defined as

f (θ) = 1+ cos(θ)+ 1
4
cos(2θ)+ 1

5
cos(3θ)+ 1

10
cos(4θ)+ 1

10
cos(5θ) ,

g(θ) = 2 − 2 cos(θ) ,

r(θ) = f (θ)

g(θ)
= 1+ cos(θ)+ 1

4 cos(2θ)+ 1
5 cos(3θ)+ 1

10 cos(4θ)+ 1
10 cos(5θ)

2 − 2 cos(θ)
,

where θ ∈ [0,π ]. The graphs of generating functions are shown in left panel of
Fig. 3, and the approximations c̃k , for k = 1, 2, 3, 4 are shown in the right panel.
Note that min g(θ) = 0, ∀ θ ∈ [0,π ], f ′′(0) ̸= 0, and furthermore r is monotone.
We set n = n1 ∈ {40, 60, 80, 100} and m = 2.

Example 4 Let g, f , and r be the functions defined as

f (θ) = 252 − 420 cos(θ)+240 cos(2θ)−90 cos(3θ)+ 20 cos(4θ) − 2 cos(5θ) = (2 − 2 cos(θ))5 ,

g(θ) = 2+ 2 cos(θ) ,

r(θ) = f (θ)

g(θ)
= (2 − 2 cos(θ))5

2+ 2 cos(θ)
,

Fig. 5 Example 5: generating functions (f, g, and r) and c̃k for k = 1, 2, 3, 4
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Fig. 6 Example 1: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for n = n1 = {40, 60, 80, 100}
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Fig. 7 Example 2: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for n = n1 = {40, 60, 80, 100}
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Fig. 8 Example 3: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for n = n1 = {40, 60, 80, 100}
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Fig. 9 Example 4: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for n = n1 = {40, 60, 80, 100}
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Fig. 10 Example 5: Ej,n,0, Ẽj,n,k (k = 1, 2, 3), and c̃k (k = 1, 2, 3, 4), for n = n1 = {40, 60, 80, 100}
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where θ ∈ [0,π ]. The graphs of generating functions are shown in left panel of
Fig. 4, and the approximations c̃k , for k = 1, 2, 3, 4 are shown in the right panel.
Remark that min g(θ) = 0, ∀ θ ∈ [0,π ], f ′′(0) = 0, and furthermore r is monotone.
We set n = n1 ∈ {40, 60, 80, 100} and m = 2.

Example 5 Let g, f , and r be the functions defined as

f (θ) = 136
17

+ 56
17

cos(θ)− 2
17

cos(2θ)+ 5
17

cos(3θ) = (3 − cos(θ)+ 5
17

cos(2θ))(3+ 2 cos(θ)) ,

g(θ) = 3+ 2 cos(θ) ,

r(θ) = f (θ)

g(θ)
= 3 − cos(θ)+ 5

17
cos(2θ) ,

where θ ∈ [0,π ]. The graphs of generating functions are shown in left panel of Fig. 5,
and the approximations c̃k , for k = 1, 2, 3, 4 are shown in the right panel. Notice that
min g(θ) > 0, ∀ θ ∈ [0,π ], f ′′(0) ̸= 0, and furthermore r is non monotone. We set
n = n1 ∈ {40, 60, 80, 100} and m = 2.

The numerical tests related to Examples 1 and 2, as in Figs. 6 and 7, show that the
error expansion (1) behaves as expected. In Fig. 11, we also see that the approximated
c̃k can be used for a large n to approximate the error term to (or almost to) machine
precision.

In the numerical tests associated with Examples 3 and 4, as in Figs. 8 and 9, we
observe again that the error expansion is in accordance with (1). We also note a
slight deviation for the largest eigenvalue and this has to be expected since we have
r(θ1,n) → ∞ as n → ∞ for Example 3 (on the other hand for Example 4 we
notice r(θn,n) → ∞ as n → ∞). However, the approximation of the eigenvalues of
Pn(f, g) is excellent and almost to machine precision as reported in Fig. 12.

In the numerical test related to Example 5, we have a non monotone region for
θ ∈ [0, 2 tan−1(

√
3/17)] where the proposed expansion does not work. Indeed, addi-

tional errors are introduced when compared to Ej,n,0, since the sampling of r(θj1,n1)
leads to a poorer approximation after ordering than the procedure given by sampling
r(θj,n7) first and then picking samples after ordering. However, the expansion is

Fig. 11 Example 1 and 2: the errors log10 |Ej7,n7,0| and log10 |Ẽj7,n7,4| for the 100 indices j7 of n7 =
6463 in (18), corresponding to n1 = 100, and using c̃k , k = 1, 2, 3, 4, computed with m = 2
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Fig. 12 Example 3 and 4: the errors log10 |Ej7,n7,0| and log10 |Ẽj7,n7,4| for the 100 indices j7 of n7 =
6463 in (18), corresponding to n1 = 100, and using c̃k , k = 1, 2, 3, 4, computed with m = 2

confirmed for the rest of the domain, as seen in Fig. 10. Furthermore, in Fig. 13, the
expansion works well again for the monotone part, by allowing an approximation
almost to machine precision of the eigenvalues of Pn(f, g).

However, even if the eigenvalues lying in the non monotone region give raise to
an irregular error pattern, it seems that there exists a kind of ‘deformed’ periodicity
in the error, like it is formally proven, without deformations, for the eigenvalues of
Tn(f ), f (θ) = 2 − 2 cos(ωθ), ω ≥ 2 integer, and g(θ) = 1 (see [12]). The latter
observation indicates that a more complete study of this ‘deformed’ periodicity has
to be considered in the future.

We finally observe that remarkable numerical results for the eigenvalues of
Pn(f, g), as reported in Figs. 11, 12 and 13, really answer in the positive to the ques-
tion posed in the title of the paper. In fact, we obtain almost machine precision for

Fig. 13 Example 5: the errors log10 |Ej7,n7,0| and log10 |Ẽj7,n7,4| for the 100 indices j7 of n7 = 6463
in (18), corresponding to n1 = 100, and using c̃k , k = 1, 2, 3, 4, computed with m = 2. Note the non
monotone part, θ ∈ [0, 2 tan−1(

√
3/17)], where the error is not improved
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the computation of the spectrum of Pn(f, g), for large n and only working with few
really small matrices.

5 Conclusions

Bogoya et al. [4–6] have recently obtained the precise asymptotic expansion for the
eigenvalues of a sequence of Toeplitz matrices {Tn(f )}, under suitable assumptions
on the associated generating function f . In this paper, we have shown numeri-
cal evidence that some of these assumptions can be relaxed and extended to the
case of a sequence of preconditioned Toeplitz matrices {Pn(f, g) = T −1

n (g)Tn(f )},
for f trigonometric polynomial, g nonnegative, not identically zero trigonometric
polynomial, r = f/g, and where the ratio r plays the same role as f in the non-
preconditioned case. The first-order asymptotic term of the expansion has been also
proven using purely linear algebra tools.

Moreover, based on the eigenvalue asymptotics, we devised an extrapolation algo-
rithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz
matrices with a high level of accuracy, with a relatively low computational cost, and
with potential application to the computation of the spectrum of differential opera-
tors. In fact, up to low rank corrections, matrices of the form Pn(f, g) appear in the
context of the spectral approximation of differential operators in which a low rank
correction of Tn(g) is the mass matrix and a low rank correction of Tn(f ) is the
stiffness matrix. We carried out also preliminary numerical tests confirming that the
same kind of asymptotic expansion holds, at least in the context of the Isogeometric
approximation of second-order differential operators.

Therefore, a plan for the future has to include:

• the theoretical proof of the asymptotic expansion in (1) for α > 1;
• the analysis of the non monotone case and its relations with the study in [12] for

the special case where f (θ) = 2 − 2 cos(ωθ), ω ≥ 2 integer, and g(θ) = 1;
• the extension of the results by [1] to the preconditioned Toeplitz case and the

study of its connection with the general expansion in (1);
• the extension of the numerical and theoretical study to a multidimensional, block

setting, with special attention to the matrices coming from the approximation of
elliptic differential operators.
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Appendix

Theorem 1 Let f , g be real-valued cosine trigonometric polynomials (RCTP) on
[0,π ] with Mg = max g > 0 and mg = min g ≥ 0. If r = f

g is monotone on [0,π ]
then ∃C > 0 such that∣∣∣∣λj (Pn(f, g)) − r

(
jπ

n+ 1

)∣∣∣∣ ≤ Ch ∀ j, ∀ n, (19)

where

• Pn(f, g) is the “preconditioned” matrix Pn(f, g) = T −1
n (g)Tn(f ),

• λ1(Pn(f, g)), λ2(Pn(f, g)), . . . , λn(Pn(f, g)) are the eigenvalues of Pn(f, g),
arranged in nondecreasing or nonincreasing order, depending on whether r is
increasing or decreasing,

• h = 1
n+1 and θj,n = jπ

n+1 = jπh.

Proof For the sake of simplicity, we assume that r is nondecreasing (the other case
has a similar proof).

Notice that the conditions on f and g imply that Tn(g) is positive definite and, by
setting ∼ the symbol representing similarity between matrices, we find Pn(f, g) ∼
T

−1/2
n (g)Tn(f )T

−1/2
n (g) so we can order the eigenvalues of Pn(f, g) as follows

λ1(Pn(f, g)) ≤ λ2(Pn(f, g)) ≤ · · · ≤ λn(Pn(f, g)).

We remark that
Tn(f ) = τn(f )+Hn(f ),

Tn(g) = τn(g)+Hn(g),
(20)

where, for ψ RCTP of degree m and Q =
(√

2
n+1 sin

(
ijπ
n+1

))n

i,j=1
, τn(ψ) is the

following τ matrix [3] of size n generated by ψ

τn(ψ) = Q diag
1≤j≤n

(
ψ

(
jπ

n+ 1

))
Q, Q = QT = Q−1,

and Hn(ψ) is the Hankel matrix

Hn(φ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ̂2 ψ̂3 · · · ψ̂m

ψ̂3 . .
.

... . .
.

ψ̂m

ψ̂m

. .
. ...

. .
.

ψ̂3

ψ̂m · · · ψ̂3 ψ̂2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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with rank(Hn(ψ)) ≤ 2(m − 1).
Hence,

Rf := rank(Hn(f )) ≤ 2(deg(f ) − 1),
Rg := rank(Hn(g)) ≤ 2(deg(g) − 1),
Rf,g := max{Rf ,Rg} ≤ 2 (max{deg(f ), deg(g)} − 1) .

(21)

Let P τ
n be the matrix τ−1

n (g)τn(f ),

P τ
n = Q

(

diag
1≤j≤n

(
g
(

jπ
n+1

)))−1

QQ diag
1≤j≤n

(
f
(

jπ
n+1

))
Q

= Q diag
1≤j≤n

(
f
g

(
jπ
n+1

))
Q

= Q diag
1≤j≤n

(
r
(

jπ
n+1

))
Q.

Hence, for j = 1, . . . , n

λj (P
τ
n ) = r

(
jπ

n+ 1

)
. (22)

By observing that T −1
n (g)Tn(f ) is similar to T

−1/2
n (g)Tn(f )T

−1/2
n (g), using the

MinMax spectral characterization for Hermitian matrices [2], fixed j ∈ {Rf,g +
1, . . . , n − Rf,g} and T ⊂ Cn, dim(T ) = n+ 1 − j , we obtain

λj (Pn(f, g)) = λj
(
T −1
n (g)Tn(f )

)

= λj

(
T

−1/2
n (g)Tn(f )T

−1/2
n (g)

)

= maxdim(T )=n+1−j

(
minx∈T ,

x ̸=0

(
x∗T −1/2

n (g)Tn(f )T
−1/2
n (g)x

x∗x

))

= maxdim(T )=n+1−j

⎛

⎜⎜⎝min x∈T ,
x ̸=0

y=T
−1/2
n (g)x

(
y∗Tn(f )y
y∗Tn(g)y

)
⎞

⎟⎟⎠

= maxdim(T̂ )=n+1−j

(

miny∈T̂ ,
y ̸=0

(
y∗Tn(f )y
y∗Tn(g)y

))

,

(23)

because T −1/2
n (g) is a full rank matrix and, if dim(T ) = n + 1 − j , then T̂ := {y :

y = T
−1/2
n (g)x, x ̸= 0, x ∈ T } is a new vector space having the same dimension

n+ 1 − j as T .
Let F be the subspace of Cn generated by the union of the columns of matri-

ces Hn(f ) and Hn(g). Because of the particular structure of the columns of Hankel
matrices Hn(f ) and Hn(g), we deduce

dim(F ) = max {rank(Hn(g)), rank(Hn(f ))} = Rf,g,

so that
dim(F⊥) = n − Rf,g.

Let us define Wf,g = T̂ ∩ F⊥,

n+ 1 − j ≥ dim(Wf,g) ≥ max{0, dim(T̂ )+ dim(F⊥) − n} = n+ 1 − j

+n − Rf,g − n = n+ 1 − (j + Rf,g),
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because n + 1 − (j + Rf,g) ≥ 1 for j ≤ n − Rf,g . The latter implies in particular
that Wf,g ̸= ∅. Thus, due to the orthogonality, ∀ y ̸= 0 ∈ Wf,g , we find

Hn(f )y = 0, Hn(g)y = 0,

so that
y∗Hn(f )y = 0, y∗Hn(g)y = 0.

Hence, from (23)

λj (Pn(f, g)) = maxdim(T̂ )=n+1−j

(

miny∈T̂ ,
y ̸=0

(
y∗(τn(f )+Hn(f ))y
y∗(τn(g)+Hn(g))y

))

≤ maxdim(T̂ )=n+1−j

(

miny∈Wf,g
y ̸=0

(
y∗(τn(f )+Hn(f ))y
y∗(τn(g)+Hn(g))y

))

= maxdim(T̂ )=n+1−j

(

miny∈Wf,g
y ̸=0

(
y∗τn(f )y
y∗τn(g)y

))

= maxWf,g=T̂∩F⊥
dim(T̂ )=n+1−j

(

miny∈Wf,g,
y ̸=0

(
y∗τn(f )y
y∗τn(g)y

))

≤ maxn+1−j≥dim(Ŵf,g)≥n+1−(j+Rf,g)

(

miny∈Ŵf,g ,
y ̸=0

(
y∗τn(f )y
y∗τn(g)y

))

= maxn+1−j≥dim(Ŵ )≥n+1−(j+Rf,g)

⎛

⎜⎜⎜⎝
min y∈Ŵf,g ,

y ̸=0

x=τ
1/2
n (g)y

(
x∗τ

−1/2
n (g)τn(f )τ

−1/2
n (g)x

x∗x

)
⎞

⎟⎟⎟⎠

= max{λj (P τ
n ), λj+1(P

τ
n ), . . . , λj+Rf,g (P

τ
n )}

= λj+Rf,g (P
τ
n ).

(24)

By fixing j ∈ {Rf,g + 1, . . . , n − Rf,g} and T ⊂ Cn, dim(T ) = j , analogously
we obtain

λj (Pn(f, g)) = mindim(T )=j

(
maxx∈T ,

x ̸=0

(
x∗T −1/2

n (g)Tn(f )T
−1/2
n (g)x

x∗x

))

= mindim(T )=j

⎛

⎜⎜⎝max x∈T ,
x ̸=0

y=T
−1/2
n (g)x

(
y∗Tn(f )y
y∗Tn(g)y

)
⎞

⎟⎟⎠

= mindim(T̂ )=j

(

maxy∈T̂ ,
y ̸=0

(
y∗Tn(f )y
y∗Tn(g)y

))

= mindim(T̂ )=j

(

maxy∈T̂ ,
y ̸=0

(
y∗(τn(f )+Hn(f ))y
y∗(τn(g)+Hn(g))y

))

.

(25)

Let us define Wf,g = T̂ ∩ F⊥,

j ≥ dim(Wf,g) ≥ max{0, dim(T̂ )+ dim(F⊥)−n} = j +n−Rf,g −n = j −Rf,g,

because j−Rf,g ≥ 1 for j ≥ Rf,g+1. The latter implies in particular thatWf,g ̸= ∅,
and hence, due to the orthogonality, ∀ y ̸= 0 ∈ Wf,g , we have

Hn(f )y = 0, Hn(g)y = 0,
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and therefore
y∗Hn(f )y = 0, y∗Hn(g)y = 0.

Thus, from (25)

λj (Pn(f, g)) ≥ mindim(T̂ )=j

(

maxy∈Wf,g,
y ̸=0

(
y∗(τn(f )+Hn(f ))y
y∗(τn(g)+Hn(g))y

))

= mindim(T̂ )=j

(

maxy∈Wf,g,
y ̸=0

(
y∗τn(f )y
y∗τn(g)y

))

= minWf,g=T̂∩F⊥
dim(T̂ )=j

(

maxy∈Wf,g,
x ̸=0

(
y∗τn(f )y
y∗τn(g)y

))

≥ minj≥dim(Ŵf,g)≥j−Rf,g

(

maxy∈Wf,g,
y ̸=0

(
y∗τn(f )y
y∗τn(g)y

))

= min{λj (P τ
n ), λj−1(P

τ
n ), . . . , λj−Rf,g (P

τ
n )}

= λj−Rf,g (P
τ
n ).

(26)

By exploiting the previous inequality, relations (22) and (24), we obtain for j =
Rf,g + 1, . . . , n − Rf,g

r

(
(j − s)π

n+ 1

)
= λj−s(P

τ
n ) ≤ λj (Pn(f, g)) ≤ λj+s(P

τ
n ) = r

(
(j + s)π

n+ 1

)
, (27)

where s = Rf,g .
The function r is a RCTP on [0,π ] and a monotone increasing function so we have,
∀ n and ∀ j = s + 1, . . . , n − s,

λj (Pn(f, g))−r

(
jπ

n+ 1

)
≤r

(
(j + s)π

n+ 1

)
−r

(
jπ

n+ 1

)
=r ′(θ̄)

sπ

n+1
≤ ||r ′||∞sπh,

(28)
with θ̄ ∈

(
jπ
n+1 ,

(j+s)π
n+1

)
and

λj (Pn(f, g)) − r

(
jπ

n+ 1

)
≥ r

(
(j − s)π

n+ 1

)
− r

(
jπ

n+ 1

)
≥ −||r ′||∞sπh. (29)

By setting C = ||r ′||∞sπ , for s + 1 ≤ j ≤ n − s, we obtain
∣∣∣∣λj (Pn(f, g)) − r

(
jπ

n+ 1

)∣∣∣∣ ≤ Ch. (30)

Furthermore, from [11] ∀ j = 1, . . . , n, we know that

mr ≤ λj (Pn(f, g)) ≤ Mr,

where
mr = min

θ∈[0,π]
r(θ); mr = max

θ∈[0,π]
r(θ),

with strict inequalities that is mr < λj (Pn(f, g)) < Mr if mr < Mr , while the case
mr = Mr is in fact trivial. Hence, for n − s < j ≤ n
∣∣∣∣r
(

jπ

n+ 1

)
− λj (Pn(f, g))

∣∣∣∣ ≤
∣∣∣∣r
(

jπ

n+ 1

)
− r

(
nπ

n+ 1

)∣∣∣∣ ≤
∣∣r ′ (θ̄

)∣∣
∣∣∣∣
(n − j)π

n+ 1

∣∣∣∣ ,
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where θ̄ ∈ ( jπ
n+1 ,

nπ
n+1 ). If n − s < j ≤ n then |n − j | < s, so that
∣∣∣∣r
(

jπ

n+ 1

)
− λj (Pn(f, g))

∣∣∣∣ ≤ ||r ′||∞sπh = Ch.

For 1 ≤ j < s + 1
∣∣∣∣r
(

jπ

n+ 1

)
− λj (Pn(f, g))

∣∣∣∣ ≤
∣∣∣∣r
(

jπ

n+ 1

)
− r

(
π

n+ 1

)∣∣∣∣ ≤
∣∣r ′ (θ̄

)∣∣
∣∣∣∣
(j − 1)π
n+ 1

∣∣∣∣ ,

where θ̄ ∈ ( π
n+1 ,

jπ
n+1 ). If 1 ≤ j < s + 1 then |j − 1| < s, so
∣∣∣∣r
(

jπ

n+ 1

)
− λj (Pn(f, g))

∣∣∣∣ ≤ ||r ′||∞sπh = Ch.

Hence, ∣∣∣∣λj (Pn(f, g)) − r

(
jπ

n+ 1

)∣∣∣∣ ≤ Ch ∀ j ∀ n.

Here, we present a second proof of the previous theorem.

Proof We adopt the very same notation used for the first proof. First, we notice that
the low rank matrices Hn(f ) and Hn(g) are also Hermitian matrices because Tn(f ),
Tn(g), τn(f ), and τn(g) are Hermitian matrices. Let xi and λi (Pn(f, g)) be a pair
eigenvector and eigenvalue of Pn(f, g). Then we can write

Pn(f, g)xi = λi (Pn(f, g)) xi .

By multiplying the previous equation from the left by the matrix Tn(g) = τn(g) +
Hn(g), we obtain

(τn(f )+Hn(f )) xi = λi (Pn(f, g)) (τn(g)+Hn(g)) xi ,

which is equivalent to

(τn(f )+Hn(f ) − λi (Pn(f, g))Hn(g)) xi = λi (Pn(f, g)) τn(g)xi .

Finally, by setting yi = τ
1/2
n (g)xi and by multiplying from the left by the matrix

τ
−1/2
n (g), we have

τ−1/2(g) (τn(f )+Hn(f ) − λi (Pn(f, g))Hn(g)) τ
−1/2(g)yi = λi (Pn(f, g)) yi .

(31)
Equation (31) tells us that λi (Pn(f, g)) is also the eigenvalue of

τ
−1/2
n (g) (τn(f )+Hn(f ) − λi (Pn(f, g))Hn(g)) τ

−1/2
n (g).

We can write

τ
−1/2
n (g) (τn(f )+Hn(f ) − λi (Pn(f, g))Hn(g)) τ

−1/2
n (g)

as

τ
−1/2
n (g)τn(f )τ

−1/2
n (g)+ τ

−1/2
n (g) (Hn(f ) − λi (Pn(f, g))Hn(g)) τ

−1/2
n (g)

= τn(f/g)+ τ
−1/2
n (g) (Hn(f ) − λi (Pn(f, g))Hn(g)) τ

−1/2
n (g) . (32)
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Notice that the rank of any linear combination of Hn(f ) and Hn(g) is Rf,g =
max{rank(Hn(f )), rank(Hn(g))} and the argument is the special Hankel structure of
Hn(f ) and Hn(g). As a conclusion, from the expression above, using the MinMax
characterization and the interlacing theorem for Hermitian matrices, we write

λi−Rf,g (τn(f/g)) ≤ λi (Pn(f, g)) ≤ λi+Rf,g (τn(f/g)), (33)

where i ∈ {Rf,g−1, · · · , n−Rf,g}, which leads again to the proof of Theorem 1.

Remark With regard to Theorem 1, the case where r is bounded and nonmonotone
is even easier. If we consider r̂ , the monotone nondecreasing rearrangement of r on
[0,π ], taking into account that the derivative of r has at most a finite number S of
sign changes, we deduce that r̂ is Lipschitz continuous and its Lipschitz constant is
bounded by ∥r ′∥∞ (notice that r̂ is not necessarily continuously differentiable, but the
derivative of r̂ has at most S points of discontinuity). Furthermore, the eigenvalues
of τn(r) are exactly given

r

(
jπ

n+ 1

)

so that, by ordering these values nondecreasingly, we deduce that they coincide with
r̂(xj,h), with xj,h of the form jπ

n+1 (1+ o(1)). With these premises, the proof follows
exactly the same steps as in Theorem 1, using the MinMax characterization and the
interlacing theorem for Hermitian matrices.
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1 Introduction

A matrix of the form

[
ai−j

]n
i,j=1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a0 a−1 · · · · · · a−(n−1)

a1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . a−1

an−1 · · · · · · a1 a0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

whose entries are constant along each diagonal, is called a Toeplitz matrix. Given
a function g : [−π,π ] → C belonging to L1([−π,π ]), the nth Toeplitz matrix
associated with g is defined as

Tn(g) =
[
ĝi−j

]n
i,j=1 ,

where the numbers ĝk are the Fourier coefficients of g,

ĝk = 1
2π

∫ π

−π
g(θ)e−ikθdθ, k ∈ Z.

We refer to {Tn(g)}n as the Toeplitz sequence generated by g, which in turn is called
the generating function of {Tn(g)}n. It is not difficult to see that, whenever g is real,
Tn(g) is Hermitian for all n. Moreover, if g is real non-negative and not almost every-
where equal to zero in [−π,π ], then Tn(g) is Hermitian positive definite for all n;
see [9, 14]. In the case where g is a real cosine trigonometric polynomial (RCTP),
that is, a function of the form

g(θ) = ĝ0 + 2
m∑

k=1

ĝk cos(kθ), ĝ0, ĝ1, . . . , ĝm ∈ R, m ∈ N,

the nth Toeplitz matrix generated by g is the real symmetric banded matrix given by

Tn(g) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĝ0 ĝ1 · · · ĝm

ĝ1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

ĝm
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

ĝm · · · ĝ1 ĝ0 ĝ1 · · · ĝm

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . ĝm

. . .
. . .

. . .
. . .

...
. . .

. . .
. . . ĝ1

ĝm · · · ĝ1 ĝ0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The numerical approximation of the eigenvalues of real symmetric banded
Toeplitz matrices is a problem that has been faced by several authors; see, e.g.,
Arbenz [2], Badı́a and Vidal [3], Bini and Pan [5], the authors and Serra-Capizzano
[13], and Trench [16–20]. Less attention has been devoted to the numerical approx-
imation of the eigenvalues of preconditioned banded symmetric Toeplitz matrices
of the form Tn(u)−1Tn(v), with u, v being RCTPs. Yet, this problem is worthy of
consideration as noted in [4, Section 1]. Some algorithms to solve it have been pro-
posed in [1, 4]. For general discussions on the various algorithmic proposals for
solving eigenvalue problems related to banded Toeplitz matrices, we refer the reader
[2, Section 1] and [4, Section 1].

In this paper, we propose a new algorithm for the numerical approximation of the
eigenvalues of preconditioned banded symmetric Toeplitz matrices. The algorithm
relies on the following conjecture, which has been formulated by Serra-Capizzano in
[1], on the basis of several numerical experiments.

Conjecture 1 Let u, v be RCTPs, with u > 0 on (0, π), and suppose that f = v/u is
monotone increasing over (0, π). Set Xn = Tn(u)−1Tn(v) for all n. Then, for every
integer α ≥ 0, every n and every j = 1, . . . , n, the following asymptotic expansion
holds:

λj (Xn) = f (θj,n) +
α∑

k=1

ck(θj,n)h
k + Ej,n,α, (1)

where:

• The eigenvalues of Xn are arranged in non-decreasing order, λ1(Xn) ≤ . . . ≤
λn(Xn).1

• {ck}k=1,2,... is a sequence of functions from (0, π) to R which depends only on
u, v.

• h = 1
n+1 and θj,n = jπ

n+1 = jπh.
• Ej,n,α = O(hα+1) is the remainder (the error), which satisfies the inequality

|Ej,n,α| ≤ Cαhα+1 for some constant Cα depending only on α, u, v.

In the case where u = 1 identically, Conjecture 1 was originally formulated and
supported through numerical experiments in [13]. In the case where u = 1 identically
and v satisfies some additional assumptions, Conjecture 1 was formally proved by
Bogoya, Böttcher, Grudsky, and Maximenko in a sequence of recent papers [6, 8, 10].

