Publications, preprints & theses

Publications

[11] Sven-Erik Ekström, Stefano Serra-Capizzano, Eigenvalue isogeometric approximations based on B-splines: tools and results, in Carlotta Giannelli, Hendrik Speleers, editor, Advanced Methods for Geometric Modeling and Numerical Simulation, Springer INdAM Series, vol 35, pp. 57-76 (2019) (link)
[10] Carlo Garoni, Hendrik Speleers, Sven-Erik Ekström, Thomas J. R. Hughes, Alessandro Reali, Stefano Serra-Capizzano, Finite element and isogeometric B-spline discretizations of eigenvalue problems: symbol-based analysis, Archives of Computational Methods in Engineering, 26(5), pp. 1639-1690 (2019) (link)
[9] Sven-Erik Ekström, Carlo Garoni, A matrix-less and parallel interpolation–extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices, Numerical Algorithms, 80, pp. 819–848 (2019) (link)
[8] Sven-Erik Ekström, Isabella Furci, Stefano Serra-Capizzano, Exact formulae and matrix-less eigensolvers for block banded symmetric Toeplitz matrices, BIT Numerical Mathematics, 58(4), pp. 937–968 (2018) (link)
[7] Sven-Erik Ekström, Isabella Furci, Carlo Garoni, Carla Manni, Stefano Serra-Capizzano, Hendrik Speleers, Are the eigenvalues of the B-spline isogeometric analysis approximation of -Δu=λu known in almost closed form?, Numerical Linear Algebra with Applications, 25(5), pp. e2198 (2018) (link)
[6] Sven-Erik Ekström, Stefano Serra-Capizzano Eigenvalues and eigenvectors of banded Toeplitz matrices and the related symbols, Numerical Linear Algebra with Applications, 25(5), pp. e2137 (2018) (link)
[5] Fayyaz Ahmad, Eman Salem Al-Aidarous, Dina Abdullah Alrehaili, Sven-Erik Ekström, Isabella Furci, Stefano Serra-Capizzano, Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form?, Numerical Algorithms, 78(3), pp. 867–893 (2018) (link)
[4] Sven-Erik Ekström, Carlo Garoni, Stefano Serra-Capizzano, Are the Eigenvalues of Banded Symmetric Toeplitz Matrices Known in Almost Closed Form?, Experimental Mathematics, 27(4), pp. 478–487 (2018) (link)
[3] Sven-Erik Ekström, Martin Berggren, Agglomeration Multigrid for the Vertex-Centered Dual Discontinuous Galerkin Method, in Norbert Kroll, Heribert Bieler, Herman Deconinck, Vincent Couaillier, Harmen Ven, Kaare Sörensen, editor, ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications, pp. 301–308 (2010) (link)
[2] Sven-Erik Ekström, Martin Berggren, Incorporating a Discontinuous Galerkin Method into the Existing Vertex-Centered Edge-Based Finite Volume Solver Edge, in Norbert Kroll, Heribert Bieler, Herman Deconinck, Vincent Couaillier, Harmen Ven, Kaare Sörensen, editor, ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications, pp. 39–52 (2010) (link)
[1] Martin Berggren, Sven-Erik Ekström, Jan Nordström, A Discontinuous Galerkin Extension of the Vertex-Centered Edge-Based Finite Volume Method, Communications in Computational Physics, 5(2-4), pp. 456–468 (2009) (link)

Preprints

[p3] Sven-Erik Ekström, A Matrix-Less Method to Approximate the Spectrum and the Spectral Function of Toeplitz Matrices with Real Eigenvalues (submitted) arXiv:1902.08488
[p2] Sven-Erik Ekström, Approximating the Perfect Sampling Grids for Computing the Eigenvalues of Toeplitz-like Matrices Using the Spectral Symbol (submitted) arXiv:1901.06917
[p1] Minghua Chen, Sven-Erik Ekström, Stefano Serra-Capizzano A Multigrid method for nonlocal problems: non-diagonally dominant Toeplitz-plus-tridiagonal systems (submitted) arXiv:1808.09595

Theses

[PhD] Sven-Erik Ekström, Matrix-Less Methods for Computing Eigenvalues of Large Structured Matrices Uppsala University (2018) (link, full text)
Advisors: Maya Neytcheva, Stefano Serra-Capizzano, and Carlo Garoni.
[TeknLic] Sven-Erik Ekström, A Vertex-Centered Discontinuous Galerkin Method for Flow Problems Uppsala University (2016) (link)
Advisors: Martin Berggren and Per Lötstedt (and Jan Nordström and Axel Målqvist).