Assuming Conjecture 1, in Section 2 of this paper, we describe and analyze
a new algorithm for computing the eigenvalues of Xn = Tn(u)−1Tn(v); and in
Section 3, we illustrate its performance through numerical experiments. The algo-
rithm, which is suited for parallel implementation and may be called matrix-less as
it does not need to store the entries of Xn, combines the extrapolation procedure
proposed in [1, 13]—which allows the computation of some of the eigenvalues of
Xn—with an appropriate interpolation process, thus allowing the simultaneous com-
putation of all the eigenvalues of Xn. In Section 4, we provide a generalization of the

1Note that the eigenvalues of Xn are real, because Xn is similar to the symmetric matrix
Tn(u)−1/2Tn(v)Tn(u)−1/2.
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algorithm to the case where f = v/u is non-monotone; this generalization is based
on another conjecture which is analogous to Conjecture 1 and which will be dis-
cussed later on. In Section 5, we draw conclusions and suggest possible future lines of
research.

2 The algorithm

Throughout this paper, we associate with each positive integer n ∈ N = {1, 2, 3, . . .}
the stepsize h = 1

n+1 and the grid points θj,n = jπh, j = 1, . . . , n. For notational
convenience, we will always denote a positive integer and the associated stepsize in
a similar way, in the sense that if the positive integer is denoted by n, the associ-
ated stepsize is denoted by h; if the positive integer is denoted by nj , the associated
stepsize is denoted by hj ; etc. Throughout this section, we make the following
assumptions:

• u, v, f are as in Conjecture 1.
• n, n1, α ∈ N are fixed parameters and Xn = Tn(u)−1Tn(v).
• nk = 2k−1(n1 + 1) − 1 for k = 2, . . . , α.
• jk = 2k−1j1 for j1 = 1, . . . , n1 and k = 2, . . . , α. Note that jk = jk(j1)

depends not only on k but also on j1, though we hide the dependence on j1
for notational simplicity. Note also that jk is the index in {1, . . . , nk} such that
θjk,nk = θj1,n1 . Hence, the grid {θjk,nk : j1 = 1, . . . , n1} is the same as the grid
{θj1,n1 : j1 = 1, . . . , n1} for all k = 2, . . . , α.

A graphical representation of the grids {θ1,nk , . . . , θnk,nk }, k = 1, . . . , α, is reported
in Fig. 1 for n1 = 5 and α = 4. For each “level” k = 2, . . . , α, the corresponding
red circles highlight the subgrid {θjk,nk : j1 = 1, . . . , n1} which coincides with the
coarsest grid {θj1,n1 : j1 = 1, . . . , n1}.

Fig. 1 Representation of the grids {θ1,nk , . . . , θnk,nk }, k = 1, . . . , α, for n1 = 5 and α = 4



Numer Algor

2.1 Description and formulation of the algorithm

The algorithm we are going to describe is designed for computing the eigenvalues of
Xn in the case where n is large with respect to n1, . . . , nα , so that the computation
of the eigenvalues of Xn is hard from a computational viewpoint but the computation
of the eigenvalues of Xn1 , . . . , Xnα —which is required in the algorithm—can be
efficiently performed by any standard eigensolver (e.g., MATLAB’s eig function);
see also Remark 1 below. The algorithm is composed of two phases: a first phase
where we invoke extrapolation procedures from [1, 13] and a second phase where
local interpolation techniques are employed.

Extrapolation For each fixed j1 = 1, . . . , n1, we apply α times the expansion (1)
with n = n1, n2, . . . , nα and j = j1, j2, . . . , jα . Since θj1,n1 = θj2,n2 = . . . = θjα,nα

(by definition of j2, . . . , jα), we obtain
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ej1,n1,0 = c1(θj1,n1)h1 + c2(θj1,n1)h
2
1 + . . . + cα(θj1,n1)h

α
1 + Ej1,n1,α

Ej2,n2,0 = c1(θj1,n1)h2 + c2(θj1,n1)h
2
2 + . . . + cα(θj1,n1)h

α
2 + Ej2,n2,α

...

Ejα,nα,0 = c1(θj1,n1)hα + c2(θj1,n1)h
2
α + . . . + cα(θj1,n1)h

α
α + Ejα,nα,α

(2)

where

Ejk,nk,0 = λjk (Xnk ) − f (θj1,n1), k = 1, . . . , α,

and

|Ejk,nk,α| ≤ Cαhα+1
k , k = 1, . . . , α. (3)

Let c̃1(θj1,n1), . . . , c̃α(θj1,n1) be the approximations of c1(θj1,n1), . . . , cα(θj1,n1)

obtained by removing all the errors Ej1,n1,α, . . . , Ejα,nα,α in (2) and by solving the
resulting linear system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ej1,n1,0 = c̃1(θj1,n1)h1 + c̃2(θj1,n1)h
2
1 + . . . + c̃α(θj1,n1)h

α
1

Ej2,n2,0 = c̃1(θj1,n1)h2 + c̃2(θj1,n1)h
2
2 + . . . + c̃α(θj1,n1)h

α
2

...

Ejα,nα,0 = c̃1(θj1,n1)hα + c̃2(θj1,n1)h
2
α + . . . + c̃α(θj1,n1)h

α
α

(4)

Note that this way of computing approximations for c1(θj1,n1), . . . , cα(θj1,n1) was
already proposed in [1, 13], and it is completely analogous to the Richardson extrapo-
lation procedure that is employed in the context of Romberg integration to accelerate
the convergence of the trapezoidal rule [15, Section 3.4]. In this regard, the asymp-
totic expansion (1) plays here the same role as the Euler–Maclaurin summation
formula [15, Section 3.3]. For more advanced studies on extrapolation methods,
we refer the reader to [11]. The next theorem shows that the approximation error
|ck(θj1,n1) − c̃k(θj1,n1)| is O(hα−k+1

1 ).
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Theorem 1 There exists a constant Aα depending only on α, u, v such that, for j1 =
1, . . . , n1 and k = 1, . . . , α,

|ck(θj1,n1) − c̃k(θj1,n1)| ≤ Aαhα−k+1
1 . (5)

Proof See Appendix A.

Interpolation Fix an index j ∈ {1, . . . , n}. To compute an approximation of
λj (Xn) through the expansion (1), we would need the value ck(θj,n) for each
k = 1, . . . ,α. Of course, ck(θj,n) is not available in practice, but we can approx-
imate it by interpolating in some way the values c̃k(θj1,n1), j1 = 1, . . . , n1.
For example, we may define c̃k(θ) as the interpolation polynomial of the data
(θ1,n1 , c̃k(θ1,n1)), . . . , (θn1,n1 , c̃k(θn1,n1))—so that c̃k(θ) is expected to be an approx-
imation of ck(θ) over the whole interval (0, π)—and take c̃k(θj,n) as an approx-
imation to ck(θj,n). It is known, however, that interpolation over a large number
of uniform nodes is not advisable as it may give rise to spurious oscillations
(Runge’s phenomenon [12, p. 78]). It is therefore better to adopt another kind of
approximation. An alternative could be the following: we approximate ck(θ) by the
spline function c̃k(θ) which is linear on each interval [θj1,n1 , θj1+1,n1] and takes
the value c̃k(θj1,n1) at θj1,n1 for all j1 = 1, . . . , n1. This strategy removes for
sure any spurious oscillation, yet it is not accurate. In particular, it does not pre-
serve the accuracy of approximation at the nodes θj1,n1 established in Theorem 1,
i.e., there is no guarantee that |ck(θ) − c̃k(θ)| ≤ Bαhα−k+1

1 for θ ∈ (0, π) or
|ck(θj,n) − c̃k(θj,n)| ≤ Bαhα−k+1

1 for j = 1, . . . , n, with Bα being a constant
depending only on α, u, v. As proved in Theorem 2, a local approximation strategy
that preserves the accuracy (5), at least if ck(θ) is sufficiently smooth, is the follow-
ing: let θ (1), . . . , θ (α−k+1) be α − k + 1 points of the grid {θ1,n1 , . . . , θn1,n1} which
are closest to the point θj,n,2 and let c̃k,j (θ) be the interpolation polynomial of the
data (θ (1), c̃k(θ

(1))), . . . , (θ (α−k+1), c̃k(θ
(α−k+1))); then, we approximate ck(θj,n) by

c̃k,j (θj,n). Note that, by selecting α − k + 1 points from {θ1,n1 , . . . , θn1,n1}, we are
implicitly assuming that n1 ≥ α − k + 1.

Theorem 2 Let 1 ≤ k ≤ α, and suppose n1 ≥ α − k + 1 and ck ∈ Cα−k+1([0, π ]).
For j = 1, . . . , n, if θ (1), . . . , θ (α−k+1) are α − k + 1 points of {θ1,n1 , . . . , θn1,n1}
which are closest to θj,n, and if c̃k,j (θ) is the interpolation polynomial of the data
(θ (1), c̃k(θ

(1))), . . . , (θ (α−k+1), c̃k(θ
(α−k+1))), then

|ck(θj,n) − c̃k,j (θj,n)| ≤ Bαhα−k+1
1 (6)

for some constant Bα depending only on α, u, v.

Proof See Appendix A.

2These α − k + 1 points are uniquely determined by θj,n except in the case where θj,n coincides with
either a grid point θj1,n1 or the midpoint between two consecutive grid points θj1,n1 and θj1+1,n1 .
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Formulation of the algorithm We are now ready to formulate our algorithm for
computing the eigenvalues of Xn. As we shall see in Remark 4, the algorithm is suited
for parallel implementation. Since it does not even need to store the entries of Xn, it
may be called matrix-less. It can be used for computing either a specific eigenvalue
λj (Xn), a subset of the eigenvalues of Xn, or the whole spectrum of Xn. A plain
(non-parallel) MATLAB implementation of this algorithm is reported in Appendix B.

Algorithm 1 Given two RCTPs u, v (with u > 0 on (0, π) and f = v/u monotone
increasing over (0, π) as in Conjecture 1), three integers n, n1, α ∈ N with n1 ≥ α,
and S ⊆ {1, . . . , n}, we compute an approximation of the eigenvalues {λj (Xn) : j ∈
S} as follows:

1. For j1 = 1, . . . , n1 compute c̃1(θj1,n1), . . . , c̃α(θj1,n1) by solving (4)
2. For j ∈ S

• For k = 1, . . . , α

– Determine α − k + 1 points θ (1), . . . , θ (α−k+1) ∈ {θ1,n1 , . . . , θn1,n1}
which are closest to θj,n

– Compute c̃k,j (θj,n), where c̃k,j (θ) is the interpolation polynomial of
(θ (1), c̃k(θ

(1))), . . . , (θ (α−k+1), c̃k(θ
(α−k+1)))

• Compute λ̃j (Xn) = f (θj,n) + ∑α
k=1 c̃k,j (θj,n)h

k

3. Return {λ̃j (Xn) : j ∈ S} as an approximation to {λj (Xn) : j ∈ S}

Remark 1 Algorithm 1 is specifically designed for computing the eigenvalues of Xn

in the case where the matrix size n is quite large. When applying this algorithm, it
is implicitly assumed that n1 and α are small (much smaller than n), so that each
nk = 2k−1(n1 + 1) − 1 is small as well and the computation of the eigenvalues
of Xnk —which is required in the first step—can be efficiently performed by any
standard eigensolver (e.g., MATLAB’s eig function).

Remark 2 A careful evaluation shows that the computational cost of Algorithm 1 is
bounded by

C(α2n1 + α3|S|) +
α∑

k=1

Ceig(nk),

where |S| is the cardinality of S, C is a constant depending only on f , and Ceig(nk)

is the cost for computing the eigenvalues of Xnk .

Remark 3 Algorithm 1 can be optimized in several ways. For example, if S = {j}, so
that only the j th eigenvalue λj (Xn) must be computed, then in the first step one can
just compute the values c̃1(θj1,n1), . . . , c̃α(θj1,n1) for θj1,n1 ∈ {θ (1), . . . , θ (α)}, where
θ (1), . . . , θ (α) are α points in {θ1,n1 , . . . , θn1,n1} which are closest to θj,n. Indeed,
only these values are needed in the second step. A similar consideration applies in the
case where only the extremal eigenvalues of Xn must be computed, and also in the
case where S is a small subset of {1, . . . , n} of the form {j, . . . , j + r}, with r ≪ n.
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Remark 4 Suppose |S| = n and consider the ideal situation where we have n proces-
sors. Then, the j th processor can compute the j th eigenvalue λj (Xn) independently
of the others. In view of Remark 3, the j th processor can act as follows:

• In the first step of the algorithm, it computes only the values
c̃1(θj1,n1), . . . , c̃α(θj1,n1) for θj1,n1 ∈ {θ (1), . . . , θ (α)}, where θ (1), . . . , θ (α) are
α points in {θ1,n1 , . . . , θn1,n1} which are closest to θj,n.

• It performs the second step of the algorithm for the index j only.

It is clear that such a parallel implementation is very fast as the computation of all
the eigenvalues of Xn takes the same time as the computation of one eigenvalue only.
A similar consideration also applies in the case where |S| < n and we have |S|
processors, each of which has to compute only one of the requested |S| eigenvalues.
In a more realistic situation, we will not have a number of processors equal to |S| if
|S| is large. Instead, we will have p processors with p ≪ |S|. In this case, we can
divide S into p different subsets S1, . . . , Sp of approximately the same cardinality
and assign to the ith processor the computation of the eigenvalues corresponding
to Si , i = 1, . . . , p. When doing so, it is advisable that each Si is constructed so
that the “positions” θj,n of the related eigenvalues λj (Xn) are close to each other,
because in this way each processor will have the possibility to perform a reduced
form of the first step of the algorithm, in analogy with what has been explained
above for the case p = |S|. For example, if |S| = n and n is a multiple of p,
then we can assign to the ith processor the computation of the eigenvalues λj (Xn)

for j = (i − 1)(n/p) + 1, . . . , i(n/p), so that in the first step of the algorithm
the ith processor will only have to compute c̃1(θj1,n1), . . . , c̃α(θj1,n1) for θj1,n1 in a
neighborhood of the interval [θ(i−1)(n/p)+1,n, θi(n/p),n].

2.2 Error estimate

Theorem 3 Assume that Conjecture 1 holds. Suppose n ≥ n1 ≥ α and ck ∈
Cα−k+1([0, π ]) for k = 1, . . . , α. Let (λ̃1(Xn), . . . , λ̃n(Xn)) be the approximation
of (λ1(Xn), . . . , λn(Xn)) computed by Algorithm 1. Then, there exists a constant Dα

depending only on α, u, v such that, for j = 1, . . . , n,

|λj (Xn) − λ̃j (Xn)| ≤ Dαhα
1 h.

Proof By (1) and Theorem 2,

|λj (Xn) − λ̃j (Xn)| =
∣∣∣∣∣f (θj,n)+

α∑

k=1

ck(θj,n)h
k+Ej,n,α−f (θj,n)−

α∑

k=1

c̃k,j (θj,n)h
k

∣∣∣∣∣

=
∣∣∣∣∣

α∑

k=1

(ck(θj,n) − c̃k,j (θj,n))h
k + Ej,n,α

∣∣∣∣∣

≤ Bα

α∑

k=1

hα−k+1
1 hk + Cαhα+1 ≤ Dαhα

1 h,

where Dα = (α + 1) max(Bα, Cα).
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Remark 5 The error estimate provided in Theorem 3 suggests that the eigenvalue
approximations provided by Algorithm 1 improve as n increases, i.e., as h decreases.
Numerical experiments reveal that this is in fact the case (see Example 2 below).

Remark 6 Theorem 3 shows that, for any fixed α ≥ 1, the numerical eigenvalues
computed by Algorithm 1 converge like hα

1 to the exact eigenvalues as n1 grows.
In practice, it is advisable to fix α and increase n1 until a proper stopping criterion
is reached. The other way (fix n1 and increase α) is not advisable as the constant
Dα in Theorem 3 apparently grows very quickly with α (see Example 1 below) and,
consequently, there is no guarantee on the convergence of the algorithm as α grows
(see Example 5 below).

3 Numerical experiments

In this section, we illustrate through numerical examples the performance of Algo-
rithm 1. Numerical experiments have been performed with MATLAB R2015b (64
bit) on a platform with 4GB RAM, using an Intel! Celeron! Processor N2820 (up
to 2.39 GHz, 1 MB L2 cache). The CPU times for Algorithm 1 refer to the plain
MATLAB implementation reported in Appendix B. In what follows, the symbol εj,n

denotes the error |λj (Xn) − λ̃j (Xn)|, which occurs when approximating the exact
eigenvalue λj (Xn) with the corresponding numerical eigenvalue λ̃j (Xn) computed
by Algorithm 1. The inputs u, v, n, n1, α with which Algorithm 1 is applied are
specified in each example.

Example 1 Let

u(θ) = 1,

v(θ) = 6 − 8 cos(θ) + 2 cos(2θ).

Note that f (θ) = v(θ)/u(θ) = v(θ) is monotone increasing on (0, π). Suppose
we want to approximate the eigenvalues of Xn = Tn(u)−1Tn(v) = Tn(f ) for
n = 5000. Let λ̃j (Xn) be the approximation of λj (Xn) obtained by applying Algo-
rithm 1 with n1 = 10 and α = 7. In Fig. 2, we plot the errors εj,n versus θj,n for j =
1, . . . , n. We note that the largest errors are attained when either θj,n ≈ 0 or θj,n ≈ π .
As highlighted also in Example 3 below, this is probably due to two concomitant
factors:

• The errors εj,n are supposed to be smaller for θj,n ∈ [θ1,n1 , θn1,n1] =
[π/11, 10π/11], because in this case the approximations c̃k,j (θj,n) computed
by Algorithm 1 for the values ck(θj,n) are expected to be more accurate as
the interpolation polynomial c̃k,j (θ) is evaluated inside the convex hull of the
interpolation nodes.

• θ = 0 and θ = π are the two points on [0, π ] where f ′ vanishes, which means
that the monotonicity of f is “weak” around these points (recall that Algo-
rithm 1 works under the assumption that f is monotone as in Conjecture 1).
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Fig. 2 Example 1: errors εj,n versus θj,n for j = 1, . . . , n in the case where u(θ) = 1, v(θ) = 6 −
8 cos(θ) + 2 cos(2θ), n = 5000, n1 = 10, and α = 7

In reference to the previous discussion, we note that the maximum error for θj,n ∈
[θ1,n1 , θn1,n1] is given by

max{εj,n : θj,n ∈ [θ1,n1 , θn1,n1]} ≈ 1.7803 · 10−7,

which is about two order of magnitude less than

max
j=1,...,n

εj,n ≈ 9.5167 · 10−6.

A careful look at Fig. 2 shows that, aside from the exceptional minimum attained
inside the interval (5π/11, 6π/11), the local minima of εj,n are attained when θj,n

is approximately equal to some of the grid points θj1,n1 , j1 = 1, . . . , n1. This is no
surprise, because for θj,n = θj1,n1 we have c̃k,j (θj,n) = c̃k(θj1,n1) and ck(θj,n) =
ck(θj1,n1), which means that the error of the approximation c̃k,j (θj,n) ≈ ck(θj,n)

reduces to the error of the approximation c̃k(θj1,n1) ≈ ck(θj1,n1); that is, we are not
introducing further error due to the interpolation process. To conclude, we make the
following observation: for α, u, v as in this example, Theorem 3 yields

Dα ≥ maxj=1,...,n εj,n

hα
1 h

≈ 9.2745 · 105 > αα = 8.23543 · 105.

This suggests that, unfortunately, the best constant Dα for which the error estimate
of Theorem 3 is satisfied grows very quickly with α.

Example 2 Let u, v, f be as in Example 1. Suppose we want to approximate the
eigenvalues of Xn = Tn(u)−1Tn(v) = Tn(f ) for n = 10000. Let λ̃j (Xn) be the
approximation of λj (Xn) obtained by applying Algorithm 1 with n1 = 10 and α = 7
as in Example 1. In Fig. 3, we plot the errors εj,n versus θj,n for j = 1, . . . , n. We
note that the errors in Fig. 3 are smaller than in Fig. 2. This shows that the eigenvalue
approximations provided by Algorithm 1 improve as n increases (see also Remark 5).
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Fig. 3 Example 2: errors εj,n versus θj,n for j = 1, . . . , n in the case where u(θ) = 1, v(θ) = 6 −
8 cos(θ) + 2 cos(2θ), n = 10000, n1 = 10, and α = 7

Example 3 Let

u(θ) = 1,

v(θ) = − 1
4

− 1
2

cos(θ) + 1
4

cos(2θ) − 1
12

cos(3θ).

Note that f (θ) = v(θ)/u(θ) = v(θ) is monotone increasing on (0, π). Suppose we
want to approximate the eigenvalues of Xn = Tn(u)−1Tn(v) = Tn(f ) for n = 10000.
Let λ̃

(m)
j (Xn) be the approximation of λj (Xn) obtained by applying Algorithm 1 with

n1 = 10 · 2m−1 and α = 5. In Fig. 4, we plot the errors ε
(m)
j,n = |λj (Xn) − λ̃

(m)
j (Xn)|

versus θj,n for j = 1, . . . , n and m = 1, 2, 3, 4. We see from the figure that, as
m increases, the error decreases rather quickly everywhere except in a neighbor-
hood of the point θ = π/3 where f ′ vanishes. Actually, the three points of [0, π ]
where f ′ vanishes are 0, π/3, π , and these are precisely the points around which
the error is higher than elsewhere. We remark that, as in Examples 1 and 2, the error
ε
(m)
j,n attains its local minima when θj,n is approximately equal to some of the nodes

θ1,n1 , . . . , θn1,n1 .

Example 4 Let

u(θ) = 1,

v(θ) = 301
400

− cos(θ) + 1
5

cos(2θ) + 1
10

cos(3θ) − 1
20

cos(4θ) + 1
400

cos(6θ).

Note that f (θ) = v(θ)/u(θ) = v(θ) is monotone increasing on (0, π) and
f ′(θ) = 0 only for θ = 0, π .3 Suppose we want to approximate the eigenvalues
of Xn = Tn(u)−1Tn(v) = Tn(f ) for n = 10000. Let λ̃

(m)
j (Xn) be the approxima-

tion of λj (Xn) obtained by applying Algorithm 1 with n1 = 25 · 2m−1 and α = 5.
In Fig. 5, we plot the errors ε

(m)
j,n versus θj,n for j = 1, . . . , n and m = 1, 2, 3, 4.

Considerations analogous to those of Example 3 apply also in this case.

3Note that we always have g′(0) = g′(π) = 0 whenever g(θ) is an RCTP.
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Fig. 4 Example 3: errors ε
(m)
j,n versus θj,n for j = 1, . . . , n, in the case where u(θ) = 1, v(θ) = − 1

4 −
1
2 cos(θ) + 1

4 cos(2θ) − 1
12 cos(3θ), n = 10000, n1 = 10 · 2m−1, and α = 5
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Fig. 5 Example 4: errors ε
(m)
j,n versus θj,n for j = 1, . . . , n, in the case where u(θ) = 1, v(θ) = 301

400 −
cos(θ) + 1

5 cos(2θ) + 1
10 cos(3θ) − 1

20 cos(4θ) + 1
400 cos(6θ), n = 10000, n1 = 25 · 2m−1, and α = 5



Numer Algor

Example 5 Let u, v, f as in Example 4. Suppose we want to approximate the eigen-
values of Xn = Tn(u)−1Tn(v) = Tn(f ) for n = 10000. Let λ̃

(m)
j (Xn) be the

approximation of λj (Xn) obtained by applying Algorithm 1 with n1 = 25 and
α = 4 + m. In Fig. 6, we plot the errors ε

(m)
j,n versus θj,n for j = 1, . . . , n and

m = 1, 2, 3, 4. By comparing Fig. 5 with Fig. 6, we see that the strategy of keeping
n1 fixed and increasing α is much less efficient than the strategy of keeping α fixed
and increasing n1. Indeed, while in Fig. 5 the error ε

(m)
j,n decreases approximately in a

uniform way by one order of magnitude as m increases, this is not observed in Fig. 6.
Note also that the computational cost of Algorithm 1 for n1 = 25 · 2m−1 and α = 5
(as in Fig. 5) is essentially the same as the cost of Algorithm 1 for n1 = 25 and
α = 4 + m (as in Fig. 6), because the main task of the algorithm in both cases is the
computation of the eigenvalues of Xnα , and in both cases nα is approximately equal
to 25 · 2m+3. The bad behavior of Algorithm 1 when increasing α finds an explana-
tion in the fact that, as observed in Example 1, the constant Dα appearing in the error
estimate of Theorem 3 apparently grows very quickly with α.

Example 6 Let

u(θ) = 3 + 2 cos(θ),

v(θ) = 2 − cos(θ) − cos(2θ).

Note that f (θ) = v(θ)/u(θ) = 1 − cos(θ) is monotone increasing on (0, π) and
f ′(θ) = 0 only for θ = 0, π . Suppose we want to approximate the eigenvalues of
Xn = Tn(u)−1Tn(v) for n = 5000. Let λ̃

(m)
j (Xn) be the approximation of λj (Xn)

obtained by applying Algorithm 1 with n1 = 50 · 2m−1 and α = 4. The graph of the
errors ε

(m)
j,n versus θj,n is shown in Fig. 7 for j = 1, . . . , n and m = 1, 2, 3, 4. Table 1

compares the CPU times for computing the eigenvalues of Xn by using MATLAB’s
eig function and Algorithm 1.

Example 7 This example is suggested by the cubic B-spline isogeometric analysis
discretization of second-order eigenvalue problems [14, Section 10.7.3]. Let

u(θ) = 1208 + 1191 cos(θ) + 120 cos(2θ) + cos(3θ),

v(θ) = 40 − 15 cos(θ) − 24 cos(2θ) − cos(3θ).

It can be shown that u(θ) > 0 on (0, π),

f (θ) = v(θ)

u(θ)
= 40 − 15 cos(θ) − 24 cos(2θ) − cos(3θ)

1208 + 1191 cos(θ) + 120 cos(2θ) + cos(3θ)

is monotone increasing on (0, π), and f ′(θ) = 0 only for θ = 0, π . Suppose we
want to approximate the eigenvalues of Xn = Tn(u)−1Tn(v) for n = 5000. Let
λ̃

(m)
j (Xn) be the approximation of λj (Xn) obtained by applying Algorithm 1 with

n1 = 50 · 2m−1 and α = 4. The graph of the errors ε
(m)
j,n versus θj,n is shown in Fig. 8

for j = 1, . . . , n and m = 1, 2, 3, 4. The CPU times are reported in Table 2.
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Fig. 6 Example 5: errors ε
(m)
j,n versus θj,n for j = 1, . . . , n, in the case where u(θ) = 1, v(θ) = 301

400 −
cos(θ) + 1

5 cos(2θ) + 1
10 cos(3θ) − 1

20 cos(4θ) + 1
400 cos(6θ), n = 10000, n1 = 25, and α = 4 + m
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Fig. 7 Example 6: errors ε
(m)
j,n versus θj,n for j = 1, . . . , n, in the case where u(θ) = 3 + 2 cos(θ),

v(θ) = 2 − cos(θ) − cos(2θ), n = 5000, n1 = 50 · 2m−1, and α = 4
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Table 1 Example 6 (Fig. 7):
CPU times for computing the
eigenvalues of Xn in the case
where u(θ) = 3 + 2 cos(θ),
v(θ) = 2 − cos(θ) − cos(2θ),
and n = 5000

Method CPU time

Algorithm 1 with n1 = 50 and α = 4 1.81 s

Algorithm 1 with n1 = 100 and α = 4 7.14 s

Algorithm 1 with n1 = 200 and α = 4 32.45 s

Algorithm 1 with n1 = 400 and α = 4 144.08 s

MATLAB’s eig function 694.76 s

Example 8 Let

u(θ) = 8 − 3 cos(θ) − 4 cos(2θ) − cos(3θ),

v(θ) = 35
2

− 12 cos(θ) − 6 cos(2θ) + 1
2

cos(4θ).

It can be shown that u(θ) > 0 on (0, π),

f (θ) = v(θ)

u(θ)
= 2 − cos(θ)

is monotone increasing on (0, π), and f ′(θ) = 0 only for θ = 0, π . Suppose we want
to approximate the smallest five eigenvalues of Xn = Tn(u)−1Tn(v) for n = 5000.
Let λ̃j (Xn) be the approximations of λj (Xn) obtained by applying Algorithm 1 with
n1 = 100 and α = 4. Table 3 shows the errors εj,n for j = 1, . . . , 5, whereas Table 4
compares the CPU times for computing the eigenvalues of Xn by using Algorithm 1,
MATLAB’s eig function, and MATLAB’s eigs function (applied to the generalized
eigenvalue problem Tn(v)x = λ Tn(u)x with Tn(v) and Tn(u) allocated as sparse
matrices through MATLAB’s sparse command).

4 Generalization to the non-monotone case

With reference to Conjecture 1, suppose that the function f = v/u is monotone
decreasing on (0, π). Then, −f = −v/u is monotone increasing on (0, π) and,
moreover, Tn(u)−1Tn(v) = −Tn(u)−1Tn(−v). This immediately implies that Algo-
rithm 1 allows one to compute the eigenvalues of Tn(u)−1Tn(v) even in the case
where f = v/u is monotone decreasing on (0, π): it suffices to apply the algorithm
with Xn = Tn(u)−1Tn(−v). Some limitations on the applicability of Algorithm 1
arise when f is non-monotone on (0, π). This is precisely the case we are going to
investigate in this section. We begin by formulating the following conjecture.

Conjecture 2 Let u, v be RCTPs, with u > 0 on (0, π), and suppose that f = v/u

restricted to the interval I ⊆ (0, π) is monotone and f −1(f (I )) = I . Set Xn =
Tn(u)−1Tn(v) for all n. Then, for every integer α ≥ 0, every n and every j = 1, . . . , n

such that θj,n ∈ I , the following asymptotic expansion holds:

λρn(j)(Xn) = f (θj,n) +
α∑

k=1

ck(θj,n)h
k + Ej,n,α, (7)
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Fig. 8 Example 7: errors ε
(m)
j,n versus θj,n for j = 1, . . . , n, in the case where u(θ) = 1208+1191 cos(θ)+

120 cos(2θ) + cos(3θ), v(θ) = 40 − 15 cos(θ) − 24 cos(2θ) − cos(3θ), n = 5000, n1 = 50 · 2m−1, and
α = 4
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Table 2 Example 7 (Fig. 8):
CPU times for computing the
eigenvalues of Xn in the case
where
u(θ) = 1208 + 1191 cos(θ) +
120 cos(2θ) + cos(3θ),
v(θ) = 40 − 15 cos(θ) −
24 cos(2θ) − cos(3θ), and
n = 5000

Method CPU time

Algorithm 1 with n1 = 50 and α = 4 1.69 s

Algorithm 1 with n1 = 100 and α = 4 2.77 s

Algorithm 1 with n1 = 200 and α = 4 18.30 s

Algorithm 1 with n1 = 400 and α = 4 280.27 s

MATLAB’s eig function 1265.55 s

where:

• The eigenvalues of Xn are arranged in non-decreasing order, λ1(Xn) ≤ . . . ≤
λn(Xn).

• ρn = σ−1
n is the inverse of σn, where σn is a permutation of {1, . . . , n} such that

f (θσn(1),n) ≤ . . . ≤ f (θσn(n),n).
• {ck}k=1,2,... is a sequence of functions from I to R which depends only on u, v.
• h = 1

n+1 and θj,n = jπ
n+1 = jπh.

• Ej,n,α = O(hα+1) is the error, which satisfies the inequality |Ej,n,α| ≤ Cαhα+1

for some constant Cα depending only on α, u, v.

Conjecture 2 is clearly an extension of Conjecture 1. Indeed, in the case where f is
monotone increasing on (0, π), if we take I = (0, π) and we note that both σn and ρn

reduce to the identity on {1, . . . , n}, we see that Conjecture 2 reduces to Conjecture 1.
Conjecture 2 is based on the numerical experiments carried out in [1, 13]. In the case
where u = 1 identically, it was already formulated in [13]. In the case where u = 1
identically and α = 0, it can be formally proved by adapting the argument used by
Bogoya, Böttcher, Grudsky, and Maximenko in the proof of [7, Theorem 1.6].

In the situation described in Conjecture 2, we propose the following natural
modification of Algorithm 1 for computing the eigenvalues of Xn corresponding
to the the interval I (that is, the eigenvalues λρn(j)(Xn) corresponding to points
θj,n ∈ I ). In what follows, for any integer n1, we denote by n1(I ) the cardinality of
{θ1,n1 , . . . , θn1,n1} ∩ I .

Algorithm 2 With the notation introduced in Conjecture 2, given two RCTPs u, v

(with u > 0 on (0, π) and f = v/u such that f restricted to the interval I ⊆ (0, π)

is monotone and f −1(f (I )) = I ), three integers n, n1, α ∈ N with n1(I ) ≥ α and

Table 3 Example 8: errors εj,n for j = 1, . . . , 5, in the case where u(θ) = 8 − 3 cos(θ) − 4 cos(2θ) −
cos(3θ), v(θ) = 35

2 − 12 cos(θ) − 6 cos(2θ) + 1
2 cos(4θ), n = 5000, n1 = 100, and α = 4

j 1 2 3 4 5

εj,n 1.56 · 10−6 1.42 · 10−6 1.47 · 10−6 1.34 · 10−6 1.39 · 10−6
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Table 4 Example 8: CPU times
for computing the smallest five
eigenvalues of Xn in the case
where u(θ) = 8 − 3 cos(θ) −
4 cos(2θ) − cos(3θ),
v(θ) = 35

2 − 12 cos(θ) −
6 cos(2θ) + 1

2 cos(4θ), and
n = 5000

Method CPU time

Algorithm 1 with n1 = 100 and α = 4 1.13 s

MATLAB’s eig function 346.21 s

MATLAB’s eigs function Does not converge

S ⊆ I , we compute approximations of the eigenvalues {λρn(j)(Xn) : θj,n ∈ S} as
follows:

1. For j1 = 1, . . . , n1 such that θj1,n1 ∈ I compute c̃1(θj1,n1), . . . , c̃α(θj1,n1) by
solving the linear system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ej1,n1,0 = c̃1(θj1,n1)h1 + c̃2(θj1,n1)h
2
1 + . . . + c̃α(θj1,n1)h

α
1

Ej2,n2,0 = c̃1(θj1,n1)h2 + c̃2(θj1,n1)h
2
2 + . . . + c̃α(θj1,n1)h

α
2

...

Ejα,nα,0 = c̃1(θj1,n1)hα + c̃2(θj1,n1)h
2
α + . . . + c̃α(θj1,n1)h

α
α

(8)

where nk = 2k−1(n1 + 1) − 1, jk = 2k−1j1, and

Ejk,nk,0 = λρnk
(jk)(Xnk ) − f (θj1,n1), k = 1, . . . , α.

2. For j = 1, . . . , n such that θj,n ∈ S

• For k = 1, . . . , α

– Determine α − k + 1 points θ (1), . . . , θ (α−k+1) ∈ {θ1,n1 , . . . , θn1,n1} ∩ I

which are closest to θj,n

– Compute c̃k,j (θj,n), where c̃k,j (θ) is the interpolation polynomial of
(θ (1), c̃k(θ

(1))), . . . , (θ (α−k+1), c̃k(θ
(α−k+1)))

• Compute λ̃ρn(j)(Xn) = f (θj,n) + ∑α
k=1 c̃k,j (θj,n)h

k

3. Return {λ̃ρn(j)(Xn) : θj,n ∈ S} as an approximation to {λρn(j)(Xn) : θj,n ∈ S}

Fig. 9 Example 9: graph of f (θ) = v(θ)/u(θ) = 2 − cos(θ) − cos(3θ) over (0,π)
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Fig. 10 Example 9: errors ε
(m)
j,n versus θj,n for θj,n ∈ I = (0, θ̂), in the case where u(θ) = 1, v(θ) =

2 − cos(θ) − cos(3θ), n = 10000, n1 = 50 · 2m−1, and α = 5
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Fig. 11 Example 10: graph of f (θ) = v(θ)/u(θ) = 4 − cos(θ) − 2 cos(2θ) over (0,π)

Example 9 Let

u(θ) = 1,

v(θ) = 2 − cos(θ) − cos(3θ).

The graph of f (θ) = v(θ)/u(θ) = v(θ) is depicted in Fig. 9. The hypotheses of
Conjecture 2 are satisfied with either I = (0, θ̂) or I = (π − θ̂ , π), where θ̂ =
0.61547970867038... To fix the ideas, let I = (0, θ̂). Note that any permutation σn

which sorts the samples f (θ1,n), . . . , f (θn,n) in non-decreasing order is such that
σn(j) = j whenever θj,n ∈ I . As a consequence, ρn(j) = j whenever θj,n ∈ I . Set
Xn = Tn(u)−1Tn(v) = Tn(f ) and let {λ̃(m)

j (Xn) : θj,n ∈ I } be the approximation
of {λj (Xn) : θj,n ∈ I } obtained for n = 10000 by applying Algorithm 2 with n1 =
50 · 2m−1, α = 5, and S = I . The graph of the errors ε

(m)
j,n = |λj (Xn) − λ̃

(m)
j (Xn)|

versus θj,n is shown in Fig. 10 for θj,n ∈ I and m = 1, 2, 3, 4. We note that the
error ε

(m)
j,n tends to increase as θj,n moves toward θ̂ , that is, as θj,n approaches to exit

the interval I over which f satisfies the assumptions of Conjecture 2. Moreover, in a
neighborhood of θ̂ , the error decreases very slowly. This phenomenon is related to the
fact that the expansion (7) does not hold in [θ̂ , π − θ̂ ] and, in fact, the errors Ej,n,0 =
λρn(j)(Xn) − f (θj,n) have a wild behavior inside this interval; see [13, Fig. 7].

Example 10 Let

u(θ) = 2 + cos(3θ),

v(θ) = 8 − 3 cos(θ) − 9
2

cos(2θ) + 4 cos(3θ) − 1
2

cos(4θ) − cos(5θ).

The graph of f (θ) = v(θ)/u(θ) = 4 − cos(θ) − 2 cos(2θ) is depicted
in Fig. 11. The hypotheses of Conjecture 2 are satisfied with I = (0, θ̂),
where θ̂ = 0.72273424781341... Any permutation σn which sorts the samples
f (θ1,n), . . . , f (θn,n) in non-decreasing order is such that σn(j) = j whenever
θj,n ∈ I . As a consequence, ρn(j) = j whenever θj,n ∈ I . Set Xn = Tn(u)−1Tn(v)

and let {λ̃(m)
j (Xn) : θj,n ∈ I } be the approximation of {λj (Xn) : θj,n ∈ I } obtained

for n = 5000 by applying Algorithm 2 with n1 = 25 · 2m−1, α = 5, and S = I . The
graph of the errors ε

(m)
j,n = |λj (Xn) − λ̃

(m)
j (Xn)| versus θj,n is shown in Fig. 12 for
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Fig. 12 Example 10: errors ε
(m)
j,n versus θj,n for θj,n ∈ I = (0, θ̂), in the case where u(θ) = 2 + cos(3θ),

v(θ) = 8−3 cos(θ)− 9
2 cos(2θ)+4 cos(3θ)− 1

2 cos(4θ)−cos(5θ), n = 5000, n1 = 25 ·2m−1, and α = 5

θj,n ∈ I and m = 1, 2, 3, 4. Considerations analogous to those in Example 10 apply
also in this case.



Numer Algor

5 Conclusions and perspectives

We have proposed and analyzed a matrix-less parallel interpolation–extrapolation
algorithm for computing the eigenvalues of preconditioned banded symmetric
Toeplitz matrices of the form Tn(u)−1Tn(v), where u, v are RCTPs, u > 0 on (0, π),
and f = v/u is monotone on (0, π). We have illustrated the performance of the algo-
rithm through numerical experiments, and we have presented its generalization to
the case where f = v/u is non-monotone. We conclude by suggesting two possible
future lines of research:

• Algorithm 1, as well as its generalized version for the non-monotone case (Algo-
rithm 2), is based on a local interpolation strategy, as described in Section 2.1.
An interesting topic for future research could be the following: try another kind
of approximation (for example, an higher-order spline approximation) to see
whether this reduces the errors and accelerates the convergence of both these
algorithms.

• Understand whether an asymptotic eigenvalue expansion analogous to (7) holds
without the hypothesis that f restricted to some interval I ⊆ (0, π) is monotone
and satisfies f −1(f (I )) = I . Such a result would eliminate any limitation in
the applicability of Algorithm 2 (provided that the latter is properly modified
according to the new expansion).
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Appendix A

This appendix collects the proofs of Theorems 1 and 2.

Proof of Theorem 1 We follow the argument in [1, Section 2]. Equations (2) and (4)
can be rewritten as

A(h1, . . . , h1)c(j1) = E0(j1) − Eα(j1) (9)

A(h1, . . . , h1)c̃(j1) = E0(j1), (10)
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where

c(j1) =

⎡

⎢⎣
c1(θj1,n1)

...

cα(θj1,n1)

⎤

⎥⎦ , c̃(j1) =

⎡

⎢⎣
c̃1(θj1,n1)

...

c̃α(θj1,n1)

⎤

⎥⎦ ,

E0(j1) =

⎡

⎢⎣
Ej1,n1,0

...

Ejα,nα,0

⎤

⎥⎦ , Eα(j1) =

⎡

⎢⎣
Ej1,n1,α

...

Ejα,nα,α

⎤

⎥⎦ , (11)

and

A(h1, . . . , hα) = diag(h1, . . . , hα) V (h1, . . . , hα), (12)

with V (h1, . . . , hα) being the Vandermonde matrix associated with the nodes
h1, . . . , hα ,

V (h1, . . . , hα) =

⎡

⎢⎢⎢⎣

1 h1 h2
1 · · · hα−1

1
1 h2 h2

2 · · · hα−1
2

...
...

...
...

1 hα h2
α · · · hα−1

α

⎤

⎥⎥⎥⎦
.

By (9), (10), and (12), we have

c̃(j1) − c(j1) = A(h1, . . . , hα)−1Eα(j1) = V (h1, . . . , hα)−1Fα(j1),

where

Fα(j1) = diag(h1, . . . , hα)−1Eα(j1) =

⎡

⎢⎣
Ej1,n1,α/h1

...

Ejα,nα,α/hα

⎤

⎥⎦ .

Note that, by (3),

|(Fα(j1))k| = |Ejk,nk,α/hk| ≤ Cαhα
k , k = 1, . . . ,α. (13)

The inverse of V (h1, . . . , hα) is explicitly given by

(V (h1, . . . , hα)−1)ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)α−i

∑

1≤k1< . . . <kα−i≤α
k1, . . . , kα−i ̸=j

hk1 · · · hkα−i

∏

1≤k≤α
k ̸=j

(hj − hk)
, 1 ≤ i < α,

1
∏

1≤k≤α
k ̸=j

(hj − hk)
, i = α.

(14)



Numer Algor

Taking into account (13) and the equation hk = 21−kh1 for k = 1, . . . , α, we obtain
the following:

• For i = α,

|c̃α(θj1,n1) − cα(θj1,n1)| = |(c̃(j1) − c(j1))α|

=

∣∣∣∣∣∣

α∑

j=1

(V (h1, . . . , hα)−1)αj (Fα(j1))j

∣∣∣∣∣∣

≤
α∑

j=1

|(Fα(j1))j |∏

1≤k≤α
k ̸=j

|hj − hk|
≤

α∑

j=1

Cαhα
j

hα−1
j

∏

1≤k≤α
k ̸=j

|1 − hk/hj |

= Cαh1

α∑

j=1

21−j

∏

1≤k≤α
k ̸=j

|1 − 2j−k|
= A(α)h1,

with A(α) depending only on α, u, v just like Cα .
• For 1 ≤ i < α,

|c̃i (θj1,n1) − ci(θj1,n1)| = |(c̃(j1) − c(j1))i |

=

∣∣∣∣∣∣

α∑

j=1

(V (h1, . . . , hα)−1)ij (Fα(j1))j

∣∣∣∣∣∣

≤
α∑

j=1

|(Fα(j1))j |
∑

1≤k1< . . . <kα−i≤α
k1, . . . , kα−i ̸=j

hk1 · · · hkα−i

∏

1≤k≤α
k ̸=j

|hj − hk|

≤
α∑

j=1

Cαhα
j

∑

1≤k1< . . . <kα−i≤α
k1, . . . , kα−i ̸=j

hk1 · · · hkα−i

hα−1
j

∏

1≤k≤α
k ̸=j

|1 − hk/hj |

= Cαhα−i+1
1

α∑

j=1

21−j
∑

1≤k1< . . . <kα−i≤α
k1, . . . , kα−i ̸=j

21−k1 · · · 21−kα−i

∏

1≤k≤α
k ̸=j

|1 − 2j−k|

= A(α, i)hα−i+1
1 ,

with A(α, i) depending only on α, i, u, v.
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In conclusion, Theorem 1 is proved with Aα = maxi=1,...,α A(α, i), where A(α, α) =
A(α).

Proof of Theorem 2 Let L1, . . . , Lα−k+1 be the Lagrange polynomials associated
with the nodes θ (1), . . . , θ (α−k+1),

Lr(θ) =
α−k+1∏

s=1
s ̸=r

θ − θ (s)

θ (r) − θ (s)
, r = 1, . . . , α − k + 1.

The interpolation polynomial of the data (θ (1), c̃k(θ
(1))), . . . , (θ (α−k+1), c̃k(θ

(α−k+1)))

is

c̃k,j (θ) =
α−k+1∑

r=1

c̃k(θ
(r))Lr(θ)

and the interpolation polynomial of the data (θ (1), ck(θ
(1))), . . . , (θ (α−k+1),

ck(θ
(α−k+1))) is

p(θ) =
α−k+1∑

r=1

ck(θ
(r))Lr(θ).

Considering that θ (1), . . . , θ (α−k+1) are α − k + 1 points from {θ1,n1 , . . . , θn1,n1}
which are closest to θj,n, the length of the smallest interval I containing the nodes
θ (1), . . . , θ (α−k+1) and the point θj,n is bounded by (α − k + 1)πh1. Hence, by
Theorem 1, for all θ ∈ I we have

|c̃k,j (θ) − p(θ)| ≤
α−k+1∑

r=1

|c̃k,j (θ
(r)) − ck(θ

(r))|
α−k+1∏

s=1
s ̸=r

|θ − θ (s)|
|θ (r) − θ (s)|

≤
α−k+1∑

r=1

Aαhα−k+1
1

α−k+1∏

s=1
s ̸=r

(α − k + 1)πh1

πh1

= Aαhα−k+1
1 (α − k + 1)α−k+1. (15)

Since ck ∈ Cα−k+1([0, π ]) by assumption, from interpolation theory we know that
for every θ ∈ I there exists ξ(θ) ∈ I such that

ck(θ) − p(θ) = c
(α−k+1)
k (ξ(θ))

(α − k + 1)!
α−k+1∏

r=1

(θ − θ (r));
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see, e.g., [12, Theorem 3.1.1]. Thus, for all θ ∈ I , we have

|ck(θ) − p(θ)| ≤ |c(α−k+1)
k (ξ(θ))|
(α − k + 1)!

α−k+1∏

r=1

|θ − θ (r)|

≤ ∥c(α−k+1)
k ∥∞

(α − k + 1)!
α−k+1∏

r=1

(α − k + 1)πh1

= (α − k + 1)α−k+1πα−k+1∥c(α−k+1)
k ∥∞

(α − k + 1)! hα−k+1
1 . (16)

From (15) and (16) we obtain

|ck(θ) − c̃k,j (θ)| ≤ B(k, α)hα−k+1
1 ≤ Bαhα−k+1

1 , θ ∈ I, (17)

where

B(k, α) = (α − k + 1)α−k+1πα−k+1∥c(α−k+1)
k ∥∞

(α − k + 1)! + Aα(α − k + 1)α−k+1

and Bα = maxi=1,...,α B(i, α). Since θj,n ∈ I , it is clear that (6) follows from (17).

Appendix B

This appendix provides a plain MATLAB implementation of Algorithm 1.

function lambdaS = eigs_preconditioned_toeplitz(n,cu,cv,n1,alpha,S)
% INPUT
% n: positive integer (size of X_n = T_n(u)ˆ(-1) * T_n(v))
% cu: row vector of the coefficients of the trigonometric polynomial
% u(t) = cu(1)+2*cu(2)*cos(t)+...+2*cu(end)*cos((end-1)*t)
% cv: row vector of the coefficients of the trigonometric polynomial
% v(t) = cv(1)+2*cv(2)*cos(t)+...+2*cv(end)*cos((end-1)*t)
% n1: positive integer (number of points of the coarsest grid
% theta_{j1,n1} = j1*pi/(n1+1), j1=1,...,n1)
% alpha: positive integer (number of coefficients c_k(theta)
% to be approximated on the coarsest grid by the tilde c_k(theta))
% S: row vector containing the indices corresponding to the
% eigenvalues of X_n to be computed; the indices should be sorted
% in increasing order, and it is understood that the eigenvalues
% of X_n are sorted in increasing order as well
% OUTPUT
% lambdaS: row vector of length length(S) containing the approximations
% of the eigenvalues of X_n corresponding to the indices S
% computed by using Algorithm 1 with n1 and alpha as inputs
% FURTHER SPECIFICATIONS
% This Matlab function works under the same assumptions as in this paper,
% i.e., u(t), v(t), f(t)=v(t)/u(t) should be as in Conjecture 1 and n1
% should be greater or equal to alpha
% EXAMPLE (CORRESPONDING TO EXAMPLE 8 OF THIS PAPER)
% n = 5000; cu = [8, -1.5, -2, -0.5]; cv = [17.5, -6, -3, 0, 0.25];
% n1 = 100; alpha = 4; S = 1:5;
% lambdaS = eigs_preconditioned_toeplitz(n,cu,cv,n1,alpha,S)

lu = length(cu); lv = length(cv);
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u = @(t)cu(1)+sum(2*cu(2:lu).*cos((1:lu-1)*t));
v = @(t)cv(1)+sum(2*cv(2:lv).*cos((1:lv-1)*t));
f = @(t) arrayfun(@(t)v(t)./u(t),t);

nn = zeros(1,alpha); hh = zeros(1,alpha);
for k = 1:alpha

nn(k) = 2ˆ(k-1)*(n1+1)-1;
hh(k) = 1/(nn(k)+1);

end

A = zeros(alpha);
for i = 1:alpha

for j = 1:alpha
A(i,j) = hh(i)ˆj;

end
end

E = zeros(alpha,n1);
j1 = 1:n1;
theta = j1*pi*hh(1);
TTu = toeplitz( [cu, sparse(1, nn(alpha) - lu)] );
TTv = toeplitz( [cv, sparse(1, nn(alpha) - lv)] );
for k = 1:alpha

eigX = sort(eig(full(TTv(1:nn(k),1:nn(k))),full(TTu(1:nn(k),1:nn(k)))));
jk = 2ˆ(k-1)*j1;
E(k,:) = eigX(jk)’ - f(theta);

end

c_tilde = A\E;

lS = length(S);
lambdaS = zeros(1,lS);
h = 1/(n+1);
t = S*pi*h;
for j = 1:lS

ell = t(j)*(n1+1)/pi;
poly_evals = zeros(1,alpha);
for k = 1:alpha

indices = localization(ell,alpha-k+1);
if indices(1)<1

indices = indices - indices(1) + 1;
end
if indices(end)>n1

indices = indices - indices(end) + n1;
end
tt = indices*pi*hh(1);
poly_evals(k) = polyval(polyfit(tt,c_tilde(k,indices),alpha-k),t(j));

end
lambdaS(j) = polyval([poly_evals(end:-1:1) f(t(j))],h);

end

end

function u = localization(x,m)

% INPUT
% x: real number
% m: natural number >= 1
% OUTPUT
% u: row vector of length m such that u(1),...,u(m) are m integers
% that are closest to x (which are not uniquely determined
% in some cases)
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b = mod(m,2);
v = (m + b)/2;
fx = floor(x);
cx = ceil(x);

if x - fx <= cx - x
u = (fx - v + 1):(fx + v - b);

else
u = (cx - v + b):(cx + v - 1);

end

end
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Abstract

We consider the B-spline Isogeometric Analysis (IgA) approximation of the Laplacian eigenvalue problem
−∆u = λu over the d-dimensional hypercube (0, 1)d. By using tensor-product arguments, we show that
the eigenvalue–eigenvector structure of the resulting discretization matrix is completely determined by the
eigenvalue–eigenvector structure of the matrix L

[p]
n arising from the IgA approximation based on B-splines of

degree p of the unidimensional problem −u′′ = λu. Here, n is the mesh fineness parameter and the size of L
[p]
n

is N(n, p) = n+ p− 2. In previous works, it was established that the normalized sequence {n−2L
[p]
n }n enjoys an

asymptotic spectral distribution described by a function ep(θ), the so-called spectral symbol. The contributions
of this paper can be summarized as follows.
1. For p = 1 and p = 2 we show that L

[p]
n belongs to a matrix algebra associated with a fast unitary sine

transform, and we compute eigenvalues and eigenvectors of L
[p]
n . In both cases, the eigenvalues are given by

ep(θj,n), j = 1, . . . , n+ p− 2, where θj,n = jπ/n.

2. For p ≥ 3, we provide numerical evidence of a precise asymptotic expansion for the eigenvalues of n−2L
[p]
n , ex-

cluding the largest nout
p = p−2+mod(p, 2) eigenvalues (the so-called outliers). More precisely, we numerically

show that for every p ≥ 3, every integer α ≥ 0, every n, and every j = 1, . . . , N(n, p)− nout
p ,

λj(n
−2L[p]

n ) = ep(θj,n) +
α∑
k=1

c
[p]
k (θj,n)hk + E

[p]
j,n,α,

where:
• the eigenvalues of n−2L

[p]
n are arranged in ascending order, λ1(n−2L

[p]
n ) ≤ . . . ≤ λn+p−2(n−2L

[p]
n );

• {c[p]k }k=1,2,... is a sequence of functions from [0, π] to R which depends only on p;
• h = 1/n and θj,n = jπh for j = 1, . . . , n;

• E[p]
j,n,α = O(hα+1) is the remainder, which satisfies |E[p]

j,n,α| ≤ C
[p]
α hα+1 for some constant C

[p]
α depending

only on α and p.
We also provide a proof of this expansion for α = 0 and j = 1, . . . , N(n, p)− (4p− 2), where 4p− 2 represents
a theoretical estimate of the number of outliers nout

p .
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3. We show through numerical experiments that, for p ≥ 3 and k ≥ 1, there exists a point θ(p, k) ∈ (0, π) such

that c
[p]
k (θ) vanishes on [0, θ(p, k)]. Moreover, as it is suggested by the numerics of this paper, the infimum of

θ(p, k) over all k ≥ 1, say yp, is strictly positive, and the equation λj(n
−2L

[p]
n ) = ep(θj,n) holds numerically

whenever θj,n < θ(p), where θ(p) is a point in (0, yp] which grows with p.
4. For p ≥ 3, based on the asymptotic expansion in the above item 2, we propose an interpolation–extrapolation

algorithm for computing the eigenvalues of L
[p]
n , excluding the nout

p outliers. The performance of the algorithm
is illustrated through numerical experiments. Note that, by the previous item 3, the algorithm is actually not
necessary for computing the eigenvalues corresponding to points θj,n < θ(p).

Keywords: Laplacian eigenvalue problem, isogeometric analysis, B-splines, mass and stiffness matrices, eigenval-
ues and eigenvectors, asymptotic eigenvalue expansion, polynomial interpolation, extrapolation

2010 MSC: 65N25, 65N30, 41A15, 65F15, 65D05, 65B05

1 Introduction

1.1 Problem setting

Consider the one-dimensional Laplacian eigenvalue problem{
−u′′(x) = λu(x), x ∈ (0, 1),

u(0) = u(1) = 0.
(1)

The corresponding weak formulation reads as follows: find eigenvalues λ ∈ R+ and eigenfunctions u ∈ H1
0 (0, 1) such

that, for all v ∈ H1
0 (0, 1),

a(u, v) = λ(u, v),

where

a(u, v) =

∫ 1

0

u′(x)v′(x)dx, (u, v) =

∫ 1

0

u(x)v(x)dx.

In the Galerkin method, we choose a finite-dimensional vector space W ⊂ H1
0 (0, 1), we set N = dim W , and we

look for approximations of the exact eigenpairs

λj = j2π2, uj(x) = sin(jπx), j ≥ 1, (2)

by solving the following Galerkin problem: find λj,W ∈ R+ and uj,W ∈ W , for j = 1, . . . , N , such that, for all
v ∈ W ,

a(uj,W , v) = λj,W (uj,W , v). (3)

Assuming the numerical eigenvalues λj,W are arranged in ascending order, the pair (λj,W , uj,W ) is taken as an
approximation of the pair (λj , uj) for all j = 1, . . . , N . The numbers λj,W /λj − 1, j = 1, . . . , N , are referred to
as the (relative) eigenvalue errors. If {ϕ1, . . . , ϕN} is a basis of W , in view of the canonical identification between
each v ∈ W and its coefficient vector with respect to {ϕ1, . . . , ϕN}, solving the Galerkin problem (3) is equivalent
to solving the generalized eigenvalue problem

Kuj,W = λj,W Muj,W , (4)

where uj,W is the coefficient vector of uj,W with respect to {ϕ1, . . . , ϕN} and

K = [a(ϕj , ϕi)]
N
i,j=1 =

[∫ 1

0

ϕ′j(x)ϕ′i(x)dx

]N
i,j=1

, (5)

M = [(ϕj , ϕi)]
N
i,j=1 =

[∫ 1

0

ϕj(x)ϕi(x)dx

]N
i,j=1

. (6)

The matrices K and M are referred to as the stiffness matrix and the mass matrix, respectively. Both K and M
are always symmetric positive definite, regardless of the chosen basis functions ϕ1, . . . , ϕN . Moreover, it is clear
from (4) that the numerical eigenvalues λj,W , j = 1, . . . , N , are just the eigenvalues of the matrix

L = M−1K. (7)
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Figure 1: Cubic B-splines {N1,[3], . . . , Nn+3,[3]} for the knot sequence
{

0, 0, 0, 0, 1
n ,

2
n , . . . ,

n−1
n , 1, 1, 1, 1

}
(n = 10).

Now, for p, n ≥ 1 let
Ni,[p], i = 1, . . . , n+ p, (8)

be the B-splines of degree p ≥ 1 and smoothness Cp−1(R) defined over the knot sequence

0, . . . , 0︸ ︷︷ ︸
p+1

,
1

n
,

2

n
, . . . ,

n− 1

n
, 1, . . . , 1︸ ︷︷ ︸

p+1

.

The B-splines (8) form a basis for the spline space

Vn,[p] =
{
v ∈ Cp−1[0, 1] : v|[ in , i+1

n ) ∈ Pp for i = 0, . . . , n− 1
}
,

where Pp is the space of polynomials of degree at most p. Except for the first and the last one, all the other B-splines
vanish on the boundary of [0, 1]. In particular, the B-splines

Ni+1,[p], i = 1, . . . , n+ p− 2, (9)

form a basis for the space
Wn,[p] =

{
v ∈ Vn,[p] : v(0) = v(1) = 0

}
.

We refer the reader to Figure 1 for the graphs of the B-splines (8) corresponding to the degree p = 3. For more on
B-splines, including the precise definition of the functions (8), see [11, 19].

In the Isogeometric Analysis (IgA) approximation of (1) based on uniform B-splines of degree p ≥ 1, we look
for approximations of the exact eigenpairs (2) by using the Galerkin method described above, in which the basis
functions ϕ1, . . . , ϕN are chosen as the B-splines N2,[p], . . . , Nn+p−1,[p] and, consequently, the vector space W is
equal to Wn,[p]. The resulting stiffness and mass matrices (5)–(6) are given by

K [p]
n =

[∫ 1

0

N ′j+1,[p](x)N ′i+1,[p](x)dx

]n+p−2
i,j=1

, (10)

M [p]
n =

[∫ 1

0

Nj+1,[p](x)Ni+1,[p](x)dx

]n+p−2
i,j=1

, (11)

and the numerical eigenvalues λ
[p]
j,n, j = 1, . . . , n+ p− 2, are the eigenvalues of the matrix

L[p]
n = (M [p]

n )−1K [p]
n . (12)

For more details on IgA, we refer the reader to [10].
Let φ[q] be the B-spline of degree q ≥ 0 corresponding to the knot sequence {0, 1, . . . , q + 1}. The function φ[q]

is usually referred to as the cardinal B-spline of degree q and it is recursively defined as follows [11]:

φ[0](t) = χ[0,1)(t), t ∈ R,

φ[q](t) =
t

q
φ[q−1](t) +

q + 1− t
q

φ[q−1](t− 1), t ∈ R, q ≥ 1,

3



where χ[0,1) is the characteristic (indicator) function of the interval [0, 1). Let

fp : [0, π]→ R, fp(θ) = −φ′′[2p+1](p+ 1)− 2

p∑
k=1

φ′′[2p+1](p+ 1− k) cos(kθ), p ≥ 1, (13)

gp : [0, π]→ R, gp(θ) = φ[2p+1](p+ 1) + 2

p∑
k=1

φ[2p+1](p+ 1− k) cos(kθ), p ≥ 0, (14)

ep : [0, π]→ R, ep(θ) =
fp(θ)

gp(θ)
, p ≥ 1. (15)

It was proved in [15, Section 3] that 1

fp(θ) = (2− 2 cos(θ))gp−1(θ), θ ∈ [0, π], p ≥ 1, (16)

gp(θ) > 0, θ ∈ [0, π], p ≥ 0, (17)

so in particular the function ep(θ) is well-defined. It turns out that ep(θ) is also monotone increasing over
[0, π]; see Appendix A. From the analysis in [16, Section 10.7], we know that the three sequences of matrices

{n−1K [p]
n }n, {nM [p]

n }n, {n−2L[p]
n }n have an asymptotic spectral distribution (in the Weyl sense) described by the

functions fp(θ), gp(θ), ep(θ), respectively; that is, for any sufficiently large n, up to a small number of outliers, the

eigenvalues of n−1K
[p]
n (resp., nM

[p]
n , n−2L

[p]
n ) are approximately given by the samples of fp(θ) (resp., gp(θ), ep(θ))

over some uniform grid in [0, π]. This is illustrated in Figure 2 for the matrix n−2L
[p]
n and for p = 1, . . . , 6. For

more details on the spectral distribution of a sequence of matrices, see [16, Section 3.1].

1.2 Contributions of this work

The main contributions of this work can be summarized as follows. Throughout this paper, we will use the notations
noutp = p− 2 + mod(p, 2) and N(n, p) = n+ p− 2.

1. For p = 1 and p = 2, we compute eigenvalues and eigenvectors of L
[p]
n . In both cases, the eigenvalues are given

by ep(θj,n) for j = 1, . . . , n+ p− 2, where θj,n = jπ/n. The exact computation of eigenvalues and eigenvectors

is made possible by the fact that the matrices K
[p]
n , M

[p]
n , L

[p]
n belong to the same matrix algebra, which is the

tau algebra τn−1(0, 0) for p = 1 and the algebra τn(−1,−1) for p = 2 (we are using the notations of [7]). It is
worth noting that both these algebras are related to fast unitary sine transforms [7], which implies that many

numerical linear algebra computations involving the matrices K
[p]
n , M

[p]
n , L

[p]
n (matrix-vector products, solutions

of linear systems, inversions, etc.) are stable and fast.

2. For p ≥ 3, we provide numerical evidence of a precise asymptotic expansion for the eigenvalues of n−2L
[p]
n .

Such an expansion, which obviously begins with the spectral distribution function ep(θ), is in force for the
whole of the spectrum except for the largest noutp eigenvalues (the so-called outliers; see Figure 2). To be more
precise, we show through numerical experiments that for every p ≥ 3, every integer α ≥ 0, every n, and every
j = 1, . . . , N(n, p)− noutp = n−mod(p, 2), we have

λj(n
−2L[p]

n ) = ep(θj,n) +
α∑
k=1

c
[p]
k (θj,n)hk + E

[p]
j,n,α, (18)

where:
• the eigenvalues of n−2L

[p]
n are arranged in ascending order, λ1(n−2L

[p]
n ) ≤ . . . ≤ λn+p−2(n−2L

[p]
n );

• {c[p]k }k=1,2,... is a sequence of functions from [0, π] to R which depends only on p;

• h = 1
n and θj,n = jπ

n = jπh for j = 1, . . . , n;

• E[p]
j,n,α = O(hα+1) is the remainder (the error), which satisfies the inequality |E[p]

j,n,α| ≤ C
[p]
α hα+1 for some

constant C
[p]
α depending only on α and p.

1Note that in [15] the function gp(θ) is denoted by hp(θ).
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Figure 2: Comparison between the eigenvalues of n−2L
[p]
n and the graph of ep(θ) for n = 50 and p = 1, . . . , 6. The

eigenvalues of n−2L
[p]
n are sorted in ascending order and are represented by the thick dots placed at the points

(θj,n, λj(n
−2L

[p]
n )), j = 1, . . . , n−mod(p, 2), where θj,n = jπ/n. The eigenvalues λj(n

−2L
[p]
n ) for j > n−mod(p, 2)

are the so-called outliers and are positioned outside the domain [0, π].
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We refer the reader to Appendix B for a proof of the expansion (18) for α = 0 and j = 1, . . . , N(n, p) −
(4p − 2), where 4p − 2 represents an estimate, solely based on interlacing/rank-correction arguments, of the
actual number of outliers noutp . We note that (18) is formally the same as the expansions for the eigenvalues of
Toeplitz and preconditioned Toeplitz matrices, which have been conjectured and validated through numerical
experiments in [1, 14]. In the case of Toeplitz matrices, the eigenvalue expansion has also been proved by
Bogoya, Böttcher, Grudsky, and Maximenko in a sequel of recent papers [4, 5, 6]. Furthermore, basic eigenvalue
expansions (and related extrapolation techniques) have been used in [9, 25] in the context of finite element
approximations of differential problems. In the light of these considerations, the expansion (18) is not completely

unexpected, because n−2L
[p]
n is ‘almost’ a preconditioned Toeplitz matrix as n−2L

[p]
n = (nM

[p]
n )−1(n−1K

[p]
n ) and

nM
[p]
n , n−1K

[p]
n are Toeplitz matrices, up to low rank corrections. To be precise, let Tm(a) be the Toeplitz

matrix of size m generated by the function a ∈ L1(−π, π), that is,

Tm(a) = [ai−j ]
m
i,j=1 =



a0 a−1 a−2 · · · · · · a−(m−1)

a1
. . .

. . .
. . .

...

a2
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . a−2
...

. . .
. . .

. . . a−1
am−1 · · · · · · a2 a1 a0


,

where the numbers ak = 1
2π

∫ π
−π a(θ)e−ikθdθ, k ∈ Z, are the Fourier coefficients of a. Then,

n−1K [p]
n = Tn+p−2(fp) +R[p]

n , (19)

nM [p]
n = Tn+p−2(gp) + S[p]

n , (20)

where fp, gp are defined in (13)–(14) and

(R[p]
n )ij = 0, 2p ≤ i ≤ n− p− 1 =⇒ rank(R[p]

n ) ≤ 4p− 2, (21)

(S[p]
n )ij = 0, 2p ≤ i ≤ n− p− 1 =⇒ rank(S[p]

n ) ≤ 4p− 2; (22)

see [15, Subsection 4.1].
3. We show through numerical experiments that, for p ≥ 3 and k ≥ 1, there exists a point θ(p, k) ∈ (0, π) such that

c
[p]
k (θ) vanishes over [0, θ(p, k)]. Moreover, as it is suggested by the numerics of this paper, it is very likely that
yp = infk≥1 θ(p, k) > 0 for all p ≥ 3. This is consistent with another crucial numerical observation, namely the

fact that, for all p ≥ 3, the equation λj(n
−2L

[p]
n ) = ep(θj,n) holds numerically whenever θj,n < θ(p), with θ(p)

being a point in (0, yp]. In addition, θ(p) apparently grows with p, i.e., the portion of the spectrum of λj(n
−2L

[p]
n )

which is exactly described by ep(θ), at least from a numerical viewpoint, increases with p.
4. For p ≥ 3, based on the expansion (18) and drawing inspiration from [13], we propose an interpolation–

extrapolation algorithm for computing the eigenvalues of L
[p]
n , excluding the noutp outliers. The performance

of the algorithm is illustrated through numerical experiments. Note that we actually need to compute only the

eigenvalues of L
[p]
n corresponding in the expansion (18) to points θj,n ≥ θ(p), because whenever θj,n < θ(p) we

numerically have λj(L
[p]
n ) = n2ep(θj,n) by the previous item 3.

5. We present a detailed extension of the whole analysis to the general d-dimensional setting, in which problem (1)
is replaced by (31). By using tensor-product arguments, we show that the eigenvalue–eigenvector structure of
the matrix arising from the IgA approximation of (31) is completely determined by the eigenvalue–eigenvector

structure of the matrix L
[p]
n . In short, the analysis of L

[p]
n is enough also to cover the multidimensional case.

1.3 Organization of the paper

The paper is organized as follows. In Section 2 we compute eigenvalues and eigenvectors of the matrix L
[p]
n for

p = 1 and p = 2. In Section 3, assuming the asymptotic eigenvalue expansion (18), we present our interpolation–

extrapolation algorithm for computing the eigenvalues of L
[p]
n for p ≥ 3, excluding the noutp outliers. In Section 4

6



we provide numerical experiments in support of both the asymptotic eigenvalue expansion (18) and the properties
described in item 3 of Subsection 1.2. Moreover, we numerically illustrate the performance of the interpolation–
extrapolation algorithm presented in Section 3. In Section 5 we extend the whole analysis carried out in Sections 2–4
to the multidimensional setting by showing through appropriate tensor-product arguments that the multidimen-
sional case reduces to the unidimensional case. Finally, in Section 6 we draw conclusions and outline future lines of
research.

2 Eigenvalues and eigenvectors of L
[p]
n for p = 1 and p = 2

In this section we compute the exact spectral decomposition of the matrix L
[p]
n for p = 1 and p = 2. As a preliminary

step, we recall some properties of the matrix algebras τn(ε, φ) introduced in [7] for ε, φ ∈ {0, 1,−1}. It will turn

out that K
[1]
n ,M

[1]
n , L

[1]
n belong to τn−1(0, 0) and K

[2]
n ,M

[2]
n , L

[2]
n belong to τn(−1,−1), and this will be the key for

computing eigenvalues and eigenvectors of both L
[1]
n and L

[2]
n .

2.1 The matrix algebras τm(ε, φ) for ε, φ ∈ {0, 1,−1}
Following [7], for any m ≥ 2 and any ε, φ ∈ {0, 1,−1} we define the tridiagonal matrix

Hm(ε, φ) =



ε 1 0 · · · 0

1 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 0 1
0 · · · 0 1 φ


= Tm(2 cos(θ)) + εe1e

T
1 + φemeTm,

where ei is the ith vector of the canonical basis of Rm. Since Hm(ε, φ) is real and symmetric, it can be decomposed
as

Hm(ε, φ) = Qm(ε, φ)Dm(ε, φ)Qm(ε, φ)T ,

where Qm(ε, φ) is a real unitary matrix and Dm(ε, φ) is a real diagonal matrix. The matrix algebra generated by
Hm(ε, φ) is denoted by τm(ε, φ) and is given by

τm(ε, φ) = {Qm(ε, φ)DmQm(ε, φ)T : Dm is a diagonal matrix of size m}.

It turns out that the matrixQm(ε, φ) is a fast trigonometric transform such that the matrix-vector productQm(ε, φ)v
can be computed in O(m logm) operations. Moreover, the diagonal entries of the matrix Dm(ε, φ) (i.e., the eigen-
values of Hm(ε, φ)) are equal to the samples of the function 2 cos(θ) at a uniform grid in [0, π].

The cases of interest in this paper are ε = φ = 0 and ε = φ = −1. For ε = φ = 0, the matrix algebra τm(0, 0) is
the so-called tau algebra, which was originally introduced in [3]. In this case, the sampling grid is

jπ

m+ 1
, j = 1, . . . ,m,

and we have

Dm(0, 0) = diag
j=1,...,m

[
2 cos

( jπ

m+ 1

)]
,

Qm(0, 0) =

√
2

m+ 1

[
sin
( ijπ

m+ 1

)]m
i,j=1

.

For ε = φ = −1, the sampling grid is
jπ

m
, j = 1, . . . ,m,
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and we have

Dm(−1,−1) = diag
j=1,...,m

[
2 cos

(jπ
m

)]
,

Qm(−1,−1) =

√
2

m

[
kj sin

( (2i− 1)jπ

2m

)]m
i,j=1

, kj =

{
1/
√

2, if j = m,
1, otherwise.

For more details on the matrix algebras τm(ε, φ) we refer the reader to [7].

2.2 Eigenvalues and eigenvectors of L
[p]
n for p = 1

In the case p = 1, the stiffness and mass matrices K
[1]
n and M

[1]
n have size n − 1 and a direct computation shows

that

n−1K [1]
n =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 = Tn−1(f1) = 2In−1 −Hn−1(0, 0),

nM [1]
n =

1

6


4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4

 = Tn−1(g1) =
2

3
In−1 +

1

6
Hn−1(0, 0),

where Im is the m×m identity matrix and f1, g1 are given by (13)–(14) for p = 1, i.e.,

f1(θ) = 2− 2 cos(θ),

g1(θ) =
2

3
+

1

3
cos(θ).

It follows that both K
[1]
n and M

[1]
n belong to the tau algebra τn−1(0, 0). Moreover, based on the results of Subsec-

tion 2.1, we have

n−1K [1]
n = 2In−1 −Hn−1(0, 0) = Qn−1(0, 0)

(
diag

j=1,...,n−1

[
f1

(jπ
n

)])
Qn−1(0, 0)T ,

nM [1]
n =

2

3
In−1 +

1

6
Hn−1(0, 0) = Qn−1(0, 0)

(
diag

j=1,...,n−1

[
g1

(jπ
n

)])
Qn−1(0, 0)T .

Given the algebra structure of τn−1(0, 0), we obtain

n−2L[1]
n = (nM [1]

n )−1(n−1K [1]
n ) = Qn−1(0, 0)

(
diag

j=1,...,n−1

[
e1

(jπ
n

)])
Qn−1(0, 0)T ,

where

e1(θ) =
f1(θ)

g1(θ)
=

6(1− cos(θ))

2 + cos(θ)
,

as defined by (15) for p = 1. In particular, L
[1]
n belongs to the tau algebra τn−1(0, 0) just like K

[1]
n and M

[1]
n , and

the eigenvalues and eigenvectors of L
[1]
n are given by

n2e1

(jπ
n

)
, j = 1, . . . , n− 1,√

2

n

[
sin
( ijπ
n

)]n−1
i=1

, j = 1, . . . , n− 1.
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2.3 Eigenvalues and eigenvectors of L
[p]
n for p = 2

In the case p = 2, the stiffness and mass matrices K
[2]
n and M

[2]
n have size n and a direct computation shows that

n−1K [2]
n =

1

6



8 −1 −1
−1 6 −2 −1
−1 −2 6 −2 −1

. . .
. . .

. . .
. . .

. . .

−1 −2 6 −2 −1
−1 −2 6 −1

−1 −1 8


= Tn(f2) +R[2]

n ,

nM [2]
n =

1

120



40 25 1
25 66 26 1
1 26 66 26 1

. . .
. . .

. . .
. . .

. . .

1 26 66 26 1
1 26 66 25

1 25 40


= Tn(g2) + S[2]

n ,

where f2, g2 are given by (13)–(14) for p = 2, i.e.,

f2(θ) = 1− 2

3
cos(θ)− 1

3
cos(2θ),

g2(θ) =
11

20
+

13

30
cos(θ) +

1

60
cos(2θ),

and R
[2]
n , S

[2]
n are matrices of rank 4 given by

R[2]
n =

1

6


2 1
1

1
1 2

 ,

S[2]
n =

1

120


−26 −1
−1

−1
−1 −26

 .

We note that both n−1K
[2]
n and nM

[2]
n are of the form

An(a, b, c) = Tn(a+ 2b cos(θ) + 2c cos(2θ)) +Rn(b, c), Rn(b, c) = −


b c
c

c
c b

 . (23)

Indeed,

n−1K [2]
n = An

(
1,−1

3
,−1

6

)
,

nM [2]
n = An

(11

20
,

13

60
,

1

120

)
.

Now, any matrix of the form (23) is a polynomial in Hn(−1,−1), and precisely

An(a, b, c) = (a− 2c)In + bHn(−1,−1) + cHn(−1,−1)2.

9



It follows that An(a, b, c) belongs to the matrix algebra τn(−1,−1). Moreover, based on the results of Subsection 2.1,
we have

An(a, b, c) = Qn(−1,−1)

(
diag

j=1,...,n

[
a+ 2b cos

(jπ
n

)
+ 2c cos

(2jπ

n

)])
Qn(−1,−1)T .

In particular, K
[2]
n and M

[2]
n belong to τn(−1,−1) and

n−1K [2]
n = Qn(−1,−1)

(
diag

j=1,...,n

[
f2

(jπ
n

)])
Qn(−1,−1)T ,

nM [2]
n = Qn(−1,−1)

(
diag

j=1,...,n

[
g2

(jπ
n

)])
Qn(−1,−1)T .

Given the algebra structure of τn(−1,−1), we obtain

n−2L[2]
n = (nM [2]

n )−1(n−1K [2]
n ) = Qn(−1,−1)

(
diag

j=1,...,n

[
e2

(jπ
n

)])
Qn(−1,−1)T ,

where

e2(θ) =
f2(θ)

g2(θ)
=

20(3− 2 cos(θ)− cos(2θ))

33 + 26 cos(θ) + cos(2θ)
,

as defined by (15) for p = 2. In particular, L
[2]
n belongs to the algebra τn(−1,−1) just like K

[2]
n and M

[2]
n , and the

eigenvalues and eigenvectors of L
[2]
n are given by

n2e2

(jπ
n

)
, j = 1, . . . , n,√

2

n

[
kj sin

( (2i− 1)jπ

2n

)]n
i=1

, kj =

{
1/
√

2, if j = n,
1, otherwise,

j = 1, . . . , n.

Remark 1. In a recent work [24], Tani proposed a preconditioner based on the fast sine transform Qn(−1,−1) for
solving linear systems arising from the IgA discretization of unidimensional differential problems. For the case p = 2,
the performance of the preconditioner was extremely good: just one Krylov iteration! The theoretical explanation
of such an excellent behavior lies precisely in the exact spectral decompositions obtained in this subsection, where it

is shown that Qn(−1,−1) diagonalizes simultaneously the three matrices K
[2]
n ,M

[2]
n , L

[2]
n . Note that decompositions

of this kind can also be used for accelerating the convergence of recently proposed iterative solvers for IgA linear
systems, such as multigrid-based and preconditioned Krylov-based methods; see [12, 18] and the references therein.

3 Algorithm for computing the eigenvalues of L
[p]
n for p ≥ 3

Assuming the expansion (18) and drawing inspiration from [13], in this section we propose an interpolation–

extrapolation algorithm for computing the eigenvalues of L
[p]
n , excluding the noutp outliers. In what follows, for

each positive integer n ∈ N = {1, 2, 3, . . .} and each p ≥ 3 we define n[p] = n − mod(p, 2). Moreover, with each
positive integer n we associate the stepsize h = 1

n and the grid points θj,n = jπh, j = 1, . . . , n. For notational
convenience, unless otherwise stated, we will always denote a positive integer and the associated stepsize in the
same way. For example, if the positive integer is n, the associated stepsize is h; if the positive integer is n1, the
associated stepsize is h1; if the positive integer is n̄, the associated stepsize is h̄; etc. Throughout this section, we
make the following assumptions.
• p ≥ 3 and n, n1, α ∈ N are fixed parameters.
• nk = 2k−1n1 for k = 1, . . . , α.
• jk = 2k−1j1 for j1 = 1, . . . , n1 and k = 1, . . . , α; jk is the index in {1, . . . , nk} such that θjk,nk = θj1,n1

.
A graphical representation of the grids {θ1,nk , . . . , θnk,nk}, k = 1, . . . , α, is reported in Figure 3 for n1 = 5 and
α = 4.
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0 π/5 2π/5 3π/5 4π/5 π

θ

1
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3

4

k

Figure 3: Representation of the grids {θ1,nk , . . . , θnk,nk}, k = 1, . . . , α, for n1 = 5 and α = 4.

For each fixed j1 = 1, . . . , n
[p]
1 we apply α times the expansion (18) with n = n1, n2, . . . , nα and j = j1, j2, . . . , jα.

Since θj1,n1
= θj2,n2

= . . . = θjα,nα (by definition of j2, . . . , jα), we obtain

E
[p]
j1,n1,0

= c
[p]
1 (θj1,n1

)h1 + c
[p]
2 (θj1,n1

)h21 + . . .+ c[p]α (θj1,n1
)hα1 + E

[p]
j1,n1,α

E
[p]
j2,n2,0

= c
[p]
1 (θj1,n1)h2 + c

[p]
2 (θj1,n1)h22 + . . .+ c[p]α (θj1,n1)hα2 + E

[p]
j2,n2,α

...

E
[p]
jα,nα,0

= c
[p]
1 (θj1,n1

)hα + c
[p]
2 (θj1,n1

)h2α + . . .+ c[p]α (θj1,n1
)hαα + E

[p]
jα,nα,α

(24)

where
E

[p]
jk,nk,0

= λjk(n−2k L[p]
nk

)− ep(θj1,n1), k = 1, . . . , α,

and
|E[p]
jk,nk,α

| ≤ C [p]
α hα+1

k , k = 1, . . . , α. (25)

Let c̃
[p]
1 (θj1,n1

), . . . , c̃
[p]
α (θj1,n1

) be the approximations of c
[p]
1 (θj1,n1

), . . . , c
[p]
α (θj1,n1

) obtained by removing all the

errors E
[p]
j1,n1,α

, . . . , E
[p]
jα,nα,α

in (24) and by solving the resulting linear system:

E
[p]
j1,n1,0

= c̃
[p]
1 (θj1,n1

)h1 + c̃
[p]
2 (θj1,n1

)h21 + . . .+ c̃[p]α (θj1,n1
)hα1

E
[p]
j2,n2,0

= c̃
[p]
1 (θj1,n1

)h2 + c̃
[p]
2 (θj1,n1

)h22 + . . .+ c̃[p]α (θj1,n1
)hα2

...

E
[p]
jα,nα,0

= c̃
[p]
1 (θj1,n1

)hα + c̃
[p]
2 (θj1,n1

)h2α + . . .+ c̃[p]α (θj1,n1
)hαα

(26)

Note that this way of computing approximations for c
[p]
1 (θj1,n1), . . . , c

[p]
α (θj1,n1) is completely analogous to the

Richardson extrapolation procedure that is employed in the context of Romberg integration to accelerate the
convergence of the trapezoidal rule [23, Section 3.4]. In this regard, the asymptotic expansion (18) plays here the
same role as the Euler–Maclaurin summation formula [23, Section 3.3]. For more advanced studies on extrapolation
methods, we refer the reader to Brezinski and Redivo-Zaglia [8]. The next theorem shows that the approximation

error |c[p]k (θj1,n1)− c̃[p]k (θj1,n1)| is O(hα−k+1
1 ).

Theorem 1. There exists a constant A
[p]
α depending only on α and p such that, for j1 = 1, . . . , n

[p]
1 and k = 1, . . . , α,

|c[p]k (θj1,n1)− c̃[p]k (θj1,n1)| ≤ A[p]
α h

α−k+1
1 . (27)
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Proof. It is a straightforward adaptation of the proof of [13, Theorem 1].

Now, fix an index j ∈ {1, . . . , n[p]}. To compute an approximation of λj(n
−2L

[p]
n ) through the expansion (18)

we would need the value c
[p]
k (θj,n) for each k = 1, . . . , α. Of course, c

[p]
k (θj,n) is not available in practice, but we can

approximate it by interpolating in some way the values c̃
[p]
k (θj1,n1

), j1 = 1, . . . , n
[p]
1 . For example, we may define

c̃
[p]
k (θ) as the interpolation polynomial of the data (θj1,n1

, c̃
[p]
k (θj1,n1

)), j1 = 1, . . . , n
[p]
1 , — so that c̃

[p]
k (θ) is expected

to be an approximation of c
[p]
k (θ) over the whole interval [0, π] — and take c̃

[p]
k (θj,n) as an approximation to c

[p]
k (θj,n).

It is known, however, that interpolation over a large number of uniform nodes is not advisable as it may give rise
to spurious oscillations (Runge’s phenomenon). It is therefore better to adopt another kind of approximation.

An alternative could be the following: we approximate c
[p]
k (θ) by the spline function c̃

[p]
k (θ) which is linear on each

interval [θj1,n1
, θj1+1,n1

] and takes the value c̃
[p]
k (θj1,n1

) at θj1,n1
for all j1 = 1, . . . , n

[p]
1 . This strategy removes for sure

any spurious oscillation, yet it is not accurate. In particular, it does not preserve the accuracy of approximation

at the nodes θj1,n1
established in Theorem 1, i.e., there is no guarantee that |c[p]k (θ) − c̃

[p]
k (θ)| ≤ B

[p]
α hα−k+1

1

for θ ∈ [0, π] or |c[p]k (θj,n) − c̃
[p]
k (θj,n)| ≤ B

[p]
α hα−k+1

1 for j = 1, . . . , n[p], with B
[p]
α being a constant depending

only on α and p. As proved in Theorem 2, a local approximation strategy that preserves the accuracy (27),

at least if c
[p]
k (θ) is sufficiently smooth, is the following: let θ(1), . . . , θ(α−k+1) be α − k + 1 points of the grid

{θ1,n1
, . . . , θ

n
[p]
1 ,n1
} which are closest to the point θj,n, 2 and let c̃

[p]
k,j(θ) be the interpolation polynomial of the data

(θ(1), c̃
[p]
k (θ(1))), . . . , (θ(α−k+1), c̃

[p]
k (θ(α−k+1))); then, we approximate c

[p]
k (θj,n) by c̃

[p]
k,j(θj,n). Note that, by selecting

α− k + 1 points from {θ1,n1
, . . . , θ

n
[p]
1 ,n1
}, we are implicitly assuming that n

[p]
1 ≥ α− k + 1.

Theorem 2. Let p ≥ 3 and 1 ≤ k ≤ α, and suppose n
[p]
1 ≥ α − k + 1 and c

[p]
k ∈ Cα−k+1[0, π]. For j = 1, . . . , n[p],

if θ(1), . . . , θ(α−k+1) are α − k + 1 points of {θ1,n1
, . . . , θ

n
[p]
1 ,n1
} which are closest to θj,n, and if c̃

[p]
k,j(θ) is the

interpolation polynomial of the data (θ(1), c̃
[p]
k (θ(1))), . . . , (θ(α−k+1), c̃

[p]
k (θ(α−k+1))), then

|c[p]k (θj,n)− c̃[p]k,j(θj,n)| ≤ B[p]
α hα−k+1

1 (28)

for some constant B
[p]
α depending only on α and p.

Proof. It is a straightforward adaptation of the proof of [13, Theorem 2].

We are now ready to formulate our algorithm for computing the eigenvalues of L
[p]
n , excluding the outliers.

Algorithm 1. Given p ≥ 3 and n, n1, α ∈ N with n
[p]
1 ≥ α, we compute approximations of the eigenvalues λj(L

[p]
n )

for j = 1, . . . , n[p] as follows.

1. For j1 = 1, . . . , n
[p]
1 compute c̃

[p]
1 (θj1,n1

), . . . , c̃
[p]
α (θj1,n1

) by solving (26).
2. For j = 1, . . . , n[p]

• for k = 1, . . . , α
– determine α− k + 1 points θ(1), . . . , θ(α−k+1) ∈ {θ1,n1 , . . . , θn[p]

1 ,n1
} which are closest to θj,n;

– compute c̃
[p]
k,j(θj,n), where c̃

[p]
k,j(θ) is the interpolation polynomial of the data

(θ(1), c̃
[p]
k (θ(1))), . . . , (θ(α−k+1), c̃

[p]
k (θ(α−k+1)));

• compute λ̃j(n
−2L

[p]
n ) = ep(θj,n) +

∑α
k=1 c̃

[p]
k,j(θj,n)hk and λ̃j(L

[p]
n ) = n2λ̃j(n

−2L
[p]
n ).

3. Return (λ̃1(L
[p]
n ), . . . , λ̃n[p](L

[p]
n )) as an approximation to (λ1(L

[p]
n ), . . . , λn[p](L

[p]
n )).

Remark 2. Algorithm 1 is specifically designed for computing the eigenvalues of L
[p]
n in the case where n is quite

large. When applying this algorithm, it is implicitly assumed that n1 and α are small (much smaller than n), so

that each nk = 2k−1n1 is small as well and the computation of the eigenvalues of L
[p]
nk — which is required in the

first step — can be efficiently performed by any standard eigensolver (e.g., the Matlab eig function).

2These α−k+ 1 points are uniquely determined by θj,n except in the following two cases: (a) θj,n coincides with a grid point θj1,n1

and α− k + 1 is even; (b) θj,n coincides with the midpoint between two consecutive grid points θj1,n1 , θj1+1,n1 and α− k + 1 is odd.
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The last theorem of this section provides an estimate for the approximation error made by Algorithm 1.

Theorem 3. Let p ≥ 3, n[p] ≥ n
[p]
1 ≥ α and c

[p]
k ∈ Cα−k+1[0, π] for k = 1, . . . , α. Let (λ̃1(L

[p]
n ), . . . , λ̃n[p](L

[p]
n ))

be the approximation of (λ1(L
[p]
n ), . . . , λn[p](L

[p]
n )) computed by Algorithm 1. Then, there exists a constant D

[p]
α

depending only on α and p such that, for j = 1, . . . , n[p],

|λj(L[p]
n )− λ̃j(L[p]

n )| ≤ D[p]
α nh

α
1 . (29)

Proof. By (18) and Theorem 2,

|λj(n−2L[p]
n )− λ̃j(n−2L[p]

n )| =

∣∣∣∣∣ep(θj,n) +
α∑
k=1

c
[p]
k (θj,n)hk + E

[p]
j,n,α − ep(θj,n)−

α∑
k=1

c̃
[p]
k,j(θj,n)hk

∣∣∣∣∣
≤

α∑
k=1

|c[p]k (θj,n)− c̃[p]k,j(θj,n)|hk + |E[p]
j,n,α|

≤ B[p]
α

α∑
k=1

hα−k+1
1 h+ C [p]

α hα+1 ≤ D[p]
α h

α
1h,

where D
[p]
α = (α+ 1) max(B

[p]
α , C

[p]
α ). Multiplying both sides by n2 we get the thesis.

Note that the error estimate provided by Theorem 3 seems disappointing, due to the presence of the large factor
n in the right-hand side of (29). However, one should take into account that (29) is an absolute error estimate

which, moreover, is uniform in j. Considering that the largest non-outlier eigenvalue of L
[p]
n , namely λn[p](L

[p]
n ),

diverges to ∞ with the same asymptotic speed as n2, from (29) we obtain the approximate inequality

|λn[p](L
[p]
n )− λ̃n[p](L

[p]
n )|

|λn[p](L
[p]
n )|

≤ D[p]
α h

α
1h,

which is a good relative error estimate. We refer the reader to Subsection 4.2 for several numerical illustrations of
the actual performance of Algorithm 1.

4 Numerical experiments

This section is composed of two subsections. In Subsection 4.1 we implement the program described in items 2
and 3 of Subsection 1.2. In other words, we validate through numerical experiments the expansion (18) for p ≥ 3;

we numerically show, for p ≥ 3 and k ≥ 1, the existence of a point θ(p, k) ∈ (0, π) such that c
[p]
k (θ) vanishes over

[0, θ(p, k)]; and we provide numerical evidence of the fact that the infimum yp = infk≥1 θ(p, k) is strictly positive

and the equation λj(n
−2L

[p]
n ) = ep(θj,n) holds numerically whenever θj,n < θ(p), with θ(p) being a point in (0, yp].

In Subsection 4.2 we illustrate the numerical performance of Algorithm 1.

4.1 Numerical experiments in support of the eigenvalue expansion

Fix p ≥ 3 and α ∈ N. As in Section 3, for every n1 ∈ N we set

nk = 2k−1n1, k = 1, . . . , α,

jk = 2k−1j1, k = 1, . . . , α, j1 = 1, . . . , n1.

In the hypothesis that the expansion (18) holds, we can follow the derivation of Section 3 until Theorem 1 and

we conclude that, for each k = 1, . . . , α and j1 = 1, . . . , n
[p]
1 , the value c̃

[p]
k (θj1,n1

) computed by solving the linear

system (26) converges to the value c
[p]
k (θj1,n1

) as n1 → ∞ with the same asymptotic speed as hα−k+1
1 . In other

words, in the hypothesis that the expansion (18) holds, if we plot the values c̃
[p]
k (θj1,n1

) versus the points θj1,n1
for

j1 = 1, . . . , n
[p]
1 , the resulting picture should converge as n1 →∞ to the graph of a function from [0, π] to R, which

is, by definition, c
[p]
k (θ). The next examples show that this is in fact the case, thus providing a validation of the

expansion (18). The examples also support the following conjectures:
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θj1,n1

0 π/4 π/2 3π/4 π

c̃[
3] 1
(θ

j 1
,n

1
)

−2.5

−2

−1.5

−1

−0.5

0
n1 = 200
n1 = 300
n1 = 400

θj1,n1

0 π/4 π/2 3π/4 π

c̃[
3] 2
(θ

j 1
,n

1
)

−2

−1

0

1 n1 = 200
n1 = 300
n1 = 400

θj1,n1

0 π/4 π/2 3π/4 π

c̃[
3] 3
(θ

j 1
,n

1
)

−3

−2

−1

0

1

2

3

4
n1 = 200
n1 = 300
n1 = 400

Figure 4: Example 1, p = 3: graph of the pairs (θj1,n1
, c̃

[3]
k (θj1,n1

)), j1 = 1, . . . , n1 − 1, for n1 = 200, 300, 400 and
k = 1, 2, 3.

n1 200 300 400 500 600

θ
(ε)
n1 (3, 1)

86π

200
≈ 1.3509

129π

300
≈ 1.3509

172π

400
≈ 1.3509

214π

500
≈ 1.3446

257π

600
≈ 1.3456

θ
(ε)
n1 (3, 2)

115π

200
≈ 1.8064

172π

300
≈ 1.8012

229π

400
≈ 1.7986

286π

500
≈ 1.7970

343π

600
≈ 1.7959

θ
(ε)
n1 (3, 3)

126π

200
≈ 1.9792

188π

300
≈ 1.9687

251π

400
≈ 1.9713

313π

500
≈ 1.9666

377π

600
≈ 1.9740

Table 1: Example 1, p = 3: values θ
(ε)
n1 (3, k) for k = 1, 2, 3 and n1 = 200, 300, 400, 500, 600, computed with the

threshold ε = 0.0005.
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0 π/4 π/2 3π/4 π

θj,n

10−17

10−15

10−13
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Figure 5: Example 1, p = 3: errors |E[3]
j,n,0| versus θj,n for j = 1, . . . , n− 1 and n = 750, 1000, 1250, 1500.

n 750 1000 1250 1500
j 58 80 101 123
θj,n 0.2429 0.2513 0.2538 0.2576

Table 2: Example 1, p = 3: first index j such that |E[3]
j,n,0| > 10−14 and corresponding grid point θj,n, for

n = 750, 1000, 1250, 1500.

• the limit function c
[p]
k (θ) vanishes over an interval [0, θ(p, k)] with θ(p, k) ∈ (0, π);

• yp = infk≥1 θ(p, k) > 0;

• λj(n−2L[p]
n ) = ep(θj,n) numerically whenever θj,n < θ(p), where θ(p) is a point in (0, yp] which grows with p.

Example 1. Fix p = 3 and let α = 3. In Figure 4 we plot the pairs

(θj1,n1 , c̃
[3]
k (θj1,n1)), j1 = 1, . . . , n

[3]
1 = n1 − 1, (30)

for n1 = 200, 300, 400 and k = 1, 2, 3. We note that, for each fixed k, the graph of the pairs (30) is essentially the

same for all the considered values of n1. In other words, this graph converges to the graph of a function c
[3]
k (θ)

as n1 → ∞, and the convergence is essentially reached already for n1 = 200, at least from the point of view of

graphical visualization. Moreover, the limit function c
[3]
k (θ) is apparently zero over an interval [0, θ(3, k)], where

θ(3, k) ∈ (0, π). An ε-approximation of θ(3, k) is obtained as the limit of θ
(ε)
n1 (3, k) for n1 →∞, where

θ(ε)n1
(3, k) = max

{
θj1,n1 : 1 ≤ j1 ≤ n1 − 1, |c̃[3]k (θi1,n1)| ≤ ε for all i1 < j1

}
and ε is a fixed threshold. Table 1 shows the values θ

(ε)
n1 (3, k) computed for k = 1, 2, 3 and n1 = 200, 300, 400, 500, 600

with the fixed threshold ε = 0.0005. Both Figure 4 and Table 1 suggest that θ(3, k) grows with k. In particular,
we may expect that

y3 = inf
k≥1

θ(3, k) = θ(3, 1) > 0.

In Figure 5 we plot the errors |E[3]
j,n,0| = |λj(n−2L

[3]
n )− e3(θj,n)| versus the points θj,n for j = 1, . . . , n[3] = n−1 and

n = 750, 1000, 1250, 1500. For the same values of n, in Table 2 we record the first index j such that |E[3]
j,n,0| > 10−14

and the corresponding grid point θj,n. From Figure 5 and Table 2 we immediately see that a nontrivial portion of

the spectrum of n−2L
[3]
n is exactly approximated, at least from a numerical viewpoint, by the spectral distribution

function e3(θ). Moreover, the points θj,n shown in Table 2 apparently form a monotone increasing sequence; the

limit of this sequence as n → ∞, say θ(3) ≈ 0.2576, is a point such that the equation λi(n
−2L

[3]
n ) = e3(θi,n) holds

numerically whenever θi,n < θ(3). In other words, the ratio θ(3)/π ≈ 0.082 represents the portion of the spectrum

of n−2L
[3]
n which is exactly described by e3(θ), at least numerically.
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Figure 6: Example 2, p = 4: graph of the pairs (θj1,n1
, c̃

[4]
k (θj1,n1

)), j1 = 1, . . . , n1, for n1 = 200, 300, 400 and
k = 1, 2, 3.

n1 200 300 400 500 600

θ
(ε)
n1 (4, 1)

97π

200
≈ 1.5237

146π

300
≈ 1.5289

194π

400
≈ 1.5237

242π

500
≈ 1.5205

291π

600
≈ 1.5237

θ
(ε)
n1 (4, 2)

129π

200
≈ 2.0263

194π

300
≈ 2.0316

258π

400
≈ 2.0263

322π

500
≈ 2.0232

387π

600
≈ 2.0263

θ
(ε)
n1 (4, 3)

145π

200
≈ 2.2777

217π

300
≈ 2.2724

289π

400
≈ 2.2698

362π

500
≈ 2.2745

434π

600
≈ 2.2724

Table 3: Example 2, p = 4: values θ
(ε)
n1 (4, k) for k = 1, 2, 3 and n1 = 200, 300, 400, 500, 600, computed with the

threshold ε = 0.0005.
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Figure 7: Example 2, p = 4: errors |E[4]
j,n,0| versus θj,n for j = 1, . . . , n and n = 750, 1000, 1250, 1500.

n 750 1000 1250 1500
j 71 97 123 152
θj,n 0.2974 0.3047 0.3091 0.3183

Table 4: Example 2, p = 4: first index j such that |E[4]
j,n,0| > 10−14 and corresponding grid point θj,n, for

n = 750, 1000, 1250, 1500.

Example 2. In this example we verbatim repeat for the case p = 4 what we have done in Example 1 for p = 3.
For the sake of brevity, we do not include here any comment and we limit to report the exact analogs of Figure 4,
Table 1, Figure 5, and Table 2 in Figure 6, Table 3, Figure 7, and Table 4.

Example 3. A comparison between Table 2 and Table 4 shows that the portion of the spectrum of n−2L
[p]
n

which is exactly described by ep(θ), at least from a numerical viewpoint, grows from θ(3)/π ≈ 0.082 for p = 3 to
θ(4)/π ≈ 0.101 for p = 4. Actually, this spectrum portion increases more and more with p, i.e., θ(p) grows with p;
see Figure 8.
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Figure 8: Example 3: errors |E[p]
j,n,0| versus θj,n for j = 1, . . . , n and p = 3, . . . , 8, with n = 750.
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Figure 9: Example 4, p = 3: errors ε
[3],m
j,n versus θj,n for j = 1, . . . , n−1, in the case where n = 5000, n1 = 25 ·2m−1,

and α = 4.
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4.2 Numerical experiments illustrating the performance of Algorithm 1

Example 4. Let p = 3. Suppose we want to approximate the eigenvalues of L
[3]
n (excluding the nout3 = 2 outliers)

for n = 5000. Let λ̃
(m)
j (L

[3]
n ) be the approximation of λj(L

[3]
n ) obtained by applying Algorithm 1 with n1 = 25 ·2m−1

and α = 4. In Figure 9 we plot the relative errors

ε
[3],m
j,n =

|λj(L[3]
n )− λ̃(m)

j (L
[3]
n )|

|λj(L[3]
n )|

versus θj,n for j = 1, . . . , n[3] = n−1 and m = 1, . . . , 4. We see from the figure that the errors decrease rather quickly
as m increases. A careful consideration of Figure 9 also reveals that, aside from the exceptional minima attained in

a neighborhood of θ = 0, 3 the local minima of ε
[3],m
j,n are attained when θj,n is approximately equal to some of the

coarse grid points θj1,n1
, j1 = 1, . . . , n1. This is no surprise, because for θj,n = θj1,n1

we have c̃
[3]
k,j(θj,n) = c̃

[3]
k (θj1,n1

)

and c
[3]
k (θj,n) = c

[3]
k (θj1,n1

), which means that the error of the approximation c̃
[3]
k,j(θj,n) ≈ c

[3]
k (θj,n) reduces to the

error of the approximation c̃
[3]
k (θj1,n1

) ≈ c
[3]
k (θj1,n1

); that is, we are not introducing further error due to the
interpolation process.

Example 5. Let p = 4. Suppose we want to approximate the eigenvalues of L
[4]
n (excluding the nout4 = 2 outliers)

for n = 5000. Let λ̃
(m)
j (L

[4]
n ) be the approximation of λj(L

[4]
n ) obtained by applying Algorithm 1 with n1 = 10 ·2m−1

and α = 5. In Figure 10 we plot the relative errors

ε
[4],m
j,n =

|λj(L[4]
n )− λ̃(m)

j (L
[4]
n )|

|λj(L[4]
n )|

,

versus θj,n for j = 1, . . . , n[4] = n and m = 1, . . . , 4. Considerations analogous to those of Example 4 apply also in
this case.

5 Extension to the multidimensional setting

We present in this section the extension to the multidimensional setting of the analysis carried out in the previous
sections. In what follows, we will systematically use the multi-index notation and the properties of tensor products
as described in [17, Subsections 2.1.1 and 2.6.1]. If wi : Di → C, i = 1, . . . , d, are arbitrary functions, we will denote
by w1 ⊗ · · · ⊗ wd : D1 × · · · ×Dd → C the tensor-product function

(w1 ⊗ · · · ⊗ wd)(ξ1, . . . , ξd) =
d∏
i=1

wi(ξi), (ξ1, . . . , ξd) ∈ D1 × · · · ×Dd.

5.1 Problem setting

Consider the d-dimensional Laplacian eigenvalue problem{
−∆u(x) = λu(x), x ∈ (0, 1)d,

u(x) = 0, x ∈ ∂((0, 1)d).
(31)

The corresponding weak formulation reads as follows: find eigenvalues λ ∈ R+ and eigenfunctions u ∈ H1
0 ((0, 1)d)

such that, for all v ∈ H1
0 ((0, 1)d),

a(u, v) = λ(u, v),

where

a(u, v) =

∫
(0,1)d

∇u(x) · ∇v(x)dx, (u, v) =

∫
(0,1)d

u(x)v(x)dx.

3These minima, as well as the highly oscillatory behavior of the error around θ = 0, are probably due to the fact that e3(θ) provides

a numerically exact description of the spectrum of n−2L
[3]
n around θ = 0; see also Example 1.
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Figure 10: Example 5, p = 4: errors ε
[4],m
j,n versus θj,n for j = 1, . . . , n, in the case where n = 5000, n1 = 10 · 2m−1,

and α = 5.
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In the ‘tensor-product version’ of the Galerkin method, we choose d finite-dimensional vector spaces W1, . . . ,Wd ⊂
H1

0 (0, 1) and we set

W = W1 ⊗ · · · ⊗Wd = span(w1 ⊗ · · · ⊗ wd : w1 ∈ W1, . . . , wd ∈ Wd) ⊂ H1
0 ((0, 1)d).

Then, we define Ns = dim Ws for s = 1, . . . , d and N = (N1, . . . , Nd), and we look for approximations of the exact
eigenpairs

λj =

d∑
i=1

j2i π
2, uj(x) =

d∏
i=1

sin(jiπxi), j = (j1, . . . , jd) ∈ Nd, (32)

by solving the following Galerkin problem: find λj,W ∈ R+ and uj,W ∈ W , for j = 1, . . . ,N , such that, for all
v ∈ W ,

a(uj,W , v) = λj,W (uj,W , v). (33)

If {ϕ1,[s], . . . , ϕNs,[s]} is a basis of Ws for s = 1, . . . , d, then

ϕi = ϕi1,[1] ⊗ · · · ⊗ ϕid,[d], i = 1, . . . ,N ,

is a basis of W , and in view of the canonical identification between each v ∈ W and its coefficient vector with respect
to {ϕ1, . . . , ϕN}, solving the Galerkin problem (33) is equivalent to solving the generalized eigenvalue problem

Kuj,W = λj,W Muj,W , (34)

where uj,W is the coefficient vector of uj,W with respect to {ϕ1, . . . , ϕN},

K = [a(ϕj , ϕi)]
N
i,j=1 =

[∫
(0,1)d

∇ϕj(x) · ∇ϕi(x)dx

]N
i,j=1

=

d∑
r=1

(r−1⊗
s=1

M (s)

)
⊗K(r) ⊗

( d⊗
s=r+1

M (s)

)
, (35)

M = [(ϕj , ϕi)]
N
i,j=1 =

[∫
(0,1)d

ϕj(x)ϕi(x)dx

]N
i,j=1

=
d⊗
s=1

M (s), (36)

and

K(s) =

[∫ 1

0

ϕ′j,[s](x)ϕ′i,[s](x)dx

]Ns
i,j=1

, s = 1, . . . , d,

M (s) =

[∫ 1

0

ϕj,[s](x)ϕi,[s](x)dx

]Ns
i,j=1

, s = 1, . . . , d.

The matrices K and M are, respectively, the stiffness matrix and the mass matrix. Both K and M are always
symmetric positive definite, regardless of the basis functions ϕ1, . . . , ϕN . Moreover, it is clear from (34) that the
numerical eigenvalues λj,W , j = 1, . . . ,N , are just the eigenvalues of the matrix

L = M−1K =

d∑
r=1

(r−1⊗
s=1

INs

)
⊗ (M (r))−1K(r) ⊗

( d⊗
s=r+1

INs

)
. (37)

In the IgA approximation of (31) based on uniform tensor-product B-splines of degree p = (p1, . . . , pd), we
look for approximations of the exact eigenpairs (32) by using the tensor-product version of the Galerkin method
described above, in which the basis functions ϕ1,[s], . . . , ϕNs,[s] are chosen as the B-splines N2,[ps], . . . , Nns+ps−1,[ps]
for s = 1, . . . , d, where the functions Nis+1,[ps], is = 1, . . . , ns + ps − 2, are defined in (8) for n = ns and p = ps.
Setting n = (n1, . . . , nd), the resulting stiffness and mass matrices (35)–(36) are given by

K [p]
n =

d∑
r=1

(r−1⊗
s=1

M [ps]
ns

)
⊗K [pr]

nr ⊗
( d⊗
s=r+1

M [ps]
ns

)
, (38)

M [p]
n =

d⊗
s=1

M [ps]
ns , (39)
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and the numerical eigenvalues λ
[p]
j,n, j = 1, . . . ,n + p− 2, are the eigenvalues of the matrix

L[p]
n = (M [p]

n )−1K [p]
n =

d∑
r=1

(r−1⊗
s=1

Ins+ps−2

)
⊗ L[pr]

nr ⊗
( d⊗
s=r+1

Ins+ps−2

)
, (40)

where the matrices K
[p]
n ,M

[p]
n , L

[p]
n are defined in (10)–(12) for all p, n ≥ 1.

5.2 Eigenvalue–eigenvector structure of L
[p]
n

We now show that the eigenvalue–eigenvector structure of L
[p]
n is determined by the eigenvalue–eigenvector structure

of the matrices L
[p]
n for p ∈ {p1, . . . , pd}. It will immediately follow that the eigenvalues and eigenvectors of L

[p]
n are

explicitly known for 1 ≤ p ≤ 2, due to the results of Section 2. Moreover, the interpolation–extrapolation algorithm

devised in Section 3 for computing the eigenvalues of L
[p]
n also allows the computation of the eigenvalues of L

[p]
n .

For p, n ≥ 1, let
L[p]
n = V [p]

n D[p]
n (V [p]

n )−1, D[p]
n = diag

j=1,...,n+p−2
λj(L

[p]
n ), (41)

be a spectral decomposition of L
[p]
n . Note that such a decomposition exists because L

[p]
n is diagonalizable, due to

the similarity equation

L[p]
n = (M [p]

n )−1K [p]
n = (M [p]

n )−1/2
[
(M [p]

n )−1/2K [p]
n (M [p]

n )−1/2
]
(M [p]

n )1/2.

It follows from (41) and the properties of tensor products that

L[p]
n =

d∑
r=1

(r−1⊗
s=1

Ins+ps−2

)
⊗ L[pr]

nr ⊗
( d⊗
s=r+1

Ins+ps−2

)
,

=

( d⊗
s=1

V [ps]
ns

)[ d∑
r=1

(r−1⊗
s=1

Ins+ps−2

)
⊗D[pr]

nr ⊗
( d⊗
s=r+1

Ins+ps−2

)]( d⊗
s=1

V [ps]
ns

)−1
, (42)

which is a spectral decomposition of L
[p]
n . More explicitly, let v

[p]
1,n, . . . ,v

[p]
n+p−2,n be the columns of V

[p]
n , i.e., the

eigenvectors of L
[p]
n ,

L[p]
n v

[p]
j,n = λj(L

[p]
n )v

[p]
j,n, j = 1, . . . , n+ p− 2,

and let

v
[p]
j,n =

d⊗
s=1

v
[ps]
js,ns

, j = 1, . . . ,n + p− 2. (43)

Then, we can rewrite (42) as

L[p]
n v

[p]
j,n = λj(L[p]

n )v
[p]
j,n, j = 1, . . . ,n + p− 2,

where

λj(L[p]
n ) =

d∑
r=1

λjr (L
[pr]
nr ), j = 1, . . . ,n + p− 2. (44)

In other words, the eigenvalue–eigenvector pairs of L
[p]
n are

(λj(L[p]
n ),v

[p]
j,n), j = 1, . . . ,n + p− 2,

with v
[p]
j,n and λj(L

[p]
n ) defined as in (43) and (44), respectively.
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6 Conclusions and perspectives

We have considered the B-spline IgA approximation of the d-dimensional Laplacian eigenvalue problem (31).
Through tensor-product arguments, we have shown that the eigenvalue–eigenvector structure of the resulting dis-

cretization matrix L
[p]
n is completely determined by the eigenvalue–eigenvector structure of the matrix L

[p]
n arising

from the B-spline IgA approximation of the unidimensional eigenproblem (1). As for the matrix L
[p]
n , we imple-

mented the program detailed in items 1 to 4 of Subsection 1.2. We conclude this work by suggesting a few possible
future lines of research.
• Prove or disprove the existence of a proper matrix algebra containing the matrices K

[p]
n ,M

[p]
n , L

[p]
n for p ≥ 3.

• Provide a formal proof of the asymptotic eigenvalue expansion (18). Considering that the eigenvalue expansion
(18) is strongly connected with the eigenvalue expansion for preconditioned Toeplitz matrices [1], a proof of the
former may suggest the way to prove the latter, and vice versa. Insights on how to perform these proofs might
be gained from the works of Bogoya, Böttcher, Grudsky, and Maximenko [4, 5, 6], where a completely analogous
eigenvalue expansion was proved for Toeplitz matrices.

• By the results of [1, 4, 5, 6, 14], Toeplitz and preconditioned Toeplitz matrices possess asymptotic eigenvalue
expansions completely analogous to (18). The matrices arising from the discretization of a linear Partial Dif-
ferential Equation (PDE) by a linear Numerical Method (NM) — hereinafter referred to as PDE discretization
matrices — usually have a Toeplitz or Toeplitz-related structure (for example, a locally or generalized locally
Toeplitz structure [16, 17, 21, 22]). A natural question is then the following: do we have asymptotic expansions
also for the eigenvalues of PDE discretization matrices? This paper has provided a positive answer in the case
where the PDE is the Laplacian eigenproblem (31) and the NM is the B-spline IgA. It is clear, however, that the
previous question opens the doors to a series of possible future researches, whose purpose is not only to ascertain
the existence of an asymptotic eigenvalue expansion for PDE discretization matrices, but also to exploit this
expansion (if any) for computing the eigenvalues themselves through fast interpolation–extrapolation procedures
(such as Algorithm 1).
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A Monotonicity of ep(θ)

The following theorem has been proved by direct computation using Matlab and Maple.

Theorem 4. For p = 1, . . . , 30, the function ep defined in (15) is monotone increasing over [0, π].

Theorem 4 immediately leads to the following conjecture.

Conjecture 1. For any p ≥ 1, the function ep defined in (15) is monotone increasing over [0, π].

Throughout this paper we have implicitly assumed Conjecture 1. The same will be done in Appendix B, where
Conjecture 1 will be tacitly exploited to prove Theorem 5.

B Proof of the eigenvalue expansion for α = 0

This appendix is devoted to the proof of the following theorem, that is, the expansion (18) for α = 0 and j =
1, . . . , N(n, p)− (4p− 2).

Theorem 5. For every p ≥ 3, every n, and every j = 1, . . . , N(n, p)− (4p− 2) = n− 3p, we have

λj(n
−2L[p]

n ) = ep(θj,n) + E
[p]
j,n,0, (45)

where:
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• the eigenvalues of n−2L
[p]
n are arranged in ascending order, λ1(n−2L

[p]
n ) ≤ . . . ≤ λn+p−2(n−2L

[p]
n );

• ep is the function defined in (15);
• h = 1

n and θj,n = jπ
n = jπh for j = 1, . . . , n;

• |E[p]
j,n,0| ≤ C [p]h for some constant C [p] depending only on p.

Proof. Throughout this proof, we will use the simplified notations N = N(p, n) and ρ = 4p− 2. Moreover, we will
write V ⊆sp. CN to indicate that V is a vector subspace of CN . If A is an N × N matrix and V ⊆sp. CN , the
symbol A(V ) will denote the subspace of CN defined as {Ax : x ∈ V }. Note that A(V ) has the same dimension as
V whenever A is invertible.

We know from [20, Section 3] that

TN (fp) = τN (fp) +HN (fp), (46)

TN (gp) = τN (gp) +HN (gp), (47)

where, for any cosine trigonometric polynomial ψ(θ) = ψ0 + 2
∑p
k=1 ψk cos(kθ),

• τN (ψ) is the tau matrix of order N generated by ψ, that is, the matrix in τN (0, 0) defined as

τN (ψ) = QN (0, 0)

(
diag

j=1,...,N
ψ
( jπ

N + 1

))
QN (0, 0);

• HN (ψ) is the Hankel matrix defined as

HN (ψ) =



ψ2 ψ3 · · · ψp

ψ3 . .
.

... . .
.

ψp

ψp

. .
. ...

. .
.

ψ3

ψp · · · ψ3 ψ2



.

Considering that (HN (fp))ij = (HN (gp))ij = 0 for 2p ≤ i ≤ N − 2p+ 1 = n− p− 1, in view of (19)–(22) we have

n−1K [p]
n = τN (fp) + R̂

[p]
N , (48)

nM [p]
n = τN (gp) + Ŝ

[p]
N , (49)

where the rank corrections R̂
[p]
N = HN (fp) +R

[p]
N and Ŝ

[p]
N = HN (gp) + S

[p]
N satisfy

(R̂[p]
n )ij = 0, 2p ≤ i ≤ n− p− 1 =⇒ rank(R̂

[p]
N ) ≤ ρ, (50)

(Ŝ[p]
n )ij = 0, 2p ≤ i ≤ n− p− 1 =⇒ rank(Ŝ

[p]
N ) ≤ ρ. (51)

Since M
[p]
n is symmetric positive definite and L

[p]
n = (M

[p]
n )−1K

[p]
n is similar to (M

[p]
n )−1/2K

[p]
n (M

[p]
n )−1/2, by the

minimax principle for the eigenvalues of Hermitian matrices [2] we have, for every j = 1, . . . , N ,

λj(n
−2L[p]

n ) = λj(n
−2(M [p]

n )−1/2K [p]
n (M [p]

n )−1/2)

= max
V⊆sp.CN

dimV=N−j+1

min
x∈V
x6=0

n−2x∗(M
[p]
n )−1/2K

[p]
n (M

[p]
n )−1/2x

x∗x

= max
V⊆sp.CN

dimV=N−j+1

min
y∈(M [p]

n )−1/2(V )
y 6=0

n−2y∗K
[p]
n y

y∗M
[p]
n y
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= max
U⊆sp.CN

dimU=N−j+1

min
y∈U
y 6=0

y∗(n−1K
[p]
n )y

y∗(nM
[p]
n )y

. (52)

Let F be the subspace of CN generated by the union of the nonzero columns of R̂
[p]
n and Ŝ

[p]
n . By (50)–(51), we

have dimF ≤ ρ and, consequently, dimF⊥ ≥ N − ρ. Moreover, if U is any subspace of CN such that dimU = u,
we have dim(U ∩ F⊥) = dimU + dimF⊥ − dim(U + F⊥) ≥ u+ (N − ρ)−N = u− ρ. Thus, for j = 1, . . . , N − ρ,
from (48)–(49) and (52) we obtain

λj(n
−2L[p]

n ) ≤ max
U⊆sp.CN

dimU=N−j+1

min
y∈U∩F⊥

y 6=0

y∗(τN (fp) + R̂
[p]
n )y

y∗(τN (gp) + Ŝ
[p]
n )y

= max
U⊆sp.CN

dimU=N−j+1

min
y∈U∩F⊥

y 6=0

y∗τN (fp)y

y∗τN (gp)y

≤ max
W⊆sp.CN

dimW≥N−(j+ρ)+1

min
y∈W
y 6=0

y∗τN (fp)y

y∗τN (gp)y

= max
W⊆sp.CN

dimW≥N−(j+ρ)+1

min
x∈(τN (gp))

1/2(W )
x6=0

x∗(τN (gp))
−1/2τN (fp)(τN (gp))

−1/2x

x∗x

= max
V⊆sp.CN

dimV≥N−(j+ρ)+1

min
x∈V
x 6=0

x∗τN (ep)x

x∗x

= max
V⊆sp.CN

dimV=N−(j+ρ)+1

min
x∈V
x6=0

x∗τN (ep)x

x∗x

= λj+ρ(τN (ep)) = ep

( (j + ρ)π

N + 1

)
, (53)

where the last equality is due to the monotonicity of ep; see Appendix A. Similarly, using again the minimax
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principle for Hermitian matrices, for j = ρ+ 1, . . . , N we obtain

λj(n
−2L[p]

n ) = λj(n
−2(M [p]

n )−1/2K [p]
n (M [p]

n )−1/2)

= min
V⊆sp.CN
dimV=j

max
x∈V
x 6=0

n−2x∗(M
[p]
n )−1/2K

[p]
n (M

[p]
n )−1/2x

x∗x

= min
V⊆sp.CN
dimV=j

max
y∈(M [p]

n )−1/2(V )
y 6=0

n−2y∗K
[p]
n y

y∗M
[p]
n y

= min
U⊆sp.CN
dimU=j

max
y∈U
y 6=0

y∗(n−1K
[p]
n )y

y∗(nM
[p]
n )y

≥ min
U⊆sp.CN
dimU=j

max
y∈U∩F⊥

y 6=0

y∗(τN (fp) + R̂
[p]
n )y

y∗(τN (gp) + Ŝ
[p]
n )y

= min
U⊆sp.CN
dimU=j

max
y∈U∩F⊥

y 6=0

y∗τN (fp)y

y∗τN (gp)y

≥ min
W⊆sp.CN

dimW≥j−ρ

max
y∈W
y 6=0

y∗τN (fp)y

y∗τN (gp)y

= min
W⊆sp.CN

dimW≥j−ρ

max
x∈(τN (gp))

1/2(W )
x6=0

x∗(τN (gp))
−1/2τN (fp)(τN (gp))

−1/2x

x∗x

= min
V⊆sp.CN

dimV≥j−ρ

max
x∈V
x6=0

x∗τN (ep)x

x∗x

= min
V⊆sp.CN

dimV=j−ρ

max
x∈V
x 6=0

x∗τN (ep)x

x∗x

= λj−ρ(τN (ep)) = ep

( (j − ρ)π

N + 1

)
. (54)

Putting together (53) and (54), we get

ep

( (j − ρ)π

N + 1

)
≤ λj(n−2L[p]

n ) ≤ ep
( (j + ρ)π

N + 1

)
, j = ρ+ 1, . . . , N − ρ. (55)

From (55) we immediately obtain∣∣∣∣λj(n−2L[p]
n )− ep

( jπ

N + 1

)∣∣∣∣ ≤ max

(∣∣∣∣ep( (j − ρ)π

N + 1

)
− ep

( jπ

N + 1

)∣∣∣∣, ∣∣∣∣ep( (j + ρ)π

N + 1

)
− ep

( jπ

N + 1

)∣∣∣∣)
≤ ‖e′p‖∞

ρπ

N + 1
≤ ‖e′p‖∞ρπh, j = ρ+ 1, . . . , N − ρ. (56)

Moreover, since the eigenvalues of n−2L
[p]
n are positive (because of the similarity between L

[p]
n and the symmetric

positive definite matrix (M
[p]
n )−1/2K

[p]
n (M

[p]
n )−1/2) and ep(0) = 0 = minθ∈[0,π] ep(θ) (by (16)–(17)), for j = 1, . . . , ρ
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we have

∣∣∣∣λj(n−2L[p]
n )− ep

( jπ

N + 1

)∣∣∣∣ =


λj(n

−2L[p]
n )− ep

( jπ

N + 1

)
, if λj(n

−2L[p]
n )− ep

( jπ

N + 1

)
≥ 0,

ep

( jπ

N + 1

)
− λj(n−2L[p]

n ), otherwise,

≤


λρ+1(n−2L[p]

n )− ep
( jπ

N + 1

)
, if λj(n

−2L[p]
n )− ep

( jπ

N + 1

)
≥ 0,

ep

( jπ

N + 1

)
, otherwise,

≤


∣∣∣∣λρ+1(n−2L[p]

n )− ep
( (ρ+ 1)π

N + 1

)∣∣∣∣+ ep

( (ρ+ 1)π

N + 1

)
− ep

( jπ

N + 1

)
, if λj(n

−2L[p]
n )− ep

( jπ

N + 1

)
≥ 0,

ep

( ρπ

N + 1

)
− ep(0), otherwise,

≤

 ‖e′p‖∞ρπh+ ‖e′p‖∞ρπh, if λj(n
−2L[p]

n )− ep
( jπ

N + 1

)
≥ 0,

‖e′p‖∞ρπh, otherwise,

≤ 2‖e′p‖∞ρπh. (57)

Combining (56) and (57), we obtain∣∣∣∣λj(n−2L[p]
n )− ep

( jπ

N + 1

)∣∣∣∣ ≤ 2‖e′p‖∞ρπh, j = 1, . . . , N − ρ. (58)

To conclude the proof, we note that the stepsizes h = 1
n and H = 1

N+1 are such that

0 < h−H =
N + 1− n
n(N + 1)

=
p− 1

n(n+ p− 1)
<

p

n2

and, consequently, the grid points θj,n = jπh and Θj,n = jπH satisfy

0 < θj,n −Θj,n <
pπ

n
, j = 1, . . . , n.

Thus, the inequality (58) yields the thesis (45) with

|E[p]
j,n,0| = |λj(n

−2L[p]
n )− ep(θj,n)| ≤ |λj(n−2L[p]

n )− ep(Θj,n)|+ |ep(Θj,n)− ep(θj,n)|

≤ 2‖e′p‖∞ρπh+ ‖e′p‖∞pπh = C [p]h, j = 1, . . . , N − ρ,

where C [p] = (2ρ+ p)π‖e′p‖∞.
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Summary

It is known that for a tridiagonal Toeplitz matrix, having on the main diago-
nal the constant a0 and on the two first off-diagonals the constants a1 (lower)
and a−1 (upper), which are all complex values, there exist closed form formu-
las, giving the eigenvalues of the matrix and a set of associated eigenvectors. For
example, for the 1D discrete Laplacian, this triple is (a0, a1, a−1) = (2,−1,−1).
In the first part of this article, we consider a tridiagonal Toeplitz matrix of
the same form (a0, a𝜔, a−𝜔), but where the two off-diagonals are positioned 𝜔

steps from the main diagonal instead of only one. We show that its eigenval-
ues and eigenvectors can also be identified in closed form and that interesting
connections with the standard Toeplitz symbol are identified. Furthermore, as
numerical evidences clearly suggest, it turns out that the eigenvalue behavior of
a general banded symmetric Toeplitz matrix with real entries can be described
qualitatively in terms of the symmetrically sparse tridiagonal case with real a0,
a𝜔 = a−𝜔, 𝜔 = 2, 3, … , and also quantitatively in terms of those having mono-
tone symbols. A discussion on the use of such results and on possible extensions
complements the paper.

KEYWORDS

eigensolver, generating function and spectral symbol, Toeplitz matrix

1 INTRODUCTION

Let An be a Toeplitz matrix of order n and let 𝜔 < n be a positive integer, as follows:

An =

⎡⎢⎢⎢⎢⎢⎣

a0 · · · a−𝜔
⋮ ⋱ ⋱

a𝜔 ⋱ ⋱
⋱ ⋱ a−𝜔

⋱ ⋱ ⋮
a𝜔 · · · a0

⎤⎥⎥⎥⎥⎥⎦
, (1)

with the coefficients ak, k = −𝜔, … , 𝜔, being complex numbers.
Let f ∈ L1(−𝜋, 𝜋) and let Tn( f ) be the Toeplitz matrix generated by f, that is, (Tn(𝑓 ))s,t = 𝑓s−t, s, t = 1, … ,n, with f

being the generating function of {Tn( f )} and with 𝑓k being the kth Fourier coefficient of f, that is,

𝑓k = 1
2𝜋∫

𝜋

−𝜋
𝑓 (𝜃) e−ik𝜃 d𝜃, i2 = −1, k ∈ Z. (2)

Numer Linear Algebra Appl. 2018;e2137. wileyonlinelibrary.com/journal/nla Copyright © 2018 John Wiley & Sons, Ltd. 1 of 17
https://doi.org/10.1002/nla.2137
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If f is real valued, then several spectral properties are known (localization, extremal behavior, and collective distribution;
see other works1,2 and references therein), and f is also the spectral symbol of {Tn( f )} in the Weyl sense.1,3–5 If f is complex
valued, then the same type of information is transferred to the singular values, whereas the eigenvalues can have a “wild”
behavior6 in some cases. According to the notation above, our setting is very special because by direct computation, the
generating function of the Toeplitz matrix in (1) is the trigonometric polynomial 𝑓 (𝜃) =

∑𝜔
k=−𝜔 akeik𝜃 , that is, An = Tn( f ).

In this paper, we are interested in quantitative estimates of the eigenvalues of An. Indeed, in the the band symmetric
Toeplitz setting, quantitative estimates are already available in the relevant literature. In fact, using an embedding argu-
ment in the Tau algebra (the set of matrices diagonalized by a sine transform7), we are led to the conclusion that the jth
eigenvalue 𝜆j(An) = 𝜆j,n, An = Tn( f ), ak = a−k ∈ R, k = 1, … , 𝜔, can be approximated by the value f(𝜃𝜎( j),n), 𝜎 proper
permutation, with an error bounded by Kfh, where Kf is a constant depending on f, but independent of h and j (see other
works7–10 and references therein).

The following notation is used throughout this paper. Given a positive integer n and the grid points 𝜃𝑗,n = 𝑗𝜋

n+1
, j =

1, … ,n, the full grid is denoted by the following:

𝜃n = {𝜃𝑗,n ∶ 𝑗 = 1, … ,n}.

In the same manner, the new gridding defined in Section 2 is denoted by 𝜃n. When adding a third subscript r, we mean
the r:th repetition of j:th grid point, that is, 𝜃r, 𝑗,n is the same for all r with fixed j and n. More specifically, we will use grids
of the following form:

𝜃(s)n =
{
𝜃r, 𝑗,n ∶ 𝜃r, 𝑗,n = 𝜃𝑗,n, r = 1, … ,n∕𝛼s, 𝑗 = 1, … , 𝛼s

}
,

such that 𝛼s divides n and s = 1, 2. By 𝜆n, 𝜇n, 𝜈n, 𝜉n, we denote the ordered sets of eigenvalues in nondecreasing order, of
the unsorted eigenvalues using the new grid, of the unsorted eigenvalue approximations from the standard grid and the
standard symbol, and of the related approximations in nondecreasing order, respectively.

Here, taking into account the notation above, we furnish more precise estimates in some cases and discuss the general
setting, as explained in the following.

More specifically, in Section 2, we consider the special case where a0, a𝜔, a−𝜔 ∈ C, ak = 0 for k ≠ 0,±𝜔 (the nontrivial
setting is when a𝜔a−𝜔 ≠ 0). Under such assumptions, starting from the generating function f(𝜃) = a0 + a𝜔ei𝜔𝜃 + a−𝜔e−i𝜔𝜃

and from the grid 𝜃n = {𝜃𝑗,n ∶ 𝑗 = 1, … ,n} described in Section 2.1, we give the closed form expression of the eigenvalues
and eigenvectors in Section 2.2: a new simplified symbol emerges because the eigenvalues 𝜇n = {𝜇j,n}, where j = 1, … ,n,
are exactly given as 𝜇𝑗,n = g

(
𝜃𝑗,n

)
, with 𝜃n, a proper grid, on [0, 𝜋] and g(𝜃) = a0 + 2

√
a𝜔a−𝜔 cos(𝜃), where the new

symbol g(𝜃) is different from the generating function f(𝜃) = a0 +a𝜔ei𝜔𝜃 +a−𝜔e−i𝜔𝜃 and does not depend on 𝜔, whereas the
grid 𝜃n contains the information on 𝜔. Finally, in Section 2.3, we discuss few relationships between the symbol g and the
generating function f, in terms of the concepts of rearrangement (see, for example, other works11 and references therein)
and of spectral symbol in the Weyl sense.

In Section 3, we impose real symmetry to the matrices (1) and consider different cases. More in detail in Section 3.1,
we assume that the only nonzero real coefficients of (1) are a0 and a𝜔 = a−𝜔. We compare the true eigenvalues 𝜆j,n,
j = 1, … ,n, sorted in a nondecreasing order, with the generating function 𝑓 (𝜃) = a0 + 2a𝜔 cos(𝜔𝜃) evaluated at the grid
given by the points 𝑗𝜋

n+1
, which does not lead to an exact representation (except for 𝜔 = 1). A closed form symbol and grid

for the exact evaluation of the eigenvalues are reported in Theorem 1, and in comparison with the given representation,
the accuracy of the algorithm in the work of Ekström et al.9 is examined.

For any given sequence of indices n, where 𝛽 = mod(n, 𝜔), 𝛽 = 0, 1, … , 𝜔 − 1, we show numerically that 𝜔 different
“error modes” emerge, and hence, in total, 𝜔2 different “error modes” can be observed for a symbol of the type 𝑓 (𝜃) =
a0 + 2a𝜔 cos(𝜔𝜃).

We show that each error mode s = 0, … , 𝜔 − 1, of a given 𝛽, has the following form:

E{s}
𝑗𝜔,n𝜔+𝜂

= 𝜆𝑗s,n − 𝑓
(
𝜃𝜎n( 𝑗s),n

)
=

∞∑
k=1

ck,s
(
𝜃𝜎n( 𝑗s),n

)
hk, h = 1

n + 1

and present analytical and numerical results regarding ck,s(𝜃); see (45) and (46) for the formal definition of all variables.
On the other hand, when considering the finite-difference approximation of the operators (−1)q 𝜕2q

𝜕x2q , q ≥ 1,we obtain
Toeplitz matrices Tn( f ) with 𝑓 (𝜃) = (2 − 2 cos(𝜃))q (the case of q = 1 coincides with a0 = 2, a𝜔 = a−𝜔 = −1, 𝜔 = 1). In
such a case with q > 1, and more generally for monotone symbols f, the error below has the following form:

E𝑗,n = 𝜆𝑗,n − 𝑓
(
𝜃𝑗,n

)
=

∞∑
k=1

ck
(
𝜃𝑗,n

)
hk, h = 1

n + 1
, (3)
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with 𝜃j,n = j𝜋h, j = 1, … ,n, and ck(𝜃), k = 1, 2, … , higher order symbols (regarding (3), see the algorithmic propos-
als and related numerics in the work of Ekström et al.,9 the analysis in the work of Bogoya et al.,12 and extensions to
preconditioned and differential problems in other works13,14).

The functions ck,s(𝜃) and ck(𝜃) can be approximated, and a scheme is presented for performing such computations.
When f is a cosine trigonometric polynomial monotone on [0, 𝜋], it is worthwhile to mention that in other works,15,16

expansions as in (3) are in part formally proven: however, one of the assumptions, that is, the positivity of the second
derivative at zero (see page 310, line 3, in the work of Bogoya et al.15), excludes the important case of finite-difference
approximations of (high-order) differential operators considered because 𝑓 (𝜃) = (2 − 2 cos(𝜃))q. However, even if some of
the functions ck can become discontinuous in this setting, as shown in the work of Ekström et al.,9 the given expansions
can be exploited for designing fast eigensolvers also for large matrix sizes.

In Section 3.2, we analyze the case of the general matrices in (1) with ak being real, ak = a−k, k = 1, … , 𝜔. We consider
the features and behavior of the error of the eigenvalue approximation using the symbol, because in this setting, a grid and
a function giving the exact eigenvalues are not known. However, we show numerically that the eigenvalue behavior of a
general banded symmetric Toeplitz matrix with real entries can be described, qualitatively in terms of the symmetrically
sparse tridiagonal case with real a0, a𝜔 = a−𝜔, 𝜔 = 2, 3, … , and also quantitatively in terms of those having monotone
symbols as those related to the classical finite-difference discretization of the operators (−1)q 𝜕2q

𝜕x2q , q ∈ N, q ≠ 0, 1.
Some conclusions and possible directions for extending the current results are given in Section 4.

2 EXACT EIGENVALUES AND EIGENVECTORS OF SYMMETRICALLY
SPARSE TRIDIAGONAL, COMPLEX-VALUED TOEPLITZ MATRICES
AND THE RELATED SYMBOLS

Let An be a Toeplitz matrix of order n and with the following nonzero structure:

𝜔−1
⏞⏞⏞⏞⏞

An =

⎡⎢⎢⎢⎢⎢⎢⎣

a0 0 · · · 0 a−𝜔
0 a0 ⋱ ⋱ ⋱ ⋱
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ a−𝜔
0 ⋱ ⋱ ⋱ ⋱ ⋱ 0

a𝜔 ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋱ ⋱ ⋱ ⋱ a0 0

a𝜔 0 · · · 0 a0

⎤⎥⎥⎥⎥⎥⎥⎦
,

(4)

and let the constant coefficients a0, a𝜔, a−𝜔 be either real or complex. The constants a𝜔 and a−𝜔 are located on the 𝜔,−𝜔
off-diagonals, respectively. The standard generating function of the matrix An = Tn( f ) is defined as follows:

𝑓 (𝜃) = a0 + a𝜔ei𝜔𝜃 + a−𝜔e−i𝜔𝜃, (5)

which is also the symbol of the sequence of matrices {An = Tn( f )} in the Weyl sense.1,3–5 Notably, when a𝜔a−𝜔 ≠ 0, the
matrix An can be symmetrized in the sense that there exists a diagonal invertible matrix Dn such that

𝜔−1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Asym
n = DnAnD−1

n =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 0 · · · 0
√

a𝜔a−𝜔
0 a0 ⋱ ⋱ ⋱ ⋱
⋮ ⋱ ⋱ ⋱ ⋱ ⋱

√
a𝜔a−𝜔

0 ⋱ ⋱ ⋱ ⋱ ⋱ 0√
a𝜔a−𝜔 ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

⋱ ⋱ ⋱ ⋱ a0 0√
a𝜔a−𝜔 0 · · · 0 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(6)

Therefore, An and As𝑦m
n are similar and share the same eigenvalues, where As𝑦m

n = Tn(g𝜔) with

g𝜔(𝜃) = a0 + 2
√

a𝜔a−𝜔 cos(𝜔𝜃). (7)
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For the particular case 𝜔 = 1, by defining the equidistant grid as follows:

𝜃𝑗,n = 𝑗𝜋

n + 1
= 𝑗𝜋h, 𝑗 = 1, … ,n, h = 1

n + 1
, (8)

the jth eigenvalue 𝜇j,n
7,17–21 of An is known in closed form and is expressed as follows:

𝜇𝑗,n = a0 + 2
√

a𝜔a−𝜔 cos
(
𝜃𝑗,n

)
, 𝑗 = 1, … ,n. (9)

We notice that 𝜇j,n = g(𝜃j,n) with g(𝜃) = g1(𝜃) = a0 + 2
√

a1a−1 cos(𝜃), for g𝜔 with 𝜔 = 1 given in Equation (7). Fur-
thermore, for the eigenvalue 𝜇j,n, a corresponding eigenvector x𝑗,n = [x( 𝑗,n)1 , … , x( 𝑗,n)n ]T has components given as follows:

x( 𝑗,n)k =
(√

a𝜔

a−𝜔

)k

sin
(

k𝜃𝑗,n
)
, k = 1, … ,n. (10)

It is worth noticing that the operations of square root mentioned above and used in the rest of the paper have to
be handled carefully: when we write

√
𝛼∕𝛽,

√
𝛼𝛽, we mean

√
𝜌(𝛼)∕𝜌(𝛽)ei 𝜔(𝛼)−𝜔(𝛽)

2 ,
√
𝜌(𝛼)𝜌(𝛽)ei 𝜔(𝛼)+𝜔(𝛽)

2 , respectively, with
𝛾 = 𝜌(𝛾)ei𝜔(𝛾), 𝛾 ∈ {𝛼, 𝛽}, 𝜌(𝛾) ≥ 0, 𝜔(𝛾) ∈ [0, 2𝜋). In this way, for instance,

√
(−1)(−1) = −1 and, for example, with-

out this formal convention, the formulae derived from Theorem 2.4 in the book by Böttcher et al.,17 for the association
eigenvalue–eigenvector, are simply false.

We introduce now a new sampling grid, 𝜃n, which gives the exact eigenvalues𝜇j,n for any a0, a𝜔, a−𝜔 ∈ C and𝜔 ∈ N, 𝜔 <

n, in (9), and we introduce a modified version of (10) for expressing the corresponding eigenvectors xj,n, j = 1, … ,n.

2.1 The new sampling grid
We start by introducing a new grid 𝜃n, defined in the subsequent scheme. We first define 𝛽 as the remainder of the
Euclidean division of n by 𝜔, that is,

𝛽 = n − 𝜔n𝜔, n𝜔 = n − 𝛽

𝜔
, 0 ≤ 𝛽 < n, n, 𝜔, 𝛽,n𝜔 ∈ N, (11)

or in other words, 𝛽 is the modulus operator applied to the pair (n, 𝜔), 𝛽 = mod(n, 𝜔), and n𝜔 is the quotient, which will
be used as a “new” n in the subsequent definition of the new grid. We construct two separate grids, each with a standard
equidistant sampling, expressed as follows:

𝜃𝑗1,n𝜔
= 𝑗1𝜋

n𝜔 + 1
, 𝑗1 = 1, … ,n𝜔, (12)

𝜃𝑗2,n𝜔+1 = 𝑗2𝜋

n𝜔 + 2
, 𝑗2 = 1, … ,n𝜔 + 1. (13)

We know that there might be multiple eigenvalues of multiplicity greater than one, and thus, we might need to repeat
the same grid point several times. More specifically, we set the following gridpoints:

𝜃(1)r1, 𝑗1,n𝜔(𝜔−𝛽)
= 𝜃𝑗1,n𝜔

, r1 = 1, … , 𝜔 − 𝛽, 𝑗1 = 1, … ,n𝜔, (14)

𝜃(2)r2, 𝑗2,(n𝜔+1)𝛽 = 𝜃𝑗2,n𝜔+1, r2 = 1, … , 𝛽, 𝑗2 = 1, … ,n𝜔 + 1, (15)

which is the same as writing that the grid points in (12) are repeated 𝜔 − 𝛽 times and the grid points in (13) are repeated
𝛽 times. Now, define the following two grids:

𝜃(1)n𝜔(𝜔−𝛽)
=
{{

𝜃(1)r1, 𝑗1,n𝜔(𝜔−𝛽)

}𝜔−𝛽

r1=1

}n𝜔

𝑗1=1
, (16)

𝜃(2)(n𝜔+1)𝛽 =
{{

𝜃(2)r2, 𝑗2,(n𝜔+1)𝛽

}𝛽

r2=1

}n𝜔+1

𝑗2=1
. (17)

The full sampling grid 𝜃n is finally given by the union of the two grids (16) and (17), that is,

𝜃n = 𝜃(1)n𝜔(𝜔−𝛽)

⋃
𝜃(2)(n𝜔+1)𝛽 . (18)

For examples of concrete constructions of these grids, refer to the work of Ekström et al.22
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2.2 Eigenvalues and eigenvectors described by the new sampling grid
We start with the main results regarding symmetrically sparse tridiagonal (SST) Toeplitz matrices.

Theorem 1. The eigenvalues of a SST Toeplitz matrix with center diagonal a0 and two off-diagonals a𝜔 and a−𝜔 at
off-diagonal −𝜔 and 𝜔, as in (4), are given by the following:

𝜇𝑗,n = g
(
𝜃𝑗,n

)
= a0 + 2

√
a𝜔a−𝜔 cos

(
𝜃𝑗,n

)
, 𝑗 = 1, … ,n, (19)

where 𝜃𝑗,n is the jth component of the grid 𝜃n defined in (18).

Remark 1. By 𝜇(1)
n and 𝜇(2)

n , we denote the set of eigenvalues given by the symbol evaluations of grids 𝜃(1)n𝜔(𝜔−𝛽)
and

𝜃(2)(n𝜔+1)𝛽 given in (16) and (17), respectively. Assume a𝜔a−𝜔 ≥ 0, so that g(·) is real valued; let 𝜆j,n be the eigenvalues
𝜇j,n in Theorem 1 sorted in a nondecreasing order, and let 𝜋n be a permutation of {1, … ,n}, which sorts the samples
g(𝜃1,n), … , g(𝜃n,n) in nondecreasing order, that is, g(𝜃𝜋n(1),n) ≤ · · · ≤ g(𝜃𝜋n(n),n). Then,

𝜆𝑗,n = g
(
𝜃𝜋n( 𝑗),n

)
𝑗 = 1, … ,n.

Theorem 2. Given a SST Toeplitz matrix with center diagonal a0 and two off-diagonals a𝜔 and a−𝜔 at off-diagonal −𝜔
and 𝜔, as in (4), the following statements concerning its eigenvalues and eigenvectors hold.

For each eigenvalue given by 𝜇(1)
r1, 𝑗1,n𝜔(𝜔−𝛽)

= g
(
𝜃(1)r1, 𝑗1,n𝜔(𝜔−𝛽)

)
= g(𝜃𝑗1,n𝜔

) with j1 = 1, … ,n𝜔, and r1 = 1, … , 𝜔− 𝛽, we

define a corresponding eigenvector x(1)
r1, 𝑗1,n

=
[

x(r1, 𝑗1,n)
1 , · · ·, x(r1, 𝑗1,n)

n

]T
, with the following components:

x(r1, 𝑗1,n)
𝜔(k1−1)+r1+𝛽

=
(√

a𝜔

a−𝜔

)k1

sin
(

k1𝜃𝑗1,n𝜔

)
, k1 = 1, … ,n𝜔, (20)

and all nondefined components of xr1, 𝑗1,n equal to zero.
For each eigenvalue 𝜇(2)

r2, 𝑗2,(n𝜔+1)𝛽 = g
(
𝜃(2)r2, 𝑗2,(n𝜔+1)𝛽

)
= g(𝜃𝑗2,n𝜔+1) with j2 = 1, … ,n𝜔 + 1, and r2 = 1, … , 𝛽, we can

define a corresponding eigenvector x(2)
r2, 𝑗2,n

=
[

x(r2, 𝑗2,n)
1 , … , x(r2, 𝑗2,n)

n

]T
, where the components are as follows:

x(r2, 𝑗2,n)
𝜔(k2−1)+r2

=
(√

a𝜔

a−𝜔

)k2

sin
(

k2𝜃𝑗2,n𝜔+1
)
, k2 = 1, · · ·,n𝜔 + 1, (21)

and all nondefined components of xr2, 𝑗2,n are equal to zero.

Remark 2. To save memory and evaluations, taking into account (12) and (13), the steps to construct 𝜃n can be skipped,
as long as the information concerning multiple eigenvalues is stored. Note that if a grid is desired with all 𝜃 ∈ 𝜃n unique
in [0, 𝜋], one can modify the set 𝜃n in (18) as follows: take 𝜃 ∈ 𝜃n∕𝜔 and then shift each grid point by appropriate
multiples of 𝜋∕𝜔. Then, also the symbol reported in Theorem 1 has to be modified, and instead of g(𝜃) = g1(𝜃), we
use the generating function of the symmetrized matrix Asym

n , that is, g𝜔(𝜃) = a0 + 2
√

a𝜔a−𝜔 cos (𝜔𝜃).

Proof of Theorem 1 and Theorem 2. The proof for 𝜔 > 1 follows the same ideas as for the case 𝜔 = 1 presented in the
work of Böttcher et al.17 We start by observing that the matrix An in (4) has the standard symbol as follows:

𝑓 (𝜃) = a0 + a𝜔ei𝜔𝜃 + a−𝜔e−i𝜔𝜃.

By assuming a𝜔 ≠ 0 and a−𝜔 ≠ 0, and defining 𝛾 =
√

a−𝜔∕a𝜔, we consider the matrix Bn defined as follows:

𝜔−1
⏞⏞⏞⏞⏞

Bn =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 𝛾2

0 0 ⋱ ⋱ ⋱ ⋱
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 𝛾2

0 ⋱ ⋱ ⋱ ⋱ ⋱ 0
1 ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋱ ⋱ ⋱ ⋱ 0 0

1 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
.
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Thus, Bn has the following symbol:

𝑓B(𝜃) = ei𝜔𝜃 + 𝛾2e−i𝜔𝜃 = ei𝜔𝜃 + a−𝜔

a𝜔
e−i𝜔𝜃.

Following the general framework, because f(𝜃) = a0 + a𝜔fB(𝜃), it is sufficient to show that Bn has the eigenvalues as
follows:

𝜇(1)
r1, 𝑗1,n𝜔(𝜔−𝛽)

= 2𝛾 cos
(
𝜃𝑗1,n𝜔

)
, r1 = 1, … , 𝜔 − 𝛽, 𝑗1 = 1, … ,n𝜔, (22)

𝜇(2)
r2, 𝑗2,(n𝜔+1)𝛽 = 2𝛾 cos

(
𝜃𝑗2,n𝜔+1

)
, r2 = 1, … , 𝛽, 𝑗2 = 1, · · ·,n𝜔 + 1, (23)

and that the following corresponding eigenvectors:

x(1)
r1, 𝑗1,n

=
[

x(r1, 𝑗1,n)
1 , · · ·, x(r1, 𝑗1,n)

n

]T
, (24)

x(2)
r2, 𝑗2,n

=
[

x(r2, 𝑗2,n)
1 , … , x(r2, 𝑗2,n)

n

]T
, (25)

have components of the following form:

x(r1, 𝑗1,n)
𝜔(k1−1)+r1+𝛽

= 𝛾−k1 sin
(

k1𝜃𝑗1,n𝜔

)
, k1 = 1, … ,n𝜔, (26)

x(r2, 𝑗2,n)
𝜔(k2−1)+r2

= 𝛾−k2 sin
(

k2𝜃𝑗2,n𝜔+1
)
, k2 = 1, · · ·,n𝜔 + 1, (27)

respectively. Because Bnx = 𝜇x for a given eigenpair (𝜇, x), for all k relationships, (28)–(32) must hold true. For
𝜔 ≤ n∕2,

𝛾2x𝜔+k = 𝜇xk, k = 1, … , 𝜔, (28)

xk + 𝛾2x2𝜔+k = 𝜇x𝜔+k, k = 1, … ,n − 2𝜔, (29)

xn+1−(𝜔+k) = 𝜇xn+1−k, k = 1, … , 𝜔. (30)

For n∕2 < 𝜔 < n,
𝛾2x𝜔+k = 𝜇xk, k = 1, … ,n − 𝜔, (31)

xn+1−(𝜔+k) = 𝜇xn+1−k, k = 1, … ,n − 𝜔. (32)

First, we show that Equations (28) and (31) are satisfied. For x(1)
r1, 𝑗1,n

in (24), the nonzero components have indices of
the form 𝜔(k1−1)+r1+𝛽, k1 = 1, … ,n𝜔 (as seen in (26)). For k1 = 1, we have r1+𝛽, and for k2 = 2, we have 𝜔+r1+𝛽,
which are the only two nonzero components that match (28) and (31). More specifically, we observe the following:

x(r1, 𝑗1,n)
𝜔+r1+𝛽

= 𝜇(1)
r1, 𝑗1,n𝜔(𝜔−𝛽)

x(r1, 𝑗1,n)
r1+𝛽

, (33)

or, explicitly,
𝛾2𝛾−2 sin

(
2𝜃𝑗1,n𝜔

)
= 2𝛾 cos

(
𝜃𝑗1,n𝜔

)
𝛾−1 sin

(
𝜃𝑗1,n𝜔

)
, (34)

that is, sin
(
2𝜃𝑗1,n𝜔

)
= 2 cos

(
𝜃𝑗1,n𝜔

)
sin

(
𝜃𝑗1,n𝜔

)
, which is true, owing to the trigonometric identity as follows:

sin (2𝛾1) = 2 cos (𝛾1) sin (𝛾1) . (35)

For x(2)
r2, 𝑗2,n

in (25), we observe the same behavior as for x(1)
r1, 𝑗1,n

in (24) above, but the relation analogous to (33) is
now as follows:

x(r2, 𝑗2,n)
𝜔+r2

= 𝜇(2)
r2, 𝑗2,(n𝜔+1)𝛽x(r2, 𝑗2,n)

r2
.

Namely, it is the same as (34), except for the fact that 𝜃𝑗2,n𝜔+1 replaces 𝜃𝑗1,n𝜔
.

Secondly, we show that (29) is true. For x(1)
r1, 𝑗1,n

in (24), the nonzero components have indices of the form 𝜔(k1 −1)+
r1+𝛽, k1 = 1, … ,n𝜔 (as seen in (26)). For k1, k1+1, k1+2, with k1 = 1, … , kr1, 𝑗1

max , where kr1, 𝑗1
max ≤ (n−r1−𝛽−𝜔)∕𝜔, kr1, 𝑗1

max ∈
N, we find all nonzero terms of (29) expressed as follows:

x(r1, 𝑗1,n)
𝜔(k1−1)+r1+𝛽

+ 𝛾2x(r1, 𝑗1,n)
𝜔(k1+1)+r1+𝛽

= 𝜇(1)
r1, 𝑗1,n𝜔(𝜔−𝛽)

x(r1, 𝑗1,n)
𝜔k1+r1+𝛽

.
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Explicitly, we deduce the following:

𝛾−(𝜔(k1−1)+r1+𝛽) sin
(
(𝜔(k1 − 1) + r1 + 𝛽) 𝜃𝑗1,n𝜔

)
+ 𝛾2𝛾−(𝜔(k1+1)+r1+𝛽) sin

(
(𝜔(k1 + 1) + r1 + 𝛽) 𝜃𝑗1,n𝜔

)
= 2𝛾 cos

(
𝜃𝑗1,n𝜔

)
𝛾−(𝜔k1+r1+𝛽) sin

(
(𝜔k1 + r1 + 𝛽) 𝜃𝑗1,n𝜔

)
,

or

sin
(
(𝜔(k1 − 1) + r1 + 𝛽) 𝜃𝑗1,n𝜔

)
+ sin

(
(𝜔(k1 + 1) + r1 + 𝛽) 𝜃𝑗1,n𝜔

)
= 2 cos

(
𝜃𝑗1,n𝜔

)
sin

(
(𝜔k1 + r1 + 𝛽) 𝜃𝑗1,n𝜔

)
,

which is satisfied because of the trigonometric identity as follows:

sin (𝛾1) + sin (𝛾2) = 2 cos
(𝛾1 − 𝛾2

2

)
sin

(𝛾1 + 𝛾2

2

)
.

For x(2)
r2, 𝑗2,n

in (25), for k2 = 1, · · ·, kr2, 𝑗2
max , where kr2, 𝑗2

max ≤ (n − r2 − 𝜔)∕𝜔, kr2, 𝑗2
max ∈ N, taking into account (29), we find the

following:

x(r2, 𝑗2,n)
𝜔(k2−1)+r2

+ 𝛾2x(r2, 𝑗2,n)
𝜔(k2+1)+r1

= 𝜇(2)
r2, 𝑗2,(n𝜔+1)𝛽x(r2, 𝑗2,n)

𝜔k2+r2
,

and this is proven for the case 𝜇(1)
r1, 𝑗1,n𝜔(𝜔−𝛽)

and x(1)
r1, 𝑗1,n

described above.
As last step, we show that the relationships in (30) and (32) are true. For x(1)

r1, 𝑗1,n
in (24), the nonzero components

have indices of the form 𝜔(k1 − 1) + r1 + 𝛽, k1 = 1, … ,n𝜔 (as seen in (26)). For k1 = n𝜔, we find n + r1 − 𝜔, and for
k2 = n𝜔 − 1, we have n + r1 − 2𝜔, which are the only two nonzero components that match (30) and (32), namely,

x(r1, 𝑗1,n)
n+r1−2𝜔 = 𝜇(1)

r1, 𝑗1,n𝜔(𝜔−𝛽)
x(r1, 𝑗1,n)

n+r1−𝜔 . (36)

More in detail, we infer that

𝛾−(n𝜔−1) sin
(
(n𝜔 − 1)𝜃𝑗1,n𝜔

)
= 2𝛾 cos

(
𝜃𝑗1,n𝜔

)
𝛾−n𝜔 sin

(
n𝜔𝜃𝑗1,n𝜔

)
,

sin
(
(n𝜔 − 1)𝜃𝑗1,n𝜔

)
= 2 cos

(
𝜃𝑗1,n𝜔

)
sin

(
n𝜔𝜃𝑗1,n𝜔

)
,

sin
(
(n𝜔 − 1) 𝑗1𝜋

n𝜔 + 1

)
= 2 cos

(
𝑗1𝜋

n𝜔 + 1

)
sin

(
n𝜔

𝑗1𝜋

n𝜔 + 1

)
. (37)

Furthermore, because

sin
(
(n𝜔 − 1) 𝑗1𝜋

n𝜔 + 1

)
= sin

(
𝑗1𝜋 − 2 𝑗1𝜋

n𝜔 + 1

)
= (−1)𝑗1+1 sin

(
2 𝑗1𝜋

n𝜔 + 1

)
,

sin
(

n𝜔
𝑗1𝜋

n𝜔 + 1

)
= sin

(
𝑗1𝜋 − 𝑗1𝜋

n𝜔 + 1

)
= (−1)𝑗1+1 sin

(
𝑗1𝜋

n𝜔 + 1

)
,

we deduce that relation (37) is equivalent to sin
(
2𝜃𝑗1,n𝜔

)
= 2 cos

(
𝜃𝑗1,n𝜔

)
sin

(
𝜃𝑗1,n𝜔

)
, which is an identity, because of

the basic relation in (35). Equivalently, the latter is true for 𝜇(2)
r2, 𝑗2,(n𝜔+1)𝛽 in (23) and for x(2)

r2, 𝑗2,n
in (25).

2.3 The real symmetric SST Toeplitz case: the generating function and a simplified
distribution function
We now consider the previous results from the point of view of spectral distributions in the sense of Weyl. First, we
introduce some notations and definitions concerning the general sequences of matrices. For any function F defined on
the complex field and for any matrix An of size dn, by the symbol Σ𝜆(F,An), we denote the following means:

1
dn

dn∑
𝑗=1

F
[
𝜆𝑗(An)

]
.

Moreover, given a sequence {An} of matrices of size dn with dn < dn+1 and given a Lebesgue-measurable function 𝜓

defined over a measurable set K ⊂ R𝜈 , 𝜈 ∈ N+, of finite e positive Lebesgue measure 𝜇(K ), we say that {An} is distributed
as (𝜓,K ) in the sense of the eigenvalues if for any continuous F with bounded support, the following limit relation holds:

lim
n→∞

Σ𝜆(F,An) =
1

𝜇(K) ∫K
F(𝜓)d𝜇. (38)
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In this case, we write in short {An} ∼𝜆 (𝜓,K). In Remark 3, we provide an informal meaning of the notion of eigenvalue
distribution.

Remark 3. The informal meaning behind the above definition is the following. If 𝜓 is continuous, n is large enough,
and {

x(mn)
𝑗 , 𝑗 = 1, … , dn

}
is an equispaced grid on K, then a suitable ordering 𝜆j(An), j = 1, … , dn, of the eigenvalues of An is such that the pairs{(

x(dn)
𝑗 , 𝜆𝑗(An)

)
, 𝑗 = 1, · · ·,mn

}
reconstruct approximately the hypersurface as follows:

{(x, 𝜓(x)) , x ∈ K} .

In other words, the spectrum of An “behaves” like a uniform sampling of 𝜓 over K. For instance, if 𝜈 = 1, dn = n, and
K = [a, b], then the eigenvalues of An are approximately equal to 𝜓(a + j(b − a)∕n), j = 1, … ,n, for n large enough.
Analogously, if 𝜈 = 2, dn = n2, and K = [a1, b1] × [a2, b2], then the eigenvalues of An are approximately equal to
𝜓(a1 + j(b1 − a1)∕n, a2 + k(b2 − a2)∕n), j, k = 1, … ,n, for n large enough.

Let f be a complex-valued (Lebesgue) integrable function, defined over Q = (−𝜋, 𝜋), and let us consider the sequence
{Tn( f )}with Tn(𝑓 ) =

(
𝑓𝑗−k

)n
𝑗,k=1, 𝑓s, s ∈ Z being the Fourier coefficients of f defined as in (2). The asymptotic distribution

of eigenvalues and singular values of a sequence of Toeplitz matrices has been thoroughly studied in the last century (for
example, see other works1,23 and the references reported therein). The starting point of this theory, which contains many
extensions and other results, is a famous theorem of Szegő,3 which we report in the version given by Tyrtyshnikov et al.23

Theorem 3. If f is integrable over Q, and if {Tn( f)} is the sequence of Toeplitz matrices generated by f, it then holds that

{T∗
n(𝑓 )Tn(𝑓 )} ∼𝜆

(|𝑓 |2,Q
)
. (39)

Moreover, if f is also real valued, then each matrix Tn( f ) is Hermitian and

{Tn(𝑓 )} ∼𝜆(𝑓,Q). (40)

However, a simple remark has to be added. The symbol in the Weyl sense is far from unique, and in fact, any rearrange-
ment is still a symbol. A simple case is given by standard Toeplitz sequences {Tn( f )}, with f real valued, and even that is
f(𝜃) = f(−𝜃) almost everywhere, 𝜃 ∈ Q. In that case, relation (40) has the following form:

lim
n→∞

Σ𝜆 (F,Tn(𝑓 )) =
1

2𝜋∫
𝜋

−𝜋
F(𝑓 (𝜃))d𝜃 = 1

𝜋∫
𝜋

0
F (𝑓 (𝜃)) d𝜃, (41)

due to the even character of f, and hence, {Tn( f )} ∼𝜆 ( f,Q+), Q+ = (0, 𝜋). In fact, the grid points are not searched in the
big interval Q but in the restricted interval Q+ (see Remark 3).

However, formula (19) in Theorem 1 seems to be confusing, because the generating function is g𝜔(𝜃) = a0+2a𝜔 cos(𝜔𝜃),
whereas the eigenvalues result in an equispaced sampling of the function a0 + 2|a𝜔| cos(𝜃). Because Theorem 3 tells one
that {Tn(g𝜔)} ∼𝜆 (g𝜔,Q), whereas our explicit computation implies {Tn(g𝜔)} ∼𝜆 (g1,Q+), it follows that g1 on Q+ is a
rearrangement of g𝜔 on Q. Indeed, the latter is true, as demonstrated in the following simple derivations:

∫
𝜋

−𝜋
F (g𝜔(𝜃)) d𝜃 = ∫

2𝜋

0
F (g𝜔(𝜃)) d𝜃

= 𝜔∫
2𝜋∕𝜔

0
F (g𝜔(𝜃)) d𝜃

= 𝜔∫
2𝜋

0
F (g𝜔(s∕𝜔)) ds∕𝜔

= ∫
2𝜋

0
F (g1(s)) ds = 2∫

𝜋

0
F (g1(s)) ds.

By the way, the fact that g1 has exactly two branches, one monotonically increasing on (0, 𝜋∕2) and the other monotonically
decreasing on (𝜋∕2, 𝜋), represents a qualitative confirmation of the fact that the grid 𝜃n in (18), for the exact eigenvalue
formulae, is obtained by the merging of exactly two distinct grids, 𝜃(1)n𝜔(𝜔−𝛽)

and 𝜃(2)(n𝜔+1)𝛽 , independently of the parameter 𝜔.
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3 THE REAL SYMMETRIC SST CASE AND ITS USE IN THE GENERAL
SYMMETRIC BANDED TOEPLITZ CASE

Let An be a Toeplitz matrix of order n and let �̂� < n be a positive integer as follows:

An =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 · · · a�̂�

a1 a0 ⋱ ⋱
⋮ ⋱ ⋱ ⋱ ⋱

a�̂� ⋱ ⋱ ⋱ ⋱
⋱ ⋱ ⋱ ⋱ a�̂�

⋱ ⋱ ⋱ ⋱ ⋮
⋱ ⋱ a0 a1

a�̂� · · · a1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (42)

where the coefficients ak, k = 0, … , �̂�, are real numbers.
We now show that the behavior of the spectrum of such matrices can be qualitatively described via the spectral behavior

of two different types of matrices: matrices of the form in (4) with different 𝜔 = 2, … , �̂� and with a0, a𝜔 = a−𝜔, real
numbers, and matrices of the form (42) with monotone generating function f on [0, 𝜋], as the case of 𝑓 (𝜃) = (2 − 2 cos(𝜃))2.
We observe that the case 𝑓 (𝜃) = (2 − 2 cos(𝜃))2 corresponds to the choice of q = 2 with a0 = 6, a1 = −4, a2 = 1 and that for
such a case, an expansion similar to that in (3) holds. We remind that expansions as in (3) are observed in other works9,15

(and formally proven under mild assumptions15) for the general case, in which the generating function is a monotone
cosine polynomial in [0, 𝜋].

In Section 3.1, we compare the generating function g𝜔(𝜃) = 2 − 2 cos(𝜔𝜃) with the spectrum of matrices of the form in
(4) with different 𝜔 = 2, … , q and with a0, a𝜔 = a−𝜔, real numbers, by proving the expansions in (44).

In Section 3.2, for a general matrix of the form (42), we show numerical evidences that a qualitative comparison between
the eigenvalues and the generating function is described either by an expansion like (3), characterizing the monotone
case, or by an expansion like (44), characterizing the purely oscillatory case as g𝜔(𝜃) = 2−2 cos(𝜔𝜃), 𝜔 = 2, … , q. From a
computational viewpoint, as explained by Ekström et al.,9 the crucial observation is that such a qualitative behavior turns
out to be the theoretical key for designing fast extrapolation-type algorithms for computing eigenvalues of large matrices
of the form reported in (42).

3.1 The real symmetric SST Toeplitz case: eigenvalues and generating function
Typically, a correct symbol and grid combination, which together exactly samples the eigenvalues of a given matrix, is not
known, but the error can be reconstructed in some cases; see the work of Ekström et al.9

When approximating the eigenvalues for the standard nonmonotone symbol as follows:

𝑓 (𝜃) = g𝜔(𝜃) = 2 − 2 cos(𝜔𝜃), (43)

with 1 < 𝜔 fixed with respect to n, and sampling g𝜔(·) at the standard equispaced grid of (8), we obtain the exact eigenval-
ues plus an error. This error can be expressed analytically, because the eigenvalues are given by Theorem 1. Subsequently,
we furnish an expression for the expansion of such an error (refer also to the work of Ekström et al.9 for similar expansions
in the monotone case).

We begin by defining the permutations 𝜋n, 𝜎n ∶ {1, … ,n} → {1, … ,n} such that g(𝜃𝜋n(1),n) ≤ · · · ≤ g(𝜃𝜋n(n),n),
𝑓 (𝜃𝜎n(1),n) ≤ · · · ≤ 𝑓 (𝜃𝜎n(n),n). We denote 𝜇𝑗,n = g(𝜃𝑗,n), 𝜆𝑗,n = g(𝜃𝜋n( 𝑗),n), and 𝜈j,n = f(𝜃j,n), 𝜉𝑗,n = g(𝜃𝜎n( 𝑗),n).

The error for (43) with sampling grid (8) to approximate the eigenvalues after sorting is thus

E𝑗,n = g
(
𝜃𝜋n( 𝑗),n

)
− 𝑓

(
𝜃𝜎n( 𝑗),n

)
= 𝜆𝑗,n − 𝜉𝑗,n. (44)

This error is shown, for example, in Figure 1(a)–(c) in light gray for 𝜔 = 3. At first glance, this error can seem chaotic,
but it is clear numerically that in this case, and for any 1 < 𝜔 < n, there will be 𝜔2 different “error modes”; 𝜔 different
modes for any fixed 𝛽 = mod(n, 𝜔) ∈ {0, … , 𝜔 − 1}. Indeed, for each 𝛽, we will denote the different error modes by
s = 0, … , 𝜔 − 1. In Figure 1(a)–(c), these modes are shown for 𝛽 = 0, 1, 2, s = 0 yellow (dotted), s = 1 blue (solid),
and s = 2 red (dashed). Each error mode for a given n and 𝛽 is given by the indices js ∈ Is, s = 0, … , 𝜔 − 1, where
Is = {s, s + 𝜔, s + 2𝜔, …} (except for s = 0 where I0 = {𝜔, 2𝜔, …}), and the union of all Is is the whole set of indices
{1, … ,n}. In other words, s = mod(j, 𝜔) for j = 1, … ,n, and for s = 0, we have j0 = j𝜔𝜔, j𝜔 = 1, … ,n𝜔 and s > 0,
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FIGURE 1 Errors for eigenvalue approximations for matrices of different sizes with standard symbol g3(𝜃) = 2 − 2 cos(3𝜃) and grids
𝜃j,n = j𝜋h, j = 1, … ,n, h = 1∕(n + 1). For each 𝛽 = mod(n, 𝜔) = mod(n, 3), there exist 𝜔 = 3 different error modes E{i}

n𝜔+𝜂 , i = 0, 1, 2,
represented in yellow (dotted), blue (solid), and red (dashed). In gray, we show the errors not separated into different error modes. In panel
(d), the error reduction for g3(𝜃) = 2 − 2 cos(3𝜃) for �̄� = 𝜋∕10 is reported, by using the algorithm presented by Ekström et al.9 (a) n = 159, 𝛽 =
0. (b) n = 160, 𝛽 = 1. (c) n = 161, 𝛽 = 2. (d) Estimation of ck,0, k = 1, 2, 3; �̄� = 𝜋∕10, 𝛽 = 0

js = s+( j𝜔−1)𝜔, j𝜔 = 1, … n𝜔+ 𝜂, where n𝜔 = (n− 𝛽)∕𝜔 and 𝜂 = 1 for s = 1, … , 𝛽, and otherwise, 𝜂 = 0. In this setting,
there exist functions ck,s(·), s = 0, 1, … , 𝜔 − 1, k ≥ 1 for which the following error:

E𝑗s,n = g
(
𝜃𝜋n( 𝑗s),n

)
− 𝑓

(
𝜃𝜎n( 𝑗s),n

)
= 𝜆𝑗s,n − 𝜉𝑗s,n = 𝜆{s}

𝑗𝜔,n𝜔+𝜂
− 𝜉{s}

𝑗𝜔,n𝜔+𝜂
= E{s}

𝑗𝜔,n𝜔+𝜂
(45)

has the following form:

E{s}
𝑗𝜔,n𝜔+𝜂

=
∞∑

k=1
ck,s

(
𝜃𝜎n( 𝑗s),n

)
hk, h 1

n + 1
. (46)

We will refer to the functions ck,s(𝜃), k = 1, 2, … , s = 0, 1, … , 𝜔 − 1 as higher order symbols.

Example 1. As a demonstrative example, we will look at the symbol 𝑓3(𝜃) = 2 − 2 cos(3𝜃). We have n = 12, and
because 𝜔 = 3, we have 𝛽 = 0 and n𝜔 = 4. Because 𝛽 = 0 is the simplest case where 𝜃n = 𝜃(1)n , which consists of
𝜃n𝜔

= 𝜃4 repeated 𝜔 − 𝛽 = 3 times, we have the following:

𝜃𝑗1,n𝜔
= 𝑗1𝜋

n𝜔 + 1
𝑗1 = 1, … ,n𝜔, 𝜃𝑗,n = 𝑗𝜋

n + 1
, 𝑗 = 1, … ,n.

In the following table, the different evaluations are reported.
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FIGURE 2 Eigenvalues, symbol, and errors for matrices with standard symbol 𝑓 (𝜃) = 2 − 2 cos(𝜃) − 2 cos(2𝜃) and grids
𝜃j,n = j𝜋h, j = 1, … ,n, h = 1∕(n + 1). (a) True eigenvalues (sorted, solid in red). Sampling of the symbol (unsorted, dashed in black).
(b) Errors for different n. Reduction of error for �̄� = 𝜋∕10. (c) Errors for n 200 (solid) and n = 202 (dashed). (d) Errors for n = 500

Sorting the evaluations of g(𝜃𝑗,n) in nondecreasing order, that is, g(𝜃𝜋n( 𝑗),n), we will have the true eigenvalues as
follows:

𝜆12 =
{
𝜇4,4, 𝜇4,4, 𝜇4,4, 𝜇3,4, 𝜇3,4, 𝜇3,4, 𝜇2,4, 𝜇2,4, 𝜇2,4, 𝜇1,4, 𝜇1,4, 𝜇1,4

}
.

By splitting the eigenvalues by the different indices in order to separate the error modes, we obtain the following:

𝜆{0}
4 =

{
𝜇4,4, 𝜇3,4, 𝜇2,4, 𝜇1,4

}
=
{
𝜆𝑗0,12

}
, 𝑗0 = 3, 6, 9, 12, s = mod(𝑗0, 𝜔) = 0,

𝜆{1}
4 =

{
𝜇4,4, 𝜇3,4, 𝜇2,4, 𝜇1,4

}
=
{
𝜆𝑗1,12

}
, 𝑗1 = 1, 4, 7, 10, s = mod(𝑗1, 𝜔) = 1,

𝜆{2}
4 =

{
𝜇4,4, 𝜇3,4, 𝜇2,4, 𝜇1,4

}
=
{
𝜆𝑗2,12

}
, 𝑗2 = 2, 5, 8, 11, s = mod(𝑗2, 𝜔) = 2.

Sorting the evaluations of f(𝜃j,n) in a nondecreasing order, that is, 𝑓 (𝜃𝜎n( 𝑗),n), we will have the approximations of the
eigenvalues as follows:

𝜉12 =
{
𝜈9,12, 𝜈8,12, 𝜈1,12, 𝜈10,12, 𝜈7,12, 𝜈2,12, 𝜈11,12, 𝜈6,12, 𝜈3,12, 𝜈12,12, 𝜈5,12, 𝜈4,12

}
.

By splitting the approximations of the eigenvalues by the different indices for separating the error modes, we find the
following:

𝜉{0}
4 =

{
𝜈1,12, 𝜈2,12, 𝜈3,12, 𝜈4,12

}
=
{
𝜉𝑗0,12

}
, 𝑗0 = 3, 6, 9, 12, s = mod(𝑗0, 𝜔) = 0,

𝜉{1}
4 =

{
𝜈9,12, 𝜈10,12, 𝜈11,12, 𝜈12,12

}
=
{
𝜉𝑗1,12

}
, 𝑗1 = 1, 4, 7, 10, s = mod(𝑗1, 𝜔) = 1,

𝜉{2}
4 =

{
𝜈8,12, 𝜈7,12, 𝜈6,12, 𝜈5,12

}
=
{
𝜉𝑗2,12

}
, 𝑗2 = 2, 5, 8, 11, s = mod(𝑗2, 𝜔) = 2.
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FIGURE 3 Eigenvalues, symbol, and errors for a matrix with standard symbol 𝑓 (𝜃) = 2 − 2 cos(3𝜃) − 2 cos(4𝜃) and grids
𝜃j,n = j𝜋h, j = 1, … ,n, h = 1∕(n + 1). (a) True eigenvalues (sorted, solid in red). Sampling of the symbol (unsorted, dashed in black).
(b) Errors for n = 1000

Hence, we have 𝜔 different error modes for 𝜔 = 3 and 𝛽 = 0, which are given by the following:

E{0}
𝑗𝜔,n𝜔

= g
(
𝜃n𝜔+1−𝑗𝜔,n𝜔

)
− 𝑓3

(
𝜃𝑗𝜔,n

)
= g

(
𝜃5−𝑗𝜔,4

)
− 𝑓3

(
𝜃𝑗𝜔,12

)
, 𝑗𝜔 = 1, … , 4, (47)

E{1}
𝑗𝜔,n𝜔

= g
(
𝜃n𝜔+1−𝑗𝜔,n𝜔

)
− 𝑓3

(
𝜃𝑗𝜔+2n𝜔,n

)
= g

(
𝜃5−𝑗𝜔,4

)
− 𝑓3

(
𝜃𝑗𝜔+8,12

)
, 𝑗𝜔 = 1, … , 4, (48)

E{2}
𝑗𝜔,n𝜔

= g(𝜃n𝜔+1−𝑗𝜔,n𝜔
) − 𝑓3(𝜃2n𝜔+1−𝑗𝜔,n) = g(𝜃5−𝑗𝜔,4) − 𝑓3(𝜃9−𝑗𝜔,12), 𝑗𝜔 = 1, … , 4, (49)

because 𝜂 = 0 in (46) for all s = 0, 1, 2, and because 𝛽 = 0. Using the algorithm presented by Ekström et al.,9 we
look at a specific eigenvalue of interest �̄� = 𝜋∕10. By this, we mean that for a matrix of size n, the index of the
eigenvalue of interest, when they are sorted in nondecreasing order, 𝑗, is found by 𝜋∕10 = 𝑗𝜋∕(n+1). The error is then
specifically E𝑗,n = 𝜆𝑗,n−𝜉𝑗,n or E{1}

𝑗𝜔,n𝜔

because 𝛽 = 0 for all n of interest in this example. We look specifically at the pairs
( j1,n1) = (16, 159), ( j2,n2) = (19, 189), ( j3,n3) = (22, 219), and ( j,n) = (100, 999), which are presented in Figure 1(d).
The light green background indicates that the derivative of the symbol changes sign two times in the region. Other
examples of a different number of sign changes are presented in Figures 2 and 3. Because s = mod( j, 𝜔) = 1, the error
will have the following expression:

E{1}
𝑗𝜔,n𝜔

= g
(
𝜃n𝜔+1−𝑗𝜔,n𝜔

)
− 𝑓3

(
𝜃𝑗𝜔+2n𝜔,n

)
, 𝑗𝜔 = 1, … ,n𝜔, (50)

given by (48). We now look at a specific j𝜔, namely 𝑗𝜔 = (n𝜔 + 7)∕10. Hence, the pairs for each error mode are instead
(𝑗𝜔,n𝜔), that is, (6, 53), (7, 63), (8, 73), and (34, 333). Explicitly, we obtain the following:

E{1}
𝑗𝜔,n𝜔

= g
(
𝜃n𝜔+1−𝑗𝜔,n𝜔

)
− 𝑓3

(
𝜃𝑗𝜔+2n𝜔,n

)
=

∞∑
k=1

ck,1
(
�̄�
)

hk, h = 1
n + 1

, (51)

and we can analytically express the constants ck,1(�̄�). More in detail, we have the following:

E{1}
𝑗𝜔,n𝜔

= g
(
𝜃n𝜔+1−𝑗𝜔,n𝜔

)
− 𝑓3

(
𝜃𝑗𝜔+2n𝜔,n

)
= g

(
3𝜋
10

3n𝜔 + 1
n𝜔 + 1

)
− 𝑓3

(7𝜋
10

)
= 2 cos

(
𝜋

10

)
− 2 cos

(
𝜋

𝑗𝜔
n𝜔 + 1

)
. (52)

Explicitly, the errors in this example in Figure 1(d), denoted by black circles, are as follows:

E{1}
6,53 = 2 cos

(
𝜋

10

)
− 2 cos

(6𝜋
54

)
, E{1}

7,63 = 2 cos
(
𝜋

10

)
− 2 cos

(7𝜋
64

)
,

E{1}
8,73 = 2 cos

(
𝜋

10

)
− 2 cos

(8𝜋
74

)
, E{1}

34,333 = 2 cos
(
𝜋

10

)
− 2 cos

(34𝜋
334

)
,
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and the latter relations are verified numerically to machine precision. The red circle in Figure 1(d) shows the error
after applying the algorithm of Ekström et al.9: it reduces from 3.518 · 10−3 to −2.826 · 10−8. By reformulating (52), we
deduce the following:

E{1}
𝑗𝜔,n𝜔

= 2 cos
(
𝜋

10

)
− 2 cos

(
𝜋

10
+ 9𝜋h

5(1 + 2h)

)
, (53)

and by the Taylor expansion of the error (53), we derive exactly the constants ck,1 in (51), that is,

E{1}
𝑗𝜔,n𝜔

= 2 cos
(
𝜋

10

)
−

(
2 cos

(
𝜋

10

)
+ 2

∞∑
k=1

cos(k)(𝜋∕10)
k!

(
9𝜋h

5(1 + 2h)

)k
)

= −2
∞∑

k=1

cos(k)(𝜋∕10)
k!

(9𝜋
5

)k
hk
( 1

1 + 2h

)k

= −2
∞∑

k=1

cos(k)(𝜋∕10)
k!

(9𝜋
5

)k
hk

( ∞∑
l=0

(−2h)l

)k

= −2
∞∑

k=1

cos(k)(𝜋∕10)
k!

(9𝜋
5

)k
( ∞∑

l=0
(−2)lhl+1

)k

= 2 sin(𝜋∕10)
(9𝜋

5

) ∞∑
l=0

(−2)lhl+1+

+ cos(𝜋∕10)
(9𝜋

5

)2
( ∞∑

l=0
(−2)lhl+1

)2

−

−
sin(𝜋∕10)

3

(9𝜋
5

)3
( ∞∑

l=0
(−2)lhl+1

)3

−

− 2
∞∑

k=4

cos(k)(𝜋∕10)
k!

(9𝜋
5

)k
( ∞∑

l=0
(−2)lhl+1

)k

.

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(h4)

(54)

By expanding the expression in (53) up to a (h4) term, we deduce precise representations for ck,1, k = 1, 2, 3, that is,

E{1}
𝑗𝜔,n𝜔

= 2 sin(𝜋∕10)
(9𝜋

5

)(
h − 2h2 + 4h3 +

∞∑
l=3

(−2)lhl+1

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

h−2h2+4h3+(h4)

+

= + cos(𝜋∕10)
(9𝜋

5

)2
(

h − 2h2 +
∞∑

l=3
(−2)lhl+1

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
h2−4h3+(h4)

−

−
sin(𝜋∕10)

3

(9𝜋
5

)3
(

h +
∞∑

l=2
(−2)lhl+1

)3

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
h3+(h4)

+ (h4).
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TABLE 1 Analytical ck,1(�̄�), and the corresponding approximation c̃k,1(�̄�), for m different coarse matrices in algorithm from
Ekström et al.9 for g3(𝜃) = 2 − 2 cos(3𝜃), �̄� = 𝜋∕10

m = 1 m = 2 m = 3 m = 4
159 159,189 159,189,219 159,189,219,249

c1,1(�̄�) 3.49489987 3.49489987 3.49489987 3.49489987
c̃1,1(�̄�) 3.63644656 3.49891734 3.49495321 3.49490028
c2,1(�̄�) 23.42262738 23.42262738 23.42262738
c̃2,1(�̄�) 22.00467555 23.39212062 23.42229454
c3,1(�̄�) −126.29647972 −126.29647972
c̃3,1(�̄�) −120.50951417 −126.19491717
E{1}

34,333 3.51819657 · 10−3 3.51819657 · 10−3 3.51819657 · 10−3 3.51819657 · 10−3∑m
k=1 c̃k,1(�̄�)hk 3.63644656 · 10−3 3.52092202 · 10−3 3.51822482 · 10−3 3.51819673 · 10−3

E{1}
34,333 −

∑m
k=1 c̃k,1(�̄�)hk −1.18249995 · 10−4 −2.72544868 · 10−6 −2.82554797 · 10−8 −0.16133076 · 10−9

Thus, we have the following:

E{1}
𝑗𝜔,n𝜔

= 2 sin(𝜋∕10)
(9𝜋

5

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

c1,1(�̄�)≈3.49489987

h +
(
−4 sin(𝜋∕10)

(9𝜋
5

)
+ cos(𝜋∕10)

(9𝜋
5

)2)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

c2,1(�̄�)≈23.42262738

h2+

+
(

8 sin(𝜋∕10)
(9𝜋

5

)
− 4 cos(𝜋∕10)

(9𝜋
5

)2
−

sin(𝜋∕10)
3

(9𝜋
5

)3)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

c3,1(�̄�)≈−126.29647972

h3 +
∞∑

k=4
ck,1(�̄�)hk. (55)

Note that the explicit expressions of (55) can be derived for any combination of n, 𝜔, and �̄�, but the computation
will be more complicated if 𝛽 > 0 because also 𝜃(2) has to be considered.

In Table 1, we show the results using the algorithm of Ekström et al.9 to approximate m different constants ck,1(�̄�)
with the same number of different coarse matrices. As m increases, c̃k,1(�̄�) converges to ck,1(�̄�) as expected. Using the
analytical expression of ck,1(�̄�) in (55), we have

∑3
k=1 ck,1(�̄�)hk = 3.51819620 · 10−3, and thus, the error after the error

reduction is E{1}
34,333 −

∑m
k=1 ck,1(�̄�)hk = 3.67020511 · 10−10.

In Table 2, we show the results obtained when using the algorithm by Ekström et al.9 for nonmonotone cases
g𝜔(𝜃) = 2− 2 cos(𝜔𝜃) for 𝜔 = 2, 3, 4: the goal is to reduce the error of the eigenvalue approximation when considering
the largest matrix. The errors for m = 0, 1, 2, 3 different coarse matrices used to approximate the constants ck,1(�̄�),
k = 1, … ,m, are presented. For g2(𝜃), the coarse matrices have sizes belonging to {149, 189, 209}, and the largest
size is n = 9999; for g3(𝜃), the coarse matrices have sizes belonging to {159, 189, 219} and n = 10009; for g4(𝜃), the
coarse matrices have sizes belonging to {169, 209, 249} and n = 10009. The errors behave as expected, and hence, the
algorithm taken from the work of Ekström et al.9 can also be used for these specific nonmonotone examples, although
in this setting, a numerical computation is not necessary because the exact eigenvalues can be evaluated exactly by
exploiting the symbol and sampling the grid described in Section 2.

3.2 The general symmetric banded case: conjectures and numerics
As we have seen in the previous subsection, given a positive integer 𝜔 ≥ 2 and the nonmonotone symbol 𝑓 (𝜃) = g𝜔(𝜃) =
2 − 2 cos(𝜔𝜃), and evaluating it at a equidistant grid such as 𝜃j,n = j𝜋h, j = 1, … ,n, h = 1∕(n + 1), numerical tests show
that the error En = 𝜆n − 𝜉n can be separated into 𝜔 different types of error modes for each 𝛽 = mod(n, 𝜔). That is, for
each 𝛽 = mod(n, 𝜔), there are 𝜔 disjoint subgrids of the original grid (see Figure 1 for 𝜔 = 3 and the related caption). For
a given n and 𝛽, each error mode is obtained by the indices j ∈ Is, s = 0, … , 𝜔 − 1, where I0 = {𝜔, 2𝜔, 3𝜔, …} and for
s > 0, Is = {s, s + 𝜔, s + 2𝜔, …}, and the union of all Is forms the whole set of indices {1, … ,n}.
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TABLE 2 Errors for eigenvalue approximations for matrices with standard symbol
g𝜔(𝜃) = 2 − 2cos(𝜔𝜃), �̄� = 𝜋∕10

E{1}
j̄𝝎 ,n𝝎

−∑m
k =𝟏 c̃k , 𝟏(�̄�)hk

g𝝎(𝜽) E{𝟏}
j̄𝝎 ,n𝝎

m = 1 m = 2 m = 3

g2(𝜃) −3.88581714·10−5 4.32478954·10−6 −5.21177503 · 10−8 −1.12193334 · 10−9

g3(𝜃) 34.97240870·10−5 −13.92056931 · 10−6 −38.76938472 · 10−8 −5.03491210 · 10−9

g4(𝜃) 65.96546126·10−5 −7.93740842 · 10−6 −127.70747416 · 10−8 −50.14789443 · 10−9

The latter remark induces the conjecture that the number of the different expansions is related to the number of sign
changes of the derivative of the generating function in the basic interval (0, 𝜋), that is, a formula of the type as follows:

𝜆𝑗,n = 𝑓 (𝜃𝜎n( 𝑗),n) +
m∑

k=1
ck,s

(
𝜃𝜎n( 𝑗),n

)
hk + O(hm+1), 𝑗 ∈ Is, s = 0, … , 𝜔 − 1, (56)

may hold. In Figure 2, we see a clarifying example of the nonmonotone error given by the function 𝑓 (𝜃) = 2 − 2 cos(𝜃) −
2 cos(2𝜃).

In Figure 2(a), we show the true eigenvalues (sorted, solid in red) and the sampling of the symbol (unsorted, dashed
in black). The two different regions displayed in light colors (red on bottom and yellow on top) represent the different
number of sign changes in the derivative of the symbol f(𝜃) inside the region (zero and one). These different regions will
give rise to different features in the behavior of the errors.

The approximation error of the function possesses the same monotone behavior as the one observed for (2 − 2 cos(𝜃))2,
when using, for example, the grid ( j − 1)𝜋∕(n − 1) instead of the exact j𝜋∕(n + 1), in the interval [0, 𝜋∕3] with f(𝜋∕3) = 2,
and almost the behavior typical of 2− 2 cos(2𝜃) in the interval [𝜋∕3, 𝜋] with f(𝜋∕3) = f(𝜋) = 2. Indeed, for the eigenvalues
belonging to (−2, 2], −2 = 𝑓 (0) = min 𝑓 , 2 = f(𝜋∕3), as represented in the light red regions of Figure 2, the behavior of
the error is like the one related with a monotone function that (56) with 𝜔 = 1 holds. For the eigenvalues belonging to
(2, 17∕4), 2 = f(𝜋∕3) = f(𝜋), 17∕4 = max 𝑓 , as represented in the light yellow regions in Figure 2, the behavior of the error
behaves almost like the one displayed in (56) with 𝜔 = 2, because the sign of the derivative changes once.

In Figure 2(b), we present a visualization of error reduction for 𝑓 (𝜃) = 2 − 2 cos(𝜃) − 2 cos(2𝜃), �̄� = 𝜋∕10 with the
algorithm presented by Ekström et al.9 The largest matrix dimension is n = 669, whereas the coarse grids have sizes
belonging to {109, 129, 149}. The black circles represent the error of symbol approximation on the corresponding grids,
and the red circle is the error on the fine grid after reduction using the coarse errors. The error is reduced from−7.899·10−4

to −9.959 ·10−11. Note that here, the x-axis is ordered by the size of the true eigenvalues. The error on the left region (light
red) behaves like a monotone symbol, whereas the right region (light yellow) behaves, in general terms, as a symbol of
the form g𝜔 but with a slight shift.

As seen in Figures 2(c)–(d), the local change is somewhat drastic with a small change of n, but the general structure
of the error remains as n increases. In Figure 2(c), we see the errors for n = 200 (solid) and n = 202 (dashed). Assuming
two error modes for each n, note the rather large “shift” of the error curve just increasing n by a factor two. Note also
that the x-axis is ordered by n and not by the size of the true eigenvalues. In Figure 2(d), we see the errors for n = 500
assuming two error modes. Note that the general regularity of the error in the large eigenvalues (right part of the figure)
is comparable to n = 200 and n = 202 shown in Figure 2(c). In other words, the global error behavior is still regular in a
weaker sense and should be investigated formally.

In Figure 3, we report the case of the error using the standard grid on the symbol 𝑓 (𝜃) = 2 − 2 cos(3𝜃) − 2 cos(4𝜃). In
Figure 3(a), the true eigenvalues (sorted, solid red) and the sampling of the symbol (unsorted, dashed black) are shown.
Clearly, four different regions are present, colored in light red, green, blue, and yellow, depending on the number of sign
changes of the derivative of the symbol in the region (zero, two, three, and one). These different regions will give rise to
different characteristics of the behavior of the errors.

The error E𝑗,n = 𝜆𝑗,n − 𝑓 (𝜃𝜎n𝑗,n), for n = 1000, was plotted as if there are two error modes, that is, j1 = 1, 3, 5, … (blue)
and j2 = 2, 4, 6, … (red). The light red ( first) region shows the error behaving as in the monotone case, that is, the error
can be reconstructed in the manner presented by Ekström et al.9 The light yellow ( fourth) part shows a clear regularity
when representing the error in two sets (blue and red). On the other hand, when increasing n, we do not only decrease
the error in the region but also maintain the error function, and we also change the number of “peaks”, as previously
demonstrated in Figure 2. In the light red region, the error behaves like a monotone symbol, and the error can be efficiently
reconstructed by the same techniques as described in Section 3.1 and in Figures 1 and 2. The light green (second) and
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blue (third) regions show “chaotic” behavior, resulting from the “naive” ordering of the approximated eigenvalues. Again,
this behavior deserves a further study.

4 CONCLUSIONS AND FUTURE WORK

The paper contains two types of theoretical results and a numerical part.
The first result concerns the fact that for the SST Toeplitz matrices as in (4), with a0, a𝜔, a−𝜔 ∈ C, 0 < 𝜔 < n, the

eigenvalues and the eigenvectors have a closed form expression. In particular, the formula for the eigenvalues 𝜇j,n in
Theorem 1 is expressed in an elegant and compact way, because there exist a grid 𝜃n, the one defined in (18), and the
simple function g(𝜃) = a0 + 2

√
a𝜔a−𝜔 cos(𝜃) such that

𝜇𝑗,n = g
(
𝜃𝑗,n

)
, 𝑗 = 1, … ,n.

Furthermore, using basic changes of variable in the integral representation of the distribution results, we show clear
relationships between the symbol g and the standard generating functions of the matrices An, As𝑦m

n , that is, f𝜔(𝜃) =
a0 + a𝜔ei𝜔𝜃 + a−𝜔e−i𝜔𝜃 , g𝜔(𝜃) = a0 + 2

√
a𝜔a−𝜔 cos (𝜔𝜃), respectively. Also, a closed form formula for the corresponding

eigenvectors is presented in Theorem 2.
The second result regards three banded Toeplitz matrices (4), with a0, a𝜔, a−𝜔 ∈ R, 0 < 𝜔 < n: here, we show that an

asymptotic expansion of the eigenvalues holds, with respect to the standard generating function and the usual grid (see
formula (44)). The latter extends a similar asymptotic expansion holding for the eigenvalues of general symmetric real
Toeplitz matrices, having polynomial cosine generating function, which is monotone on [0, 𝜋] (see formula (3) and other
works9,15,16): an important example of such matrices is represented by the finite-difference discretization of the operators
(−1)q𝜕2q∕𝜕x2q, whose generating function is (2 − 2 cos(𝜃))q, q ≥ 1.

The final part concerns a conjecture supported by numerical tests in which it is shown that for a generic banded real
symmetric Toeplitz matrix, the eigenvalue 𝜆j,n compared with 𝑓

(
𝜃𝜎n𝑗,n

)
either shows an expansion similar to formula (44)

if 𝜆j,n ∈ [m,M] and f
′
(𝜃) has 𝜔 changes of sign for f(𝜃) ∈ [m,M] or shows an expansion like formula (3) if 𝜆j,n ∈ [m,M]

and f(𝜃) ∈ [m,M] is monotone.
The latter gives the ground for extrapolation techniques24 for computing the eigenvalues of large banded real symmet-

ric Toeplitz matrices in a fast way. Of course, also the multidimensional and the block cases should be considered and
explored in future works, owing to their importance in the numerical approximation of (systems of) partial differential
equations.
